An optical readout configuration for advanced massive GW detectors Francesco Marin, Livia Conti, Maurizio De Rosa Dipartimento di Fisica, Università di Firenze,LENS and INFN, Sezione di Firenze Via Sansone, 1, I-50019 Sesto Fiorentino (FI), Italy e-mail: [email protected] www.auriga.lnl.infn.it www.auriga.lnl.infn.it Optical readout of displacement • Standard detection technique in interferometers • Proposed in the 80’s for bar detectors1 • Recently applied to a room temperature detector2 [1] J.-P. Richard, J. Appl. Phys. 64, 2202 (1988) [2] L. Conti et al., J. Appl. Phys. 93, 3589 (2003) Room temperature Weber bar with optical readout www.auriga.lnl.infn.it Room temperature Weber bar with optical readout transducer cavity www.auriga.lnl.infn.it -18 10 optical fiber beam-splitter Phase mod. Power stab. Frequency locking FM sidebands technique reference cavity FM sidebands technique pzt actuator -19 10 Data acquisition Low frequency locking temperature control √Shh (1/√Hz) Nd:YAG laser -20 10 820 840 860 880 900 Frequency (Hz) 920 940 Room temperature Weber bar with optical readout www.auriga.lnl.infn.it Work in progress: • Cleaner vacuum system • New mechanical suspension • Higher Finesse transducer cavity • Cooling (at least 77K) www.auriga.lnl.infn.it Brownian noise and radiation pressure (back-action) are the usual sensitivity limiting sources in a few-modes model, together with the displacement detection sensitivity (displacement noise) In a real, massive system: several modes, with their thermal noise and back-action. Small interrogation region means large fluctuations One must average over high order modes: needs large interrogation region www.auriga.lnl.infn.it We must consider ‘local’ effects: • Thermal noise - photothermal - thermodynamic - Brownian Depends on material parameters At cryo-T: - best material is sapphire - predominant Brownian • Radiation pressure www.auriga.lnl.infn.it Brownian noise: SBr(!) = 4 kB T ! Im (!)] Radiation pressure effect: 0 12 2C 2 B @ Srp(!) = j(!)j A c Scav intracavity radiation noise spectral power: Scav =2 0 12 F @ C A Pin h B www.auriga.lnl.infn.it Gaussian spot on a half-infinite mirror: Im (!)] ' j(!)j 2 1 − σ |χsingle| = 1/2 π w Y 1 Single-spot noise: k T 1 1 ; 2 !w Y 4 B single Br ( ) = 1=2 S ! S single rp 0 BB @ 12 F CC A 2(1 ; ) = 3=2c Y w 2 h Pin 2 Main figures www.auriga.lnl.infn.it Sapphire (1 K): Young modulus Y = 4·1011 Pa Poisson coefficient σ = 0.25 Loss angle φ = 3·109 Cavity Finesse: F = 106 Displacement sensitivity with 1 W: 7·10-45 m2/Hz with 10 W: 7·10-46 m2/Hz Target (Ex.: dual sphere *) www.auriga.lnl.infn.it • Best stiffness: for laser power = 7 W • Thermal noise negligible for Q/T > 2·108 Sxx = 10-45 m2/Hz … but With a waist of w = 1 mm: SBr = 5·10-44 m2/Hz Srp = 8·10-41 m2/Hz We need a waist of w > 20 cm !!!! * M. Cerdonio et al., Phys. Rev. Lett. 87, 031101 (2001) Possible solutions? www.auriga.lnl.infn.it Concave – Convex cavity : (-R2) = R1 + r Stable if d > r If (d – r) << d << R1, R2 : Ex. : R = 10 m r = 10 mm d – r = 0.1 mm λ = 1.064 µm Delay line : w 2 λR ≅ π d d−r W = 5.8 mm Low equivalent Finesse Plano-concave Cavity: w 2 λ ≅ Rd π Folded Fabry-Perot (FFP) www.auriga.lnl.infn.it M3 M4 M1 θ M1 M3 θ M2 M2 (a) (b) F. Marin, L. Conti, M. De Rosa: “A folded FabryPerot cavity for optical sensing in gravitational wave detectors”, Phys. Lett. A 309, 15 (2003) Folded Fabry-Perot (FFP) www.auriga.lnl.infn.it M3 M4 M1 D M2 Signal: ∝N Brownian noise: ∝ √N Radiation pressure: ∝ N·F (constant) Displacement noise: ∝ 1/F ∝ N Linewidth (→ bandwidth): ∝ 1/(N·F) (constant) www.auriga.lnl.infn.it For non-correlated spot fluctuations Brownian noise effect: S 2 2L SBr single SBr D2 = (2L)2 = 2 1 N Radiation pressure effect: 2L single S S Sν 1 rp rp = = ν 2 (2L)2 4D2 N 2 www.auriga.lnl.infn.it Taking into account correlations N = single ;1 N nX X n=2 q=1 N +2 1 0 1 0 2 2 j rn ; rq j C j rn ; rq j C B B exp @; 2 A I0 @ 2 A 2w 2w N Nakagawa et al., Phys. Rev. D 65, 082002 (2002) Brownian noise effect: FFP (! ) SBr = 4 kB T (4N + 4N ! 0 single) +2 Radiation pressure effect: FFP Srp = 0 12 @2A c Scav 2N 2 + 2N + 2single 0 Correlation effect www.auriga.lnl.infn.it N 100 400 χN / χu 100 1 } 25 400 100 25 10 2-dim. array } 1-dim. array 0 1 2 3 4 5 d/w 6 7 8 9 10 www.auriga.lnl.infn.it -36 10 Pin = 1 W -37 10 D = 6 mm R = - 10 m d =4w -38 -1 (Hz ) 10 a -39 10 Sν / ν 2 b -40 10 c d e -41 10 -42 10 0 20 40 60 80 N a: radiation pressure effect (no correlations) b: radiation pressure effect (full) c: Brownian noise @ 1.3 kHz (no correlations) d: Brownian noise @ 1.3 kHz (full) e: Shot-noise limited displacement sensitivity 100 -35 10 -36 10 -37 -1 10 -38 10 -39 10 -40 10 -41 10 -42 Sν / ν (Hz ) 10 2 www.auriga.lnl.infn.it Pin = 7 W b a c 0 D = 6 mm R = - 10 m d =4w d 50 e 100 150 200 250 300 350 N a: radiation pressure effect (no correlations) b: radiation pressure effect (full) c: Brownian noise @ 1.3 kHz (no correlations) d: Brownian noise @ 1.3 kHz (full) e: Shot-noise limited displacement sensitivity Power density: ≈ 10 kW/mm2 Conclusions www.auriga.lnl.infn.it The FFP allows to closely approach with the present technology the quantum-limited sensitivity and best stiffness calculated for the main modes of a high sensitivity, wide bandwidth dual detector www.auriga.lnl.infn.it