Fabrication and characterization
of rare earth scandate thin films
prepared by pulsed laser deposition
J. Schubert
M. Wagner1, T. Heeg1, O. Trithaveesak1, A. Gerber1
C. Zhao2, O. Richard2, M. Caymax2
V. V. Afanas’ev3
L.F. Edge4, Y. Jia4, W. Tian4, D.G. Schlom4
1Institute
of Thin Films and Interfaces and Center of Nanoelectronic Systems for
Information Technology, Research Center Jülich, D-52425 Jülich, Germany
2IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
3Department of Physics, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
4Penn State University, 16802 University Park, Pennsylvania, USA
Institute of Thin Films and Interfaces (ISG)
Outline
ƒ Pulsed Laser Deposition (PLD)
ƒ High-κ-dielectrics
ƒ Epitaxial films
ƒ Amorphous films
ƒ Summary and outlook
Institute of Thin Films and Interfaces (ISG)
Pulsed Laser Deposition (PLD)
ƒ Nearly any material can be deposited
ƒ High deposition rate
ƒ Stoichiometric deposition
ƒ Simple setup
ideal for material screening
Institute of Thin Films and Interfaces (ISG)
PLD: on-axis-geometry
Institute of Thin Films and Interfaces (ISG)
PLD: off-axis-geometry
Institute of Thin Films and Interfaces (ISG)
Rare-earth based oxide films
Collossal magneto resistance
La0.66Ca0.33MnO3
La0.33Ba0.66MnO3
Isolating materials
CeO2
LaAlO3
PrGaO3, NdGaO3
GdScO3
DyScO3
LaScO3
Institute of Thin Films and Interfaces (ISG)
Outline
ƒ Pulsed Laser Deposition (PLD)
ƒ High-κ-dielectrics
ƒ Epitaxial films
ƒ Amorphous films
ƒ Summary and outlook
Institute of Thin Films and Interfaces (ISG)
High-κ-dielectrics
MOSFET:
Driving force in
micro-/nanoelectronics
[ Spektrum d. Wissenschaft, 6/2004]
[ Intel/SIA roadmap; www.intel.com]
Institute of Thin Films and Interfaces (ISG)
High-κ-dielectrics
10
SiO 2
optical bandgap [eV]
9
8
Al 2 O 3
MgO
YAlO 3
CaO
7
Y 2O 3
ZrSiO 4
Sc2O3
ZrO2
Gd2 O3
SrO
Si 3 N 4
Sm2 O 3
6
5
4
LaAlO 3
SrZrO 3
HfO2
LaLuO3
3
2
0
5
10
15
20
25
30
35
40
dielectric constant
D.G. Schlom und J.H. Haeni, “A Thermodynamic Approach to Selecting Alternative Gate Dielectrics“, MRS Bulletin V. 27, No. 3 (2002)
Institute of Thin Films and Interfaces (ISG)
Motivation
RE-Scandates
stable in contact with silicon
high melting point ( > 2000 °C)
orthorhombic crystal structure (Pbnm)
Material
LaScO3
CeScO3
PrScO3
NdScO3
SmScO3
EuScO3
GdScO3
TbScO3
DyScO3
HoScO3
a [Å]
5.678
5.626
5.602
5.579
5.524
5.502
5.488
5.466
5.440
5.427
b [Å]
5.787
5.787
5.770
5.770
5.750
5.750
5.746
5.727
5.713
5.714
c [Å]
8.098
8.047
8.010
7.999
7.953
7.954
7.934
7.915
7.887
7.895
Institute of Thin Films and Interfaces (ISG)
15 mm
Motivation
GdScO3
DyScO3
RE-Scandates dielectric constant
GdScO3 (single crystal)
DyScO3 (single crystal)
LaScO3 (poly material)
Jeff Haeni-Thesis 2002
18-30
18-35
25-68
Transmission (%)
70
GdScO3-bandgap
60
50
40
30
20
10
0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
E(eV)
Seung-Gu Lim et al., JAP (91) 7, (2002), 4500-4505
Institute of Thin Films and Interfaces (ISG)
7.0
High-κ-dielectrics
10
SiO 2
optical bandgap [eV]
9
8
Al 2 O 3
MgO
YAlO 3
CaO
7
Y 2O 3
ZrSiO 4
GdScO 3
Sc 2 O 3
LaAlO 3
ZrO 2
SrZrO 3 LaScO 3
Gd 2 O 3
SrO
DyScO 3
Si 3 N 4
HfO 2
Sm 2 O 3
LaLuO 3
6
5
4
3
2
0
5
10
15
20
25
30
35
40
dielectric constant
D.G. Schlom und J.H. Haeni, “A Thermodynamic Approach to Selecting Alternative Gate Dielectrics“, MRS Bulletin V. 27, No. 3 (2002)
Institute of Thin Films and Interfaces (ISG)
Typical growth conditions
wave length
248 nm
pulse duration
25 nsec
energy
1 J / pulse
energy density
3-5 J/cm2
repetition rate
10 Hz
pressure
> 1*10-3 mbar O2
target - substrate
6 cm
substrate temperature
20°C - 1000°C
sintered stoichiometric targets
Institute of Thin Films and Interfaces (ISG)
Outline
ƒ Pulsed Laser Deposition (PLD)
ƒ High-κ-dielectrics
ƒ Epitaxial films
ƒ Amorphous films
ƒ Summary and Outlook
Institute of Thin Films and Interfaces (ISG)
Results: DyScO3 on SrTiO3 (100)
Energy (MeV)
150
0.6
0.8
1.0
1.2
Sc
Dy
random
O
Normalized Yield
Tsub 900°C
d = 250 nm
Dy:Sc 1:1.05
0.4
Ti
100
50
Sr
channelling
χmin= 3.5 %
0
200
400
600
Channel
Institute of Thin Films and Interfaces (ISG)
800
1000
Ts = 900 °C
a,b = 5.67 Å
∆ω 220 = 0.26°
*
330
*
*
220
110
Results: DyScO3 on SrTiO3 (100)
Counts
900 °C
700 °C
500 °C
10
20
30
40
50
60
2θ (degrees)
Institute of Thin Films and Interfaces (ISG)
70
80
Results: LaScO3 on SrTiO3 (100)
Energy (MeV)
150
0.6
0.8
O
1.2
La
Ti
100
50
1.0
Sc
random
Normalized Yield
Tsub 900°C
d = 350 nm
La:Sc 1:1
0.4
Sr
channelling
χmin= 2%
0
200
400
600
Channel
Institute of Thin Films and Interfaces (ISG)
800
1000
*
Ts = 900 °C
c = 8.26 Å
a,b = 5.70 Å
∆ω 220 = 0.1°
*
330
*
220
110
Results: LaScO3 on SrTiO3 (100)
Counts
900 °C
600 °C
500 °C
10
20
30
40
50
2θ (degrees)
60
Institute of Thin Films and Interfaces (ISG)
70
80
Results: LaScO3 on SrTiO3 (100)
LaScO3
SrTiO3
450 nm
LaScO3
SrTiO3
1 nm
Institute of Thin Films and Interfaces (ISG)
Wei Tian (PSU)
LaScO3 on SrTiO3 on Silicon (100)
Energy (MeV)
100
0.4
0.6
0.8
1.0
1.2
La
js_4797_r
js_4797_c
Normalized Yield
80
60
O
Si
40
Sr
Ti
20
0
200
χmin ~ 3.5 % (LSO)
∆ω (220) ~ 0.6 ° (LSO)
Sc
400
600
800
1000
Channel
Institute of Thin Films and Interfaces (ISG)
Results: LaScO3 on SrRuO3 / SrTiO3 (100)
Energy (MeV)
0.4
150
Tsub 900°C
d = 350 nm
0.6
random
Normalized Yield
O
Ti
0.8
Sr
1.0
1.2
Sc
La
Ru
100
50
χmin= 3%
channelling
0
200
400
600
Channel
Institute of Thin Films and Interfaces (ISG)
800
1000
C(V)-Measurements (f = 1 MHz) LaScO3
28
Vbd > 1MV/cm
dielectric constant
27
κ = 26 LaScO3
κ = 20 DyScO3
26
GdScO3
25
fits to the values
of single crystals
in a,b direction
24
23
-2
-1
0
1
2
5
electric field [V/cm * 10 ]
Institute of Thin Films and Interfaces (ISG)
Epitaxial films
• Epitaxial RE-scandate films grown by PLD
• Stoichiometric transfer target
substrate
• Twinned orthorhombic structure
• Good crystalline properties ∆ω = 0.1° (LaScO3)
•
κ = 26 (LaScO3)
κ = 20 (DyScO3, GdScO3)
Institute of Thin Films and Interfaces (ISG)
Outline
ƒ Pulsed Laser Deposition (PLD)
ƒ High-κ-dielectrics
ƒ Epitaxial films
ƒ Amorphous films
ƒ Summary and Outlook
Institute of Thin Films and Interfaces (ISG)
RBS: GdScO3 on Si
Energy (MeV)
120
0.4
0.6
0.8
Si
1.0
1.2
Gd
GdScO3
Normalized Yield
100
Measurement
Simulation
80
O
60
Si
40
Sc
20
0
200
Tsub 500°C
d = 50 nm
400
600
800
Channel
Institute of Thin Films and Interfaces (ISG)
1000
SEM/TEM-micrographs
On-axis-chamber
Off-axis-chamber
Institute of Thin Films and Interfaces (ISG)
High temperature XRD
Amorphous phase of DyScO3 and GdScO3 stable up to
1000°C
Institute of Thin Films and Interfaces (ISG)
Amorphous films: properties
Internal photoemission
ƒ Bandgap > 5.5 eV
ƒ Bandoffsets 2 – 2.5 eV
Afanas’ev, V. V.; Stesmans, A.; Zhao, C.; Caymax, M.; Heeg, T.; Schubert, J.; Jia, Y.; Schlom, D.; Lucovsky, G.:
“Band alignment between (100)Si and complex rare earth/transition metal oxides“. Appl. Phys. L. Vol. 85, No. 24 (2004)
Institute of Thin Films and Interfaces (ISG)
Electrical measurement
Au
high-κ-dielectric
SiO2
dhigh-κ
dSiO
κhigh-κ
κSiO
2
2
Chigh-κ
CSiO
2
p-doped Si
→
d EOT
κ SiO
=
d high −κ + d SiO
κ high −κ
2
Institute of Thin Films and Interfaces (ISG)
2
Ugate
EOT-plots
GdScO3 on Si
DyScO3 on Si
20
18
measured @ 100 kHz
16
EOT [nm]
14
12
on-axis κ = 20
10
8
on-axis
off-axis
linear fit on-axis
linear fit off-axis
6
4
off-axis κ = 16
2
0
0
10
20
30
40
50
Film thickness [nm]
Institute of Thin Films and Interfaces (ISG)
60
70
C-V-curves (On-axis-chamber)
0.55
measured @ 100 kHz
hold time: 3 s
0.50
2
Capacitance [µF/cm ]
0.45
0.40
DyScO3 - 5 nm
0.35
DyScO3 - 8 nm
0.30
DyScO3 - 25 nm
DyScO3 - 50 nm
0.25
0.20
0.15
VFB = -0.2 to -0.4 V
0.10
0.05
0.00
-3
-2
-1
0
1
Gate voltage [V]
Institute of Thin Films and Interfaces (ISG)
2
3
Leakage currents (Off-axis-chamber)
Institute of Thin Films and Interfaces (ISG)
Amorphous films
Stability up to 1000°C (DyScO3, GdScO3)
ƒ Stability up to 700°C (LaScO3)
ƒ Bandgap > 5.5 eV
ƒ Bandoffsets 2 – 2.5 eV
ƒ
ƒ
ƒ
ƒ
ƒ
On-axis-geometry: dense and smooth films
κ ~ 20
Small leakage currents
Scandates are promising candidates
Institute of Thin Films and Interfaces (ISG)
Outlook
ƒ Transistors
ƒ Mobility measurements
ƒ Creating films with higher κ
(laminates from titanates and scandates)
Institute of Thin Films and Interfaces (ISG)
Scarica

J. Schubert "PLD of rare earth oxides" - MDM-CNR