VIPIX, pSuperB, (SuperB) Atlas/FTK M. Villa 04/11/2010 VIPIX (2009-2011) • Sviluppo di sensori a pixel in integrazione verticale – – – – – – High bandwidth High rate (100 MHz/cm2) Data push Time identification 100 ns Spatial resolution 12 um Low budget material (<<1 Xo) Optical In Power In • Caratterizzazione dei sensori su fascio – Trigger/DAQ – Memorie associative Opto Electronics and/or Voltage Regulation Digital Layer Analog Layer Sensor Layer Physicist’s Dream 50 um Optical Out Sensor Technology MAPS 2D Readout architecture core version AREO Hybrid 2D APSEL3D, 4D SORTEX Hybrid 3D APSEL3D_T C FE4D32x128 SQUARE Mixing interdetto MAPS 3D 3DMAPX 3DHPX Caratteristiche ed innovazioni introdotte nelle varie architetture: •1 : AREO (Apsel family Read Out) • Apsel family read out • MP management logic • Parallel hit encoding • Sparsified column readout • 2 : SORTEX (SORTed EXtraction) • Time sorted hit extraction • horizontal parallelization (submatrices) • zone sparsification / output compression • I2C-like interface • 3: SQUARE (Sequenced QUery Advanced REadout) • No MP • Matrix TS query for time sequenced readout • Single column parallel sparsified readout (higher efficiency) • higher Time Resolution (more robust time sorting for short BC) Nomi Indicativi prossime sottomissioni APSEL4D APSEL3D Type MAPS Techn. STM 0.13 Matrix 32x128 Type MAPS Techn. STM 0.13 Matrix 8x32 APSEL3D _TC Type 3D MAPS Techn. Tezz. C. 0.13 Matrix 8x32 FE4D32x128 alias SuperPX0 Architetture scalate per matrici di dimensioni ridote (Più o meno in scala fra loro) Type Hybrid Techn. STM 0.13 Matrix 32x128 4 Chip dimensions for Layer0 pixel module 12-05-2010 1-3 mm 0.5 mm Beam axis 0.25 mm 10 mm ~ 75 Pad – pitch 130 mm 50 mm pitch Active area=128mm2 Submatrix 2 Submatrix 1 Piste data line di 2 sottomatrici 0.120 mm cut line Produrremo un ritaglio! 0.16 mm 14.79-16.79 mm ~ 75 Pad – pitch 130 mm Submatrix 3 ~ 75 Pad – pitch 130 mm 256x192 pixel matrix Submatrix 4 Readout=10-30mm2 12.8 mm 0.16 mm Area~3xarea from FE32x128 10.56 mm Piste data line di 2 sottomatrici 6-07-2010 Chip dimensions for APSELVI 128x96 Chartered/Tezzaron 1.6 mm 0.5 mm Beam axis 0.25 mm 5 mm ~ 38 Pad – pitch 130 mm 50 mm pitch Active area=32mm2 Submatrix 2: 128x48 8.99 mm 0.16 mm ~ 38 Pad – pitch 130 mm 128x96 pixel matrix ~ 38 Pad – pitch 130 mm Submatrix 1: 128x48 Readout=8mm2 6.4 mm Piste data line di 2 sottomatrici 0.120 mm cut line 0.16 mm Area~x2x area from FE32x128 5.56 mm Piste data line di 2 sottomatrici Parallelamente…. DAQ: EDRO V2 • Born as a SLIM5 DAQ board – Recycling several boards: CMS muon trigger mezzanine, VME, CMS barrel sorter, S-Link & TTCrq • Used happily in beam tests • Reused in ATLAS as the LUCID DAQ board: – Bunch-by-bunch luminosity evaluation • Next use: – ZDC luminosity measurements – VIPIX DAQ – Vertical Slice “DO” board VIPIX DAQ duties Obbiettivo principale: Test beam settembre 2011 • Installare in gennaio-giugno tutta l’infrastruttura di beam test a Bologna: – 4 piani strip; 4 scintillatori; – 2 maps digitali (Apsel-like) + 1 analogico – 1-4 MAPS Perugine (RAPS) – 1 chip MIMOROMA3 pSuperB: progetto pilota SuperB (R&D only) • Coinvolgimento di Bologna sulle tematiche del vertex detector: 80-90 % overlap con VIPIX – Chip di lettura – DAQ The SuperB Silicon Vertex Tracker BaBar SVT 20 cm old beam pipe new beam pipe Layer0 30 cm 40 cm Bp p decay mode, bg=0.28, beam Dt resolution (ps) pipe X/X0=0.42%, hit resolution =10 mm MAPS (2 layers) Hybrid Pixels (single layer) • • • • • 5 Layers of double-sided Si strip sensor Low-mass design. (Pt < 2.7 GeV) Stand-alone tracking for slow particles. 97% reconstruction efficiency Resolution ~15μm at normal incidence •Can use Babar SVT design for R>3cm •Reduced beam energy asymmetry (7x4 GeV vs. 9x3.1 GeV) requires improved vertex resolution •Layer0 very close to the IP (R~ 1.5 cm) with low material budget •Background levels depends steeply on radius •Layer0 needs to have fine granularity and radiation tolerance • Layer0 subject to large background and needs to be extremely thin: > 5MHz/cm2, > 1MRad/yr, < 1 %X0 R&D on strip/pixel options • Layer0 with striplets (technology mature but need some work): – Readout chip! (totally missing) – Module assembly with multilayer fanout (still uncovered !) – HDI/transition card electronics (partly covered by M.Citterio assuming similar to pixel option…not enough!) Hybrid pixel: • Prototype Front-end chip for hybrid pixel (32x128, 50 um pitch) tested – Results in fair agreement with simulation • • Pixel sensor matrix produced and tested: good quality FE chip + sensor matrix bump-bonding in june and test in lab in September CMOS MAPS: • Pixel readout architecture for next matrix (3D MAPS with 2 CMOS layers interconnected, ~Dec 2010) could work in data push and triggered mode – triggered readout reduces pixel module complexity (lower speed for links & less material for pixel bus) DAQ reading chain for L0-L5 HDI +Transition card+FEB+ROM Pi+Bo+Bg/Pv Frascati, 28/09/10 Milano DAQ chain independent on the chosen FE options Bologna 12 ATLAS/FTK • Progetto di tracking veloce in ATLAS basato sulle memorie associative • Si dovrebbe collocare tra il primo livello di trigger ed il secondo. E’ denominato L1.5 • “Feature extraction on L1 data” • Approvato in ATLAS in primavera • 2 Steps: Siamo coinvolti – 2012 Vertical-slice test (parassitaggio su un quadrante) Ci vogliono ma non – 2013… Installazione su tutto ATLAS abbiamo dato la disponibilita’ per ora Event selection –trigger LHC frequency 40 MHz Events frequency on tape/disc 100 Hz Selection is necessary 3 trigger levels first level (HW) HLT (SW) second level Event Filter FTK: HW processor to reconstruct charged tracks at LVL2 Pt>1 GeV Inside the whole ID FTK Works in parallel with DAQ Can be added even after the data taking has began ~off-line quality Francesco Crescioli 14 Fast Tracker – Struttura interna Ricieves hits from DAQ Comunicates with Associative Memory boards Sends hits & found roads to the Fitter 6 boards in parallel Each DO handles 1-2 layers Performs pattern recognition on Super Bins Send back found roads to DO Struttura modulare EDRO in Vertical slice Piu` processori possono lavorare in parallelo E` possibile iniziare con una versione prototipale e poi aggiungere Roads and hits with high risolution are composed and the Linear Fitis executed to select real tracks, stored in a buffer ready for the LVL2 CPUs Francesco Crescioli 15 Guadagni con FTK • Miglior rapporto segnale/fondo; migliore capacità di discriminazione ai livelli di trigger bassi maggiore statistica finale Bs→μμ Results (CDF – ATLAS – ATLAS + FTK) CDF with 780 pb-1 of data 16/3/2006 BR < 1.0x10-7 @95% CL ATLAS (2006) ATLAS + FTK LVL1 2 muons Pt>6 GeV LVL1 singolo muone Pt>6 GeV 30 fb-1 30 fb-1 21 B events 60 Backgr. BR < 6.6x10-9 @90% CL 2nd m Pt>6 GeV 66 events (|η|<1 prototype) 178 events (|η|<2.5|) background LVL2 Rate for 2nd m Pt>3 GeV O(10Hz) Joint venture • Vertical Slice: – Pisa: AM board aggiornata – Americani: Interfaccia vs rivelatori a Pixel – Frascati: ricezione hit e clustering (EPMC) – Bologna: Data organizer (firmware/software) Mezzanina ricezione hits • Compatibilita’ EDRO; • Usabile anche per SuperB • Progetto finito; produzione 10 pezzi a breve Riassumendo • Impegni certi: – – – – – VIPIX: sviluppo architetture RO, layout 2 chips VIPIX: test beam 2011 – Software/firmware pSuperB/SuperB: sovrapposizione VIPIX ATLAS/FTK: commitment fino alla vertical slice (2012) ATLAS/FTK: sviluppo software e firmware (Ing. Ele.) • Impegni possibili/da decidere: – ATLAS/FTK oltre il test del 2012 – SuperB (se approvato) quante forze? – Oltre il 2011: continuazione di VIPIX? • Impegni probabili: Prin2009/Vipix+FTK-like • Impegni chiusi: Prin2007