Name: _________________________________________ Date: ___________________________ Period: ____ TEST #2- REVIEW: EXPONENTS & RADICALS 1. Show all you work on the indicated spaces whenever calculations are necessary. Remember, no work, no credit. 2. Follow all directions. Read carefully. 3. You will earn bonus points if you earn an A in the review. 4. Each item is tallied individually, including the vocabulary. 5. Test review is due on test day and will not be accepted later. ID: A CH 13 Test Review Define each term in your own words. 1. factor . 2. prime number . 3. composite numbe . 4. prime factorization . Write the prime factorization of each number. 5. 18 . 6. 60 . 7. 42 . 1 ID: A Write the term that best completes each statement. 8. The expression 3 6 is an example of a _____________________ . 9. When 6 is divided by 2, the _____________________ is 3. 10. The expression 5 2 is equivalent to the _____________________ of 5 and 5. 11. The _____________________ in the expression 4 3 is the number 3. Write each expression as a power. 12. 3 3 3 3 3 3 3 . 13. 2 2 2 2 2 . 14. 5 5 5 5 5 5 23 23] . 15. 2 2 2 2 37 37 . Multiply the powers. Show all your work and write your answer as a power. 16. 4 3 4 5 . 17. 2 8 2 3 . 18. 9 3 9 2 ID: A Divide the powers. Show all your work and write your answer as a power. 19. 28 23 . 20. 47 44 . 21. 17 5 17 4 . Simplify each expression, if possible. Show all your work and write your answer as a power. 22. 83 38 . Write each number using a power with a positive exponent. 23. 1,000,000 . 24. 1 1000 . 25. 1 49 . 3 ID: A Rewrite the power so that the exponent is positive. 26. 8 1 . 27. 5 8 . 28. 6 17 . Rewrite the fraction so that there is no power in the denominator. 29. 1 24 . 30. 1 20 2 . 31. 1 7 . Simplify each expression completely. Show all your work. 32. 12 0 . 33. 31 4 31 5 . 34. 2 6 2 3 . 4 ID: A 35. 2 5 20 . Match each rule with the example that demonstrates it. a. b. c. d. e. 22 23 22 3 25 4 3 4 3 3 3 3 (20 4 ) 5 20 4(5) 20 20 52 52 0 52 0 5 (5 3) 4 5 4 3 4 ____ 36. power of a power rule ____ 37. product rule of powers ____ 38. power of a product rule ____ 39. quotient rule of powers ____ 40. power of a quotient rule Rewrite each expression using the power of a power property. (You do not need to evaluate the expression.) 41. (3 2 ) 2 . 42. (5 7 ) 2 . 43. (17 5 ) 6 . 5 ID: A Rewrite each expression using the power of a product property. (You do not need to evaluate the expression.) 44. (2 13) 3 . 45. (4 16) 2 . 46. (17 12) 2 . Rewrite each expression using the power of a quotient property. (You do not need to evaluate the expression.) 3 8 47. 5 . 13 7 48. 6 . 10 8 49. 27 . Simplify each algebraic expression. Show all your work. 50. (y 5 ) 3 . 51. (5a) 3 6 ID: A 52. z 13 z 8 . x 5 53. 8 . For each problem below, identify the property that is used in each step to simplify the expression. 54. 4 5 2 2 x x y xy 2 3 2 3 2 y 2 y ______________________ power of a product ______________________ (xy) 2 Word Bank (2 2 y 3 ) 2 product rule of powers quotient rule of powers 2 x y 2 2 2 ______________________ 3 2 (2 ) (y ) power of a quotient power of a power x2y2 ______________________ 24 y 6 x2 24 y 4 ______________________ 55. 5a 6 a 4 5a 10 2 (ab) (ab) 2 (a 2 ) 3 (a 2 ) 3 ____________________ 5a 10 6 (ab) 2 a ____________________ 5a 4 (ab) 2 ____________________ 5a 4 a 2 b 2 ____________________ 5a 6 b 2 ____________________ 7 Word Bank product rule of powers product rule of powers power of a power power of a product quotient rule of powers ID: A Calculate each product. 7 56. 7 . 11 57. 11 . 58. 2 18 4 25 . 59. . Simplify each radical completely. 8 60. . 50 61. . 20 62. . 112 63. . 8 ID: A Calculate each sum or difference. 64. 17 2 6 2 . 65. 32 7 17 7 . 66. 8 5 2 2 3 . Simplify each expression completely. 3 4 67. 27 2 . 68. 9 2 50 7 21 . 9 ID: A CH 13 Test Review Answer Section 1. ANS: A factor of a number is a number that evenly divides the given number with no remainder. PTS: 1 REF: Ch9.L1 STA: A.4.1 TOP: Skills Practice 2. ANS: A prime number is a whole number greater than 1 that has exactly two whole number factors, 1 and itself. PTS: 1 REF: Ch9.L1 STA: A.4.1 TOP: Skills Practice 3. ANS: A composite number is a whole number greater than 1 that is divisible by 1, itself, and at least one other positive number. PTS: 1 REF: Ch9.L1 STA: A.4.1 TOP: Skills Practice 4. ANS: The prime factorization of a number is the representation of the number as a product of prime numbers. PTS: 1 5. ANS: 18 2 3 3 2 3 2 REF: Ch9.L1 STA: A.4.1 TOP: Skills Practice PTS: 1 REF: Ch9.L1 6. ANS: 60 2 2 3 5 2 2 3 5 STA: A.4.1 TOP: Skills Practice PTS: 1 7. ANS: 42 2 3 7 REF: Ch9.L1 STA: A.4.1 TOP: Skills Practice PTS: 1 8. ANS: power REF: Ch9.L1 STA: A.4.1 TOP: Skills Practice PTS: 1 9. ANS: quotient REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice PTS: 1 10. ANS: product REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice PTS: 1 11. ANS: exponent REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice PTS: 1 12. ANS: 37 REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice PTS: 1 REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice 1 ID: A 13. ANS: 25 PTS: 1 14. ANS: 5 6 23 2 REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice PTS: 1 15. ANS: 2 4 37 2 REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice PTS: 1 16. ANS: 43 45 43 5 48 REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice PTS: 1 17. ANS: 2 8 2 3 2 8 3 2 11 REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice PTS: 1 REF: Ch9.L2 18. ANS: 93 9 93 91 93 1 94 STA: A.4.1 TOP: Skills Practice PTS: 1 19. ANS: 28 28 3 25 3 2 REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice PTS: 1 20. ANS: 47 47 4 43 4 4 REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice PTS: 1 REF: Ch9.L2 21. ANS: 17 5 17 5 4 17 1 17 17 4 STA: A.4.1 TOP: Skills Practice PTS: 1 22. ANS: 83 8 ; Not possible 3 REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice REF: Ch9.L2 STA: A.4.1 TOP: Skills Practice PTS: 1 2 ID: A 23. ANS: 10 6 PTS: 1 24. ANS: 1 10 3 REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice PTS: 1 25. ANS: 1 72 REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice PTS: 1 26. ANS: 1 8 REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice PTS: 1 27. ANS: 1 58 REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice PTS: 1 28. ANS: 1 6 17 REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice PTS: 1 29. ANS: 2 4 REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice PTS: 1 30. ANS: 20 2 REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice PTS: 1 31. ANS: 7 1 REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice PTS: 1 32. ANS: 1 REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice PTS: 1 REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice 3 ID: A 33. ANS: 31 4 5 31 1 31 PTS: 1 34. ANS: 26 3 23 8 REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice PTS: 1 35. ANS: REF: Ch9.L3 STA: A.4.1 TOP: Skills Practice Ch9.L3 1 STA: A.4.1 REF: Ch9.L4 TOP: Skills Practice STA: A.4.1 1 REF: Ch9.L4 STA: A.4.1 1 REF: Ch9.L4 STA: A.4.1 1 REF: Ch9.L4 STA: A.4.1 1 REF: Ch9.L4 STA: A.4.1 REF: Ch9.L4 STA: A.4.1 TOP: Skills Practice REF: Ch9.L4 STA: A.4.1 TOP: Skills Practice PTS: 1 44. ANS: 2 3 13 3 REF: Ch9.L4 STA: A.4.1 TOP: Skills Practice PTS: 1 45. ANS: 4 2 16 2 REF: Ch9.L4 STA: A.4.1 TOP: Skills Practice REF: Ch9.L4 STA: A.4.1 TOP: Skills Practice 2 5 0 2 5 36. 37. 38. 39. 40. 41. PTS: ANS: TOP: ANS: TOP: ANS: TOP: ANS: TOP: ANS: TOP: ANS: 3 2(2) 1 REF: C PTS: Skills Practice A PTS: Skills Practice E PTS: Skills Practice D PTS: Skills Practice B PTS: Skills Practice 34 PTS: 1 42. ANS: 5 7(2) 5 14 PTS: 1 43. ANS: 17 1 1 5 32 2 5(6) 17 30 PTS: 1 4 ID: A 46. ANS: 17 2 12 2 PTS: 1 47. ANS: 38 8 5 REF: Ch9.L4 STA: A.4.1 TOP: Skills Practice PTS: 1 48. ANS: 13 7 7 6 REF: Ch9.L4 STA: A.4.1 TOP: Skills Practice PTS: 1 49. ANS: 8 10 10 27 REF: Ch9.L4 STA: A.4.1 TOP: Skills Practice PTS: 1 50. ANS: REF: Ch9.L4 STA: A.4.1 TOP: Skills Practice PTS: 1 REF: Ch9.L4 51. ANS: (5a) 3 5 3 a 3 125a 3 5 3 a 3 STA: A.4.1 TOP: Skills Practice PTS: 1 52. ANS: z 13 z 8 z 13 8 z 21 REF: Ch9.L4 STA: A.4.1 TOP: Skills Practice PTS: 1 53. ANS: x5 5 8 REF: Ch9.L4 STA: A.4.1 TOP: Skills Practice PTS: 1 REF: Ch9.L4 54. ANS: product rule of powers STA: A.4.1 TOP: Skills Practice STA: A.4.1 TOP: Skills Practice (y 5 ) 3 y 5(3) y 15 power of a quotient power of a product power of a power quotient rule of powers PTS: 1 REF: Ch9.L4 5 ID: A 55. ANS: product rule of powers power of a power quotient rule of powers power of a product product rule of powers PTS: 1 56. ANS: 7 7 7 REF: Ch9.L4 STA: A.4.1 PTS: 1 57. ANS: 11 11 11 REF: Ch9.L5 STA: A.6.1 | A.6.2 TOP: Skills Practice PTS: 1 58. ANS: 2 18 REF: Ch9.L5 STA: A.6.1 | A.6.2 TOP: Skills Practice 36 6 PTS: 1 59. ANS: 4 25 PTS: 1 60. ANS: 8 4 REF: Ch9.L5 REF: Ch9.L5 STA: A.6.1 | A.6.2 TOP: Skills Practice 2 2 2 PTS: 1 62. ANS: 20 4 REF: Ch9.L5 REF: Ch9.L5 STA: A.6.1 | A.6.2 TOP: Skills Practice 5 2 5 REF: Ch9.L5 16 STA: A.6.1 | A.6.2 TOP: Skills Practice 2 5 2 STA: A.6.1 | A.6.2 TOP: Skills Practice 7 4 7 PTS: 1 REF: Ch9.L5 64. ANS: 17 2 6 2 23 2 PTS: 1 STA: A.6.1 | A.6.2 TOP: Skills Practice 100 10 PTS: 1 61. ANS: 50 25 PTS: 1 63. ANS: 112 TOP: Skills Practice REF: Ch9.L5 STA: A.6.1 | A.6.2 TOP: Skills Practice STA: A.6.1 | A.6.2 TOP: Skills Practice 6 ID: A 65. ANS: 32 7 17 7 15 7 PTS: 1 REF: Ch9.L5 STA: A.6.1 | A.6.2 TOP: Skills Practice 66. ANS: 8 5 2 2 3 4 2 5 2 2 3 2 2 5 2 2 3 3 2 2 3 PTS: 1 67. ANS: 3 4 REF: Ch9.L5 27 3 2 4 9 3 3 3 3 2 4 2 3 6 3 7 3 4 4 PTS: 1 68. ANS: REF: Ch9.L5 9 2 50 9 2 7 21 7 STA: A.6.1 | A.6.2 TOP: Skills Practice STA: A.6.1 | A.6.2 TOP: Skills Practice 25 2 21 9 2 5 2 27 2 5 2 32 2 7 21 21 21 PTS: 1 REF: Ch9.L5 STA: A.6.1 | A.6.2 TOP: Skills Practice 7