Metabolic scaling relations in marine ecosystems trophic networks Luca Palmeri Yuri Artioli Environmental System Analysis Lab Department of Chemical Processes Engineering UNIVERSITA’ DI PADOVA ITALY Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 1 INCOFISH, 14 September 2006 Quo vadis ecosystem ? or where are you going ecosystem ? Bendoricchio and Palmeri, 2005 Ecological Modelling 184: 5–17 Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 2 INCOFISH, 14 September 2006 Indicators and Goal Functions S (IInd TD law) Maximum entropy equilibrium W (Lotka) Maximum power energy dissipation p (Prigogine) Minimal entropy production linear regime Em (Odum) Maximum empower energy quality (solar) Ex (Jørgensen) Maximum Exergy distance from equilibrium AMI, NC e Asc Emx (Ulanowicz) Propensity to maximal Ascendency network organization (Bastianoni & Marchettini) Minimum Em/Ex cost/benefit Each indicator gives a different point of view on systems’ state. Goal Functions are specific (or sectorial), not “global”. Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 3 INCOFISH, 14 September 2006 Ecosystem description (Ecological State) Ecological Ecosystem J13 Network analysis 1 (flows and storages) J31 J21 Total flow (TST) J i ,k J ik 3 2 J32 Jik flow originated in i and entering k State a measurable property System analysis Holistic indicators from general system properties (e.g. allometries) Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 4 INCOFISH, 14 September 2006 Trophic networks Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 5 INCOFISH, 14 September 2006 Ecosystem optimization Ecosystems try to optimize the flows and biomass Optimal networks show a balance between flows and biomass (lets say between costs and benefits) Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 6 INCOFISH, 14 September 2006 Network optimization COST: supply the energy Increase the quality of energy (higher trophic levels) Foster energy transport (network articulation) BENEFIT: respond to energy demand catabolism anabolism development OPTIMIZATION of Stored energy (Biomass) Supply/demand of resources (metabolites, energy flowing in the network) Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 7 INCOFISH, 14 September 2006 A General Metabolic Growth Model (von Bertalanffy) anabolism = metabolism - catabolism dm G km hm dt metabolism F km Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 8 INCOFISH, 14 September 2006 Weight vs. metabolism Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 9 INCOFISH, 14 September 2006 Weight vs. growth Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 10 INCOFISH, 14 September 2006 Allometric Metabolic Scaling Biomass (B) FB Flow out, metabolism (F) Theorem: Banavar et al. (2002) for an optimal, balanced and direct D-dimensional network Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali D D 1 L. Palmeri 11 INCOFISH, 14 September 2006 Supply-demand balance Cost/Benefit Optimization Supply and Demand scale isometrically Supply rate r1 B s1 , s1 0 Demand rate r2 B s2 , s2 0 FB Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali r1 F B r2 D D 1 D 1 s s 1 2 D 1 L. Palmeri 12 INCOFISH, 14 September 2006 Allometric Metabolic Scaling F B can be rewritten as r1 1 s1 s2 F B B r2 For an optimal network in D dimensions, the Theorem by Banavar et al. (2002) states D D D 1 F B D 1 r1 r2 s1 s2 Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 13 INCOFISH, 14 September 2006 Supply-demand balance If D = 3 34 1 s1 s2 If s1 = 0 from the theorem s2 1 D2 19 If s1 = 0, supply rate independent of Biomass, ´= 2/3 If s1 s2 , less energy is supplied than required, 2/3< ´<3/4 Optimal condition: s1 = s2 , ´= 3/4 If s1 s2 , more energy is supplied than required, ´> 3/4 Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 14 INCOFISH, 14 September 2006 as an Indicator of Trophic Network State For biological systems D=3 Generally: 2/3 For a system, with B-independent supply: = 2/3 FB undersupplied: < 3/4 in optimal condition: = 3/4 oversupplied: > 3/4 Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 15 INCOFISH, 14 September 2006 Quo vadis ecosystem ? One answer might be: FB 3 4 • Unfortunately ecosystems are not always represented by direct networks they usually show feedbacks and matter recycling • A network with ¾ scaling could not correspond to an optimum and stable state • In that case the system could not employ overhead supply to compensate vulnerabilities to external pressures Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 16 INCOFISH, 14 September 2006 Quo vadis ecosystem ? According to the theoretical framework developed here, high values (greater than 0.75 or close to 1) indicate the subsistence of one or several of the following network characteristics: 1. high supply/demand ratio 2. highly undirected network 3. flows redundancies 4. enhanced recycling 5. greater system resilience to external perturbations 6. high costs of maintainance for the network Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 17 INCOFISH, 14 September 2006 Quo vadis ecosystem ? Coversely, low values (say equal to or less than 2/3) may indicate conditions spanning from ill-defined food web representation to undersupplied networks Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 18 INCOFISH, 14 September 2006 From the black book of Christensen and Pauly (1993) SDB indicator, calculated for 13 trophic networks: values in the range 0.29 - 2.50 Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 19 INCOFISH, 14 September 2006 Caribbean coral reef trophic network (S. Opitz) Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 20 INCOFISH, 14 September 2006 Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 21 INCOFISH, 14 September 2006 SDB Indicator Lagoon of Venice January 0,92 0,91 0,81 0,80 0,89 Ca’ Roman Petta di Bo’ Sacca Sessola Fusina Palude della Rosa May 0,77 0,76 0,77 0,85 0,73 August 0,63 0,67 0,66 0,77 0,61 Year 0,79 0,83 0,91 0,94 0,88 1000 F = 1,41m 0,88 100 N 10 1 0,1 0,01 0,001 0,001 Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali 0,01 0,1 1 10 100 1000 L. Palmeri 22 INCOFISH, 14 September 2006 SDB Indicator Lagoon of Venice Ca’ Roman Petta di Bo’ Sacca Sessola Fusina Palude della Rosa January 0,92 0,91 0,81 0,80 0,89 May 0,77 0,76 0,77 0,85 0,73 August 0,63 0,67 0,66 0,77 0,61 Year 0,79 0,83 0,91 0,94 0,88 10000 F = 2,53m 0,76 1000 N 100 10 1 0,1 0,01 0,001 0,001 Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali 0,01 0,1 1 10 100 1000 L. Palmeri 23 INCOFISH, 14 September 2006 SDB Indicator Lagoon of Venice January 0,92 0,91 0,81 0,80 0,89 Ca’ Roman Petta di Bo’ Sacca Sessola Fusina Palude della Rosa May 0,77 0,76 0,77 0,85 0,73 August 0,63 0,67 0,66 0,77 0,61 Year 0,79 0,83 0,91 0,94 0,88 1000 F = 2,98m 0,66 100 N 10 1 0,1 0,01 0,001 0,001 Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali 0,01 0,1 1 10 100 1000 L. Palmeri 24 INCOFISH, 14 September 2006 SDB Indicator Lagoon of Venice January 0,92 0,91 0,81 0,80 0,89 Ca’ Roman Petta di Bo’ Sacca Sessola Fusina Palude della Rosa 10000 May 0,77 0,76 0,77 0,85 0,73 August 0,63 0,67 0,66 0,77 0,61 Year 0,79 0,83 0,91 0,94 0,88 F = 14,18m 0,86 1000 N 100 10 1 0,1 0,01 0,001 0,001 Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali 0,01 0,1 1 10 100 1000 L. Palmeri 25 INCOFISH, 14 September 2006 Lagoon of Venice SDB Indicator (annual) 10000,00 10000,00 10000 1000,00 1000,00 1000 100,00 100,00 c 10,00 0,01 1,00 0,10 1,00 0,10 10,00 y = 16,77x0,94 1,00 0,100 0,10 0,001 10,00 100,00 1000,0 0 100 0,88 y = 13,43x 10,000 10 1 1000,000 0,001 0,01 Fusina Petta di Bo’ 10000 1000 1000 100 100 0,1 0,1 10 1000 Ca’ Roman 10 y = 13,68x0,83 y = 12,50x0,79 1 1 Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali 0,1 10000 10 0,01 0,1 Sacca sessola Palude della Rosa N y = 15,87x0,91 1 10 100 1000 0,00 0,10 0,1 10,00 1000,00 L. Palmeri 26 INCOFISH, 14 September 2006 SDB Indicator Lagoon of Venice From the Lagoon of Venice Ecosystems (ARTISTA study) Ca’ Roman August Petta di Bo’ (decaying season) Sacca Sessola Fusina Palude della Rosa Ca’ Roman Petta di Bo’ May (growing season) Sacca Sessola Fusina Palude della Rosa Ca’ Roman Petta di Bo’ January (dormant season) Sacca Sessola Fusina Palude della Rosa Ca’ Roman Petta di Bo’ Year (averaged values over the year) Sacca Sessola Fusina Palude della Rosa SDB 0,63 0,67 0,66 0,77 0,61 0,77 0,76 0,77 0,85 0,73 0,92 0,91 0,81 0,80 0,89 0,79 0,83 0,91 0,94 0,88 is SENSITIVE accounting for very little differences in the same type of shallow water ecosystems, in different seasons (Fusina is different !) Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 27 INCOFISH, 14 September 2006 SDB Indicator Lagoon of Venice From the Lagoon of Venice Ecosystems (ARTISTA study) Ca’ Roman August Petta di Bo’ (decaying season) Sacca Sessola Fusina Palude della Rosa Ca’ Roman Petta di Bo’ May (growing season) Sacca Sessola Fusina Palude della Rosa Ca’ Roman Petta di Bo’ January (dormant season) Sacca Sessola Fusina Palude della Rosa Ca’ Roman Petta di Bo’ Year (averaged values over the year) Sacca Sessola Fusina Palude della Rosa SDB 0,63 0,67 0,66 0,77 0,61 0,77 0,76 0,77 0,85 0,73 0,92 0,91 0,81 0,80 0,89 0,79 0,83 0,91 0,94 0,88 reflects DYNAMICS is able to follow the seasonal succession, i.e. all the networks (except Fusina !) present a similar pattern of variation, i.e.: 1. Oversupplied in January (pp dormant, … ready to burst) 2. Balanced during spring (G&D are at a maximum level) 3. Undersupplied in late summer (decaying season) Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 28 INCOFISH, 14 September 2006 SDB Indicator Lagoon of Venice Conclusions Relatively easy to apply to “arbitrarily large” real networks, without increasing computational demands increasing the number of free parameters N Allometric principles provide limit intervals (thresholds) for the indicator values and very general convergence schemes Generality, applicable to very different systems Sensitivity, distinguishes similar systems Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 29 INCOFISH, 14 September 2006 references • Almaas, E., B. Kovàcs, et al. (2004). “Global organization of metabolic fluxes in the bacterium Escherichia coli.” Nature 427: 839-843. • Banavar, J. R., F. Colaiori, et al. (2001). “Scaling, Optimality, and Landscape Evolution.” Journal of Statistical Physics 104(1/2). • Banavar, J. R., J. Damuth, et al. (2002). “Supply–demand balance and metabolic scaling.” Proceedings of the National Academy of Sciences 99(16). • Banavar, J. R., A. Maritan, et al. (1999). “Size and form in efficient transportation networks.” Nature 399: 130-132. • Bendoricchio, G. and Palmeri, L. (2005) “Quo vadis ecosystem?” Ecological Modelling 184: 5–17. • Garlaschelli, D., G. Caldarelli, et al. (2003). “Universal scaling relations in food webs.” Nature 423: 165-168. • Niklas, K. J. and B. J. Enquist (2001). “Invariant scaling relationships for interspecific plant biomass productrion rates and body size.” Proceedings of the National Academy of Sciences 98(5): 2922-2927. • West, G. B., J. H. Brown, et al. (2001). “A general model for ontogenic growth.” Nature 413: 628-631. Università di Padova LASA – Laboratorio di Analisi dei Sistemi Ambientali L. Palmeri 30 INCOFISH, 14 September 2006