U NIVERSITA’ DI R OMA “T OR V ERGATA” D IP AR TIM E N T O D I I N GE GN E R I A C I VI L E L ABORATORIO S TRUTTURE E P ROVE M A TER IALI via del Politecnico, 1 00133 Roma TECHNICAL REPORT POINT LOAD TEST ON PRECAST TUNNEL SEGMENT WITH FIBERGLASS REINFORCEMENT CUSTOMER: ATP S.p.A. January 2014 PROF. ALBERTO MEDA PROF. ZILA RINALDI Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it via del Politecnico, 1; 00133 Roma; Tel.: +390672597080 tel.: +390672597092 fax: +390672597046 © All rights reserved. No part of this report may be reproduced, stored in a retrieval system, or transmitted in any other from or by means, electronic, mechanical, optical, recording, or otherwise, without the prior written permission of the writer. 2 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it PREFACE The point load test on precast segment with fibreglass reinforcement was carried out in the Laboratory of Materials and Structures of the Civil Engineering Department of the University of Rome Tor Vergata. Responsible of the tests are Prof. Alberto Meda and Prof. Zila Rinaldi. Pagina 2 di 22 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it 1. SEGMENT GEOMETRY The test is carried out on a precast tunnel segment characterised by a thickness of 250 mm, a length of about 1585 mm and a width of about 1200 mm (Fig. 1). The segment is reinforced with a fiber glass cage (FGR – fiber glass reinforcement), made of 13+13Ø14 longitudinal bars, 13+13Ø12 straight crossbars and 42Ø14 brackets hoops on the perimeter (Fig. 2) with minimum cover of 15 mm. The segment was cast with concrete characterized by a cubic strength equal to 61.7 MPa. Figure 1. Segment geometry Figure 2. Fiber Glass cage 3 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it 2. POINT LOAD SEGMENT TESTING PROCEDURE The test aims at simulating the TBM thrust. The testing set-up is shown in Figures 3 and 4 The point load test is performed by applying point loads on the segment, by adopting the same steel plates used by the TBM machine. A uniform support is considered, as the segment is placed on a stiff beam suitably designed. Two 2000 kN jacks are used for every steel plate. The load was continuously measured by pressure transducers. Four wire transducers (two located at the intrados and two at the extrados) measure the shoes displacement, while one LVDT transducer is applied between the load shoes, at the top, in order to measure the crack openings. (Figs. 3 and 4). The test is usually conducted applying a loading history with loading steps. Three complete loading – unloading cycles have been carried out, and in particular: . - first cycle: 0-1130 kN; - second cycle: 0-2500 kN; - third cycle: 0-3850 kN (failure load). 4 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it LVDTs Transducer wire transducers Figure 3. Test set-up. Intrados surface 5 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it wire transducers Figure 4. Test set-up. Extrados surface 6 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it 3. POINT LOAD TEST: RESULTS The results of the point load tests carried out the 15/10/2013 on the segment named “150” are summarised in the following. In particular, besides the load history, it will be shown the load-displacement relationships and the evolution of the crack patterns. The displacements are evaluated on the basis of the measures given by the wire transducers located on the intrados and extrados surfaces (Par. 2, Fig. 3 and 4). The crack widths are measured with the LVDT instrument. (Par. 3, Fig. 3). The upload and unload cycles, performed with the group of two hydraulic jacks (2000 kN each) for each shoes are specified in the following. The test set-up for the segment, is again highlighted in Figure 5 and Figure 6. F2 F1 LVDT W3 W1 Figure 5. Segment 150: test set-up. Intrados surface. 7 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it F2 F1 W2 W4 Figure 6. Segment 150: test set-up. Extrados surface. The loading process for the segment is summarised in Figure 7 through the load – time diagram. The maximum load is equal to 2850 kN for each shoe and represents the collapse load, as shown in the following. It is worth remarking that in this report the term load will refer to the single shoe. 8 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it 4000 3500 Load [kN] 3000 F1=F2 2500 2000 1500 1000 500 2nd cycle 1st cycle 3rd cycle 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Time [s] Figure 7. Force-time diagram. The displacements measured by the four wire transducers (Figs. 5 and 6) are reported versus the force of the single shoe, in Figures 8, 9 and 10. The maximum measured displacement is higher than 200 mm. 4000 W4 (extrados) 3500 Load [kN] 3000 2500 W2 (extrados) 2000 W1 (intrados) 1500 W3 (intrados) 1000 500 0 0 20 40 60 80 100 120 140 160 180 200 220 Displacement [mm] Figure 8. Force-displacement diagrams (Wire transducers). Total graph 9 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it 4000 W2 (extrados) 3500 W4 (extrados) Load [kN] 3000 W1 (intrados) 2500 2000 1500 W3 (intrados) 1000 500 0 0 10 20 30 40 50 60 Displacement [mm] Figure 9. Force-displacement diagrams (Wire transducers). Detail up to 60 mm. W1 (intrados) 4000 W3 (intrados) 3500 W4 (extrados) Load [kN] 3000 2500 2000 1500 1000 W2 (extrados) 500 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Displacement [mm] Figure 10. Force-displacement diagrams (Wire transducers). Detail up to 6 mm. 10 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it First cycle (0-1130 kN) The first crack appears at the top of the intrados surface, in the LVDT’s length, for a load level of about 785 kN (for each shoe), and passes through the thickness (Fig. 3.6). At the intrados surface its length is about 5 cm . a) b) Figure 11. First cycle. First cracking - 785 kN - (for each shoe); a) intrados, b) top surface. Up to a load level of about 1130 kN the first crack increases its length and passes through the extrados surfaces (Fig. 12). The maximum crack width is about 0.05 mm. (Fig. 13). Finally a complete unloading is carried out. When the load is removed the cracks are completely reclosed. a) b) Figure 12. First cycle. Load step 1130 kN (for each shoe); a) intrados surface, b) top surface. 11 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it Figure 13. First cycle. Maximum crack width (1130 kN). Second cycle (0-2500 kN) In the second cycle, the same crack formed during the first cycle opens for a load level of 785 kN. A further increase of its length, with respect to the first cycle, takes place for a load level of about 1130 kN (Fig. 14a in green). The maximum crack width is lower than 0.1 mm (Fig. 14b). a) b) Figure 14. Second cycle. Load level 1130 kN. a) Intrados surface, b)Maximum crack width. 12 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it The already formed crack lengthens itself for a load level of 1500 kN, while a new cracks forms at the top surface for a load level of 2000 kN (in blue in Fig. 15). Figure 15. Second cycle. Load level 2000 kN. Top surface. Further cracks form under to load shoe, at the extrados surface for a load level of 2500 kN, as shown in Figure 16 (in brown). An increase of length of the already formed cracks takes place (brown in Fig. 17). The maximum crack width is equal to about 0.35 mm (Fig. 18). Figure 16. Second cycle. Load level 2500 kN. Extrados face. 13 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it a) b) Figure 17. Second cycle. Load level 2500 kN. a)Intrados face, b)top surface. Figure 18. Second cycle. Load level 2500 kN. Maximum crack width. 14 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it Finally the unloading phase takes place. The crack width at the end of the second cycle, (load equal to zero) is less than 0.05 mm (Fig. 19). Figure 19. Second cycle. Complete unloading. Maximum crack width. Third cycle (0-3850 kN) In the third cycle, the same cracks formed during the second cycle open for a load levels up to 1130 kN. An increase of length, with respect to the second cycle, takes place mainly for the cracks at the extrados surface for a load level of about 2500 kN (Fig. 20 in yellow). The maximum crack width is about 0.35 mm (Fig. 21). Figure 20. Third cycle. Load level 2500 kN. Extrados surface. 15 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it Figure 21. Third cycle. Load level 2500 kN. Maximum crack width. A new crack forms at the extrados face for a load level of 3000 kN, from the top to the bottom of the element (Fig. 22 in green), passing to the intrados surface (Fig. 23). An increase of length of the crack at the intrados surface also occurs. (Fig. 23) Figure 22. Third cycle. Load level 3000 kN. Extrados surface. 16 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it Figure 23. Third cycle. Load level 3000 kN. Intrados surface. Further cracks open at the intrados surface for a load level of 3500 kN as shown in Figure 24 in pink. Figure 24. Third cycle. Load level 3500 kN. Intrados surface. 17 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it The collapse of the element takes place for a load level of 3850 kN, for a detachment of the concrete cover at the extrados (Fig. 25). Figure 25. Third cycle. Load level 3850 kN. The complete final crack pattern is shown in Figure 26. 18 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it 785 - I a) 1000 - I 1130 - I 1130 - II 1500 - II 2000 - II 2500 - II b) 2000 - III 2500 - III 3000 - III 3500 - III c) Figure 26. Crack pattern; a) intrados face, b) top face, c) extrados face. 19 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it Finally the displacements measured by the LVDT (Fig. 5), related to the one crack opened in the instrument length (Fig. 17) are shown in Figure 27. 4000 3500 Load [kN] 3000 2500 2000 1500 1000 500 0 0 . 0.1 0.2 0.3 0.4 0.5 0.6 Displacement [mm] Figure 27. Load - LVDT displacement. 20 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it CONCLUSIONS The technical report shows the results of a point loads test carried out in the Laboratory of the Rome University “Tor Vergata” on a precast fiber reinforced concrete segment with fiber glass reinforcement. The load history, the load –displacement diagrams, the load – crack opening and the evolution of the crack pattern are highlighted and pictures related to each cycle of the load history are summarised in this report. Roma, 08.01.2014 Prof. Ing. Alberto Meda Prof. Ing. Zila Rinaldi 21 Laboratorio Strutture e Prove Materiali – Dipartimento di Ingegneria Civile - Università di Roma “Tor Vergata” www.LaSt.uniroma2.it