One-Day Research Showcase November 14th 2006, DAPS, Naples Advanced Materials & Systems Composite Structures in Seismic Regions L. Di Sarno University of Sannio, Benevento, Italy Outline • Introduction • Displacement Based Design • Experimental Tests • Numerical Simulations • Final Remarks November 14, 2006, DAPS, Naples, Italy Introduction Ongoing Research Projects @ UniSannio Partial Interaction in Composite Structures PI: Marisa Pecce Budget: 36k USD Duration: 2yrs (2004-2006) Rotation capacity of composite members PI: Marisa Pecce Budget: 100k USD Duration: 2yrs (2005-2008) Displacement Based Design of Composite Structures PI: Luigi Di Sarno Deformation Capacity Experimental Tests Budget: 36k USD Numerical Simulations Sub-assemblages November 14, 2006, DAPS, Naples, Italy Displacement Based Design Local and global ductility (e.g. rotations & interstoreys d/h) For framed systems the collapse mechanism mode is linear (global mechanism). Sub-structuring N N VVcc VFb t Ftb V VVc c LL N N Η H sag Δ = Δhog beam + Δ beam + Δ col + Δ jo int November 14, 2006, DAPS, Naples, Italy Composite Interactions Beam type A #20 shear studs Spacing 190 mm Beam type B #2*10 shear studs Spacing 190 mm Members Connections Beam type C Spacing 515 mm Span length 3610 mm Asymmetric Response Components #8 shear studs RC Full Interaction Steel Partial November 14, 2006, DAPS, Naples, Italy Displacement-Based Design Sample Frames MRF Pianta piano tipo 31,00 7,00 6,00 5,00 6,00 Rigid Connections 9-storeys 7,00 IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 IPE 140 IPE 360 IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR IPE 360 HE B VAR HE B VAR IPE 360 HE B VAR HE B VAR IPE 360 HE B VAR HE B VAR IPE 360 HE B VAR HE B VAR IPE 360 HE B VAR IPE 140 HE B VAR HE B VAR HE B VAR IPE 140 IPE 360 IPE 360 IPE 140 HE B VAR HE B VAR IPE 140 IPE 360 IPE 140 HE B VAR 6,00 X5 24,00 6,00 IPE 140 IPE 140 IPE 140 IPE 140 IPE 140 IPE 140 CBF X4 6,00 IPE 140 IPE 140 IPE 140 IPE 140 IPE 140 IPE 140 X3 6,00 IPE 140 IPE 140 IPE 140 IPE 140 IPE 140 5 0 1 IPE 140 X2 X1 Y Y1 Y2 Y3 Y4 Y5 Y6 X Priestley and Kowalsky (2000) MRF CBF November 14, 2006, DAPS, Naples, Italy Displacement Based Design High values of fundamental period (T>2.5 secs) T INDIPENDENT E.P.P. ⎛Δ⎞ ⎜ ⎟ = 3% h ⎝ ⎠ i ,u r=0,05 r=0,10 r=0,15 r=0,20 0.0799 0.0799 0.0799 0.0799 0.0799 0.6734 0.6734 0.6734 0.6734 0.6734 8.42 8.42 8.42 8.42 8.42 (KN) 503.121 489.556 504.165 519.749 536.396 = (KN/m) 747.167 727.023 748.718 771.862 796.583 (m) 22.446 22.446 22.446 22.446 22.446 (ton) 864.62 864.62 864.62 864.62 864.62 17.67% 18.30% 17.63% 16.95% 16.27% 6.759 6.852 6.752 6.650 6.546 K SDOFeq heff = SDOFeq SDOFeq = m = x SDOFequ SDOFeq T SDOFeq = (s) 0.60 0.50 ? 0.40 SDe(T) [m] DySDOFequ (m) DuSDOFequ (m) mSDOFequ FY Elastic Displacement Response Spectrum, SDe(T) BI-LINEAR 0.30 0.20 T DIPENDENT E.P.P. ⎛Δ⎞ ⎜ ⎟ = 3% h ⎝ ⎠ i ,u DySDOFequ (m) DuSDOFequ (m) mSDOFequ r=0,05 r=0,10 r=0,15 r=0,20 0.0799 0.0799 0.0799 0.0799 0.0799 0.6734 0.6734 0.6734 0.6734 0.6734 8.42 8.42 8.42 8.42 (KN) 482.209 488.415 502.972 518.501 535.087 K SDOFeq = (KN/m) FY h eff SDOFeq = = m SDOFeq = x SDOFequ T SDOFeq = 0.00 0.00 1.00 2.00 3.00 4.00 5% 716.113 725.328 746.946 770.008 794.639 (m) 22.446 22.446 22.446 22.446 22.446 (ton) 864.62 864.62 864.62 864.62 864.62 18.66% 18.36% 17.68% 17.00% 16.32% 6.904 6.860 6.760 6.658 6.544 (s) 5.00 6.00 7.00 8.00 9.00 T[s] 8.42 SDOFeq ? 0.10 BI-LINEAR ξeffective = 10% 15% 20% ⎞ 1 a ⎛ 1 ⎞ ⎛ 1 ⎟⋅ ⋅ ⎜⎜1 − b ⎟⎟ ⋅ ⎜⎜1 + d ⎟ π ⎝ μ ⎠ ⎝ (Teffective + c ) ⎠ N 25% 28% N = 1+ 1 (0.5 + c )d November 14, 2006, DAPS, Naples, Italy 10.00 Experimental Tests Columns: • Partially encased HEB 260 (external frames) • Partially encased HEB 280 (internal frames) HEB140 Foundation block layout: traditional connection November 14, 2006, DAPS, Naples, Italy Experimental Tests • Two partially encased columns with a steel HEB 260 member and traditional connection to foundation (stiffening plates and anchoring devices); • Two partially encased columns with a steel HEB 260 member and innovative connection to foundation (socket-type foundation); • Two partially encased columns with a steel HEB 280 member and innovative connection to foundation (socket-type foundation). 0,4 m 0,7 m 3,0 m 3,0 m 0,7 m 3,5 m 3,5 m Specimen 7m 5m 0,4 m HEB HEB HEB HEB HEB HEB 260 260 260 260 280 280 Axial Load N[kN] 330 170 330 330 520 520 Test condit ion Monot onic Monot onic Monot onic Cyclic Monot onic Cyclic Base column Tradit ional (ISPRA) Tradit ional (ISPRA) Socket – Type Socket – Type Socket – Type Socket – Type November 14, 2006, DAPS, Naples, Italy Experimental Tests Traditional connection (HEB260) Horizontal load (kN) 400 300 Base Column Yield 200 260-TMAX (N=330kN) 100 260-TMIN (N=170kN) 0 0,0 2,0 4,0 Drift (%) November 14, 2006, DAPS, Naples, Italy 6,0 Experimental Tests Socket type connection 8,00 D/H [%] 6,00 4,00 2,00 base - (0_6) -6,00 -4,00 0,00 -2,00 0,00 2,00 4,00 -2,00 -4,00 -6,00 November 14, 2006, DAPS, Naples, Italy 6,00 [%] 8,00 Experimental Tests Traditional vs. socket type-connection N=330kN 600 Traditional base 600 400 Base moment (kNm) Base moment (kNm) 500 Socket-type base 300 200 100 HEB 260 0 0,00 0,03 0,05 0,08 500 400 HEB 260 Socket-type base 300 200 HEB 280 Socket-type base 100 0,10 0 0.00 0.03 0.05 600 500 600 Traditional base 300 300 200 Socket-type base 150 100 -0,03 -0,02 -0,01 D /H [%] 0,01 0,02 -200 -300 -400 -500 HEB 260 0,03 -4,00 0 -2,00 0,00 -150 2,00 4,00 6,00 8,00 10,00 12,00 -300 -450 Test n°1 traditional connection Test n°1 socket type connection -600 Lateral Drift (rad) M [kNm] 450 400 0 -100<0,00 0.10 Lateral Drift (rad) Lateral Drift (rad) Base moment (kNm) 0.08 -600 Test n°2 socket type connection November 14, 2006, DAPS, Naples, Italy 0.13 Observations • Traditional base column joints employing welded steel end plates cause large concentration of inelastic demand in the anchorage bolts. • Anchors trigger bond type mechanisms that can exhibit limited energy dissipation capacity. The elongation of the bolts before fracture and the deformation of the concrete beneath the rigid steel end plate give rise to a significant increase of the lateral displacement at the column top. The innovative socket type joint was tested and improved inelastic (monotonic & cyclic) response was observed. Further experimental and numerical studies are needed to assess the structural performance of socket type connections. • • • November 14, 2006, DAPS, Naples, Italy Experimental Tests Concrete filled composite columns Traditional 25 31.5 219.1 10 45 40 10 30 70 550 50 60 150 50 G4 G3 550 150 Y X G1 219.1 10 G2 12 80 15 24 80 10 15 219.1 12 10 40 270 50 160 150 10 24 550 22 100 250 24 550 Bullone Ø24 passante 439.1 250 10 Socket 125 24 50 550 15 12 12 24 40 125 24 24 125 22 12 12 22 40 125 100 24 439.1 22 50 Dima di centraggio November 14, 2006, DAPS, Naples, Italy Experimental Tests Simply supported beams (hogging moments) A Lamiera grecata tipo A 55/P 600 HI-BOND t = 1.5 mm Fe 430 h =55 mm Calcestruzzo Rck 250 Rete elettrosaldata Ø10/25 55 150 150 55 150 P 95 95 95 90 95 Costolature (s=10mm) saldate Fe430 (saldatura a completa penetrazione) 360 Costolature (s=10mm) saldate Fe430 (saldatura a completa penetrazione) IPE 360 (Fe 430) 2085 90 A Hogging moment tests 90 90 90 5000 90 90 Total/Partial interaction Lamiera grecata tipo A 55/P 600 HI-BOND t = 1.5 mm Fe 430 h =55 mm To evaluate: P Sezione A-A 61,5 88,5 IPE 360 (i) Effective width; (ii ) Interaction (degree); (iii) Cyclic loading. 55 250 12,7 1000 150 150 8 R1 8 360 334,6 90 Costolature (s=10mm) saldate Fe430 Solaio composto calcestruzzo-lamiera grecata Rete elettrosaldata Ø10/25 55 150 12,7 170 Beam span L=4.0m (IPE 360) November 14, 2006, DAPS, Naples, Italy Experimental Tests W/C = 0.50 HEB 180 – S275 25 Load - Slip Load [KN] 20 15 10 5 0 0 5 10 15 20 25 Slip November 14, 2006, DAPS, Naples, Italy Numerical Simulations Evaluation of deformations Slip Traditional Φ= Slip/(H-x) B c H A's ε's φy εc xc M N c As Socket εbolt Fixed end rotation November 14, 2006, DAPS, Naples, Italy Final Remarks • Deformation capacity of steel & concrete composite beams should be further investigated particularly under hogging moments. • Ductility/Energy dissipation capacity of beam-to-column and base column connections should be analysed both experimentally and numerically for traditional and innovative layouts. • Refined analytical models able to predict reliable inelastic response of composite members are still lacking. • Adequate limit states (local & global) should be defined to assess reliably the seismic response of composite framed structures, especially with the framework of displacementbased design. November 14, 2006, DAPS, Naples, Italy