INTESA
the INTermediate Electron
Source Accelerator facility
Seminario di Fisica, INFN Pisa
April 19, 2005
Giovanni Maria Piacentino
Università di Cassino & INFN Pisa
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Presentation Overview
• the Collaboration
• Motivations
• a short introduction on Microtrons and Microtron
Injection;
• INTESA: the INTermediate Electron Source Accelerator
–
–
–
–
–
Complex layout;
Magnetron Trigger & Modulation Circuit;
the RF Cavity: Design, Simulation and the prototype;
the INTESA beam injection;
other aspects;
• Construction Status and Tests
• Conclusions
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
the Collaboration
• Università di Cassino
– G.M. Piacentino, C.E. Pagliarone, B. Preite, J.F. Wyss
– B., M. Boscia, van Basten, Alessandro
• INFN di Pisa
– A. Menzione,
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Motivations
• INFN Test Beam Source;
• Radiation hardness studies on analogical and
digital electronics;
• X Ray Source;
• Neutron Source;
• Industrial Radiography Source;
• Production of Radioisotopes;
• Radiochemical and Radioactivation Analysis Lab;
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Microtron: Basic Principles
• in 1944 Veksler proposed a
modification of cyclotron for
electrons based on phase
stability
– Veksler V.I., Dokl. Akad. Nawk
USSR 43 (1944) 329
U0
V 
 Vin
e
2 f rf  U 0

B 2 
 Vin 
c  e

• the electron trajectory in a
Microtron is a system of circles
increasing in diameter with a
common tangent point where
the accelerating cavity is
placed.
Tn 
2 En
ecB
2E 


T



ecB 

APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Microtron Injection
Toroidal Cavity Injection
Cathode inside the Cavity
Kapitza I
Electronic gun Injection
Kapitza II
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
INTESA a General Overview
In the original design we wanted to get:






Maximum Tunable Energy ~3 ÷ 20 MeV;
Range for the Current few nA up to 50-100 μA;
Possibility of Beam Extraction in Air;
High Beam Monocromaticity;
Small Emittance;
Small Accelerator size in order to reduce:
 shilding and facility construction costs;
 Maintance costs;
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Project Layout
MAGNETRON
TRIGGER AND
MODULATION
MAGNETRON
MICROWAVE
LINE
CIRCUIT
MICROTRON
CONTROL
DESK
VACUUM
PUMP
MAGNET AND
EXTRACTION
SYSTEM
HIGH
VOLTAGE
POWER
SUPPLY
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
INTESA the Microtron for INFN Pisa
The main feature of INTESA are:
• the Injection System: a Kapitza 2 based
Injection procedure to maximize the injection
and the Total beam Energy;
• the Extraction System:
– Tunable in Energy;
– with a fixed extraction position;
• Magnetron Power Supply: a Solid State one.
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Machine Parameters
• Fields
 RF  3 GHz V  Ei  E0  0.85 MeV
B
2 FR
c2
 E0  Ei

 e

  1.780 KG

• Injection Energy
Ei  350 KeV
• Maximum Energy
E Max  18.7 MeV
E max
=2 2  0.7 m
Bc
• Maximum orbit diameter
D
• Maximum number of orbits
orbits
N MAX
 21
orbit
MAX
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Magnetron Trigger & Modulation Circuit
• RF Cavity will excited with an EM pulse
RF=3 GHz, P=2.0 MW provided by a Magnetron
(EEV, model M5015)
OPERATIONAL CONDITION
FREQUENCY RANGE
2994 up to 3002 MHz (tunable)
MAGENTIC FIELD
155025 Gauss
CATH. EXITATION TENSION
8.5 V
CATH EXITATION CURRENT
9.0 A
ANODIC CURRENT
90 A (peak)
ANODIC VOLTAGE
43 up to 45 KV (peak)
PULSE WIDTH
2.0 sec
POWER
2.0 MW
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Magnetron Trigger & Modulation Circuit
(cont’d)
6 LC Cells
T= 5 ms
V= 8.5÷9.0 KV for 2 s
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
EEV, mod. M5015
INFN PISA
Solid State Switch
• Power SRC Mod. S03KX020KA assembled by
Westcode on our specific design;
Mod. S03KX020KA (Westcode)
MAXIMUM RATINGS
VDRM (repetitive peak off-state voltage)
26KV
VDSM (non-repetitive peak off-state voltage)
30KV
ITRM (repetitive peak current)
5KA
Rise Time (VD=26KV, IT=4KA)
750nsec
Turn-ON Time
1.0sec
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
RF Cavity
• The RF Cavity resonance frequency have been
setted to be RF= 3.0 GHz;
• The RF Cavity sizes are: R=38.3 mm, h=15 mm;
• The Cavity Q factor is: Q 
1
r
r
1
h
 8800
• δ=1.22*10-4 mm is the penetration depth in the
copper for at a frequency of 3 GHz.
h
• Shunt Resistence: Rs  188Q  648k 
r
1V2
• For a 580 KeV impulse we get: P 
 246kW
2 Rs
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
RF Cavity design
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
RF Cavity simulation
performed with FEMALBMATHLAB
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
RF Cavity simulation (cont’d)
performed with FEMALB MATHLAB
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Prototyping the RF Cavity
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Prototyping the RF Cavity
• Oxygen free high density Copper manufactured
in Cassino.
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Wave Guide - RF Cavity Coupling
• Possibility of changing the beam current remaning into
the VSWR Magnetron limits;
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
beam injection: Kapitza II
•
•
•
•
Choosen a Kapitza II Injection system for INTESA;
the cathode is inside the RF cavity;
beam tuning up to ~20%;
E= 580 keV;
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Microtron Magnet & vacum Chamber
in San Piero a Grado (PI)
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Construction Status & Tests
Many Parts to be realized
•
•
•
•
•
•
•
Microwave System;
Coupling of Resonator with a Waveguide;
Automatic Frequency Control System;
Microwave Power Supply;
Extraction of Electron Beam;
Vacuum System;
Magnetic Field and Cooling System;
in particular…
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
ATTIVITA’
Pulizia e taratura
microwave line
Cavità risonante
Sistema di estrazione
DETTAGLIO
Pulizia parti metalliche
X

Verifica e sostituzione guarnizioni
X
1 mese
Taratura in Bassa Potenza
X

Progetto
Vacuum system
Assemblaggio e
collaudo
COSTI
X
Realizzazione
0.3 mesi
X
Progetto
X
Realizzazione
X
Progetto magnete
Magnetron
DONE-INPG TODOTEMPI
20 K€
X
Realizzazione magnete
X
9 K€
Acquisto alimentatore
X
9 K€
Acquisto pompe per il vuoto
X
40 K€
Collocazione della parti nel sito
X
Collegamento sistema elettrico
X
Collegamento sistema sicurezza
X
Collegamento impianti vuoto e per il
raffreddamento
X
Collocazione beam dump
X
Collaudo sistema e taratura magnetron
X
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
ATTIVITA’
Finitura magnete
DETTAGLIO
DONE-INPG-TODOTEMPI
Pulitura con abrasivo
X
Finitura a tornio
X
Lucidatura
X
Verniciatura
X
Verifica continuità resistenza elettr
X
Misura del Campo Magnetico
Progetto impulsatore
Progetto trasformatore d’impulso
X
Progetto circuito trigger
X
Progetto delay – line
X
Progetto HV power supply
X
Costruzione trasformatore d’impulso
X
Costruzione sistema di trigger
Costruzione delay – line
Collaudo delay – line in BT
Realizzazione e
collaudo impulsatore Collaudo sistema di trigger
COSTI
X
1 mese
X
1 mese
X
X
X
0.3 mesi
Collaudo HV power supply
X
0.3 mesi
Collaudo sistema impulsatore su
carico equivalente
X
0.3 mesi
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Conclusions
• the Project is pretty much at an advanced state;
• All the electronic components are ready and
tested;
• RF cavity …
• xyz needed in order to achieve the goal of
building the facility for the end of xx year
APPLIED PHYSICS LAB
UNIVERSITY OF CASSINO
INFN PISA
Scarica

APPLIED PHYSICS LAB