A08 362 strategie di sviluppo sostenibile per le costruzioni in cina in europa e in italia per la ricostruzione dopo il terremoto dell’Aquila del 6 aprile 2009 SUSTAINABLE DEVELOPMENT STRATEGIES FOR CONSTRUCTIONS IN EUROPE AND CHINA Atti del Convegno Roma, 19–20 aprile 2010 a cura di Mauro Dolce Gaetano Manfredi Camillo Nuti cd–rom in abbinamento editoriale Copyright © MMXII ARACNE editrice S.r.l. www.aracneeditrice.it [email protected] via Raffaele Garofalo, 133/A–B 00173 Roma (06) 93781065 isbn 978–88–548–4418–6 I diritti di traduzione, di memorizzazione elettronica, di riproduzione e di adattamento anche parziale, con qualsiasi mezzo, sono riservati per tutti i Paesi. Non sono assolutamente consentite le fotocopie senza il permesso scritto dell’Editore. Decreto del Presidente del Consiglio dei Ministri 23 febbraio 2009, n. 31, dall’art. 7, comma 4: Non sono soggetti ad apposizione del contrassegno né a dichiarazione sostitutiva i supporti allegati ad opere librarie i quali riproducono in tutto o in parte il contenuto delle opere stesse ovvero sono ad esse accessori, quali dizionari, eserciziari, presentazioni dell’opera, purché non commerciabili autonomanente I edizione: febbraio 2012 Premessa Cosa è la sostenibilità nella progettazione strutturale? Nel convegno si discuterà il problema con esperti internazionali che illustreranno le loro esperienze e con studiosi e tecnici italiani che illustreranno anche quanto si sta facendo per la ricostruzione dopo il terremoto dell’Aquila. Gli interventi eseguiti e da eseguire hanno come obiettivo la sicurezza dei componenti strutturali e non, nel rispetto delle necessità a breve, medio e lungo termine di proprietari ed utilizzatori, tenendo conto delle condizioni al contorno, di tipo economico e logistico. Si intenderà fare il punto su quanto eseguito sia dal punto di vista strettamente tecnico, con illustrazione delle scelte effettuate, sia delle ragioni che hanno condotto a tali scelte, per illustrare il concetto di “sostenibilità”. A titolo di esempio si pensi alla realizzazione del progetto C.A.S.E., per dare accoglienza ai senza tetto in tempi bre-vi, agli interventi sugli edifici scolastici dell’Aquila, in particolare a quelli debolmente danneggiati, che sono stati riparati in tempi brevi; ai progetti preparati per l’adeguamento delle scuole di Avezzano, perché sostengano gli eventi attesi; agli interventi di riparazione dei ponti ed altre infrastrutture. Sono stati raccolti lavori anche su altri temi ma sempre di rilievo in relazione ad aspetti significativi per l discussione delle scelte di sostenibilità, non solo in termini meramente tecnici ma anche in termini finanziari. All’interno del volume contenente le memorie organizzate secondo l’indice si riporta per chiarezza anche il programma completo dell’evento con tutti gli interventi. Il CD contiene il programma, le presentazioni, le memorie e un menù per la navigazione interattiva tra gli argomenti. Si prega di notare che alcune presentazioni sul CD allegato non hanno una memoria corrispondente nel volume degli atti, inoltre alcuni titoli delle presentazioni non corrispondono a quelli delle 7 memorie. Tali differenze sono segnate con * sull’indice. 6 Indice 7 Indice 11 Keynotes 13 Airong Chen: Sustainable development strategies for bridge engineering in China - Design for a given life Curriculum vitae 16 Klaus H.Ostenfeld: Curriculum vitae 17 Qilin Zhang: Static and dynamic properties of the membrane structure for Expo Axis of Shanghai Expo 2010 Curriculum vitae 41 Invited Lectures 43 Sergio Basti: Il terremoto dell’Aquila 47 Luis D. Decanini: Alcuni aspetti del grande terremoto del Cile del 27 Febbraio 2010 49 Mauro Dolce: La gestione dell’emergenza 51 Gian Michele Calvi: Il progetto C.A.S.E. 53 Gaetano Manfredi: La ricostruzione dell’Aquila 63 Xin Ruan: Condition assessment and strengthen for a long-span continuous PC bridge 65 Tobia Zordan, Bruno Briseghella, Cheng Lan: Parametric analyses on super long integral abutment bridges: a sustainable solution 77 Sessione 1: messa in sicurezza di edifici dopo il sisma / sicurezza antincendio 79 M. Sassu, M. Andreini: Una strategia di prevenzione sismica a basso costo per edifici di culto e monumentali: presidi provvisori in fibre sintetiche o metalliche. 87 E. Nigro, G. Cefarelli, A.Ferraro, E. Cosenza, G, Manfredi: L’Approccio Ingegneristico alla sicurezza strutturale in condizioni di incendio di autorimesse aerate di edifici civili. 103 113 *A. Ceccotti, C. Sandhaas, M. Yasumura: Seismic performance of x-lam buildings: the Italian SOFIE project Sessione 2: Il progetto C.A.S.E. 115 A. D’Onofrio, L. Evangelista, L. Landolfi, F. Silvestri, D. Boiero, S. Foti, M. Maraschini, C. Comina, F. Santucci de Magistris : Geotechnical characterization of the C.A.S.E. project sites 125 T. Sartori, R. Tomasi, A. Francescotti, G. Scandolari: Edifici in legno realizzati in Abruzzo con il sistema a telaio prefabbricato 135 S. Infanti, M.G.Castellano: Prove dinamiche multidirezionali sugli isolatori a scorrimento a doppia superficie curva utilizzati nel progetto C.A.S.E. 145 *A. Marioni: Development and testing of the special sliding materials for the sliding pendulum isolators of the C.A.S.E. project in L'Aquila 153 *A. Ceci, L. Fanale, D. Galeota, V. Gattulli, M. Lepidi, F. Potenza: Seismic retrofitting of recently-built edifices 163 of the Engineering Faculty of L’Aquila Sessione 3: Indagini ed interventi sull'esistente: strutture e componenti non strutturali 7 7 165 P. Angeletti: Two cases of study of seismic retrofitting (Irpinia 1980) 175 M. Masi, M. Vona, V. Manfredi: Influenza dell’estensione delle indagini sulla valutazione della resistenza sismica e la definizione dell’intervento di rafforzamento di edifici in c.a. 185 M. Dolce, A. De Sortis, G.Di Pasquale, S. Gregolo, S.Papa, G. F. Rettore: Le linee guida della protezione civile per la riduzione della vulnerabilità sismica degli elementi non strutturali. 195 C. Nuti, S. Santini: Fastening technique in seismic areas: a critical review 205 G. Muciaccia, S. Cattaneo, G. Rosati, P. Crespi, A. Franchi: Post-Installed Anchors under Seismic Action 215 Sessione 4: risposta ed interventi su telai, pareti e strutture prefabbricate - Isolamento sismico 217 M. Preti , L. Zanetti, E. Giuriani: R.C. buildings seismic behavior: frame and structural wall systems 225 L. D Decanini, L. Liberatore: R.C. shear walls in seismic retrofitting of buildings 237 P. Riva, E. Perani, A. Belleri: External R.C. structural walls for the repair of earthquake damaged buildings 247 *F. Biondini, G. Toniolo: Seismic performance of precast concrete structures 255 A. Colombo, G. Toniolo: Precast concrete structures: lessons learned from L’Aquila earthquake 263 *S. Beccarini, U. Ianniruberto, D. Pennucci: Analisi parametrica di nodi trave-colonna in c.a. rinforzati con FRP 273 Sessione 5: Criteri di intervento - Sostenibilità 275 P.Colajanni, C. Cucchiara, M. Papia: Sostenibilità di interventi di miglioramento sismico di strutture in c.a. non danneggiate 285 L. Cascini, F. Portioli, R. Landolfo: Strutture e sostenibilità: un approccio integrato alla progettazione strutturale 293 *F. Fornaini, L.Sonnessa, L. Larocca, A. Gaetani: Modellazione ragionata e interpretazione del comportamento strutturale sotto gli effetti di un sisma violento per un adeguamento sostenibile alle nuove norme tecniche 301 G. Monti, C. Maruccio, A. Lucchini: Structural analysis of a strategic building 311 S. Pampanin: Alternative Performance-based Retrofit Strategies and Solutions for Reinforced Concrete Buildings 321 Sessione 6: Controventi dissipativi 323 F. Mazza, A. Vulcano: Progettazione di controventi dissipativi per l’adeguamento antisismico di edifici scolastici 333 A.Bergami, C. Nuti: Discussione, applicazione e validazione di una procedura progettuale per la protezione sismica di telai tamponati mediante controventi dissipativi 343 *C. Nuti, S. Biondi, A. Bergami, D. Pierucci: On seismic retrofitting of a R.C. vaulted structures by means of dissipative bracings 355 C. Faella, C. Lima, E. Martinelli, B. Nunziata, S. O. Paciello, R. Realfonzo, C. Sguazzo: Seismic retrofitting of R.C. framed structures using innovative techniques and materials 365 R. De Risi, L. Di Sarno, I. Iervolino, G. Manfredi: Comportamento sismico delle strutture intelaiate in c.a. adeguate con controventi dissipativi 375 Sessione 7: Normativa e softwares - Vulnerabilità 8 377 R. Spagnuolo: Il convitato di vetro - Il ruolo del software nel progetto strutturale 383 M. Mezzina, F. Porco, D. Raffaele, G. Uva: Sicurezza strutturale delle scuole in Puglia: strategie per la mitigazione 9 393 409 421 del rischio e linee guida per le verifiche di sicurezza *M. Mezzina, R. Greco, G.C. Marano, S. Milella, F. Palmisano, F. Porco, I. Trulli, G. Uva: Il Progetto Aristoteles M. Maugeri, G. Ferro, S. Grasso, D. Trovato: Foundation Vulnerability Analysis for mitigation of seismic risk of existing buildings in Catania A. Occhiuzzi, N. Caterino, G. Maddaloni: Analisi di vulnerabilità sismica ed ipotesi di adeguamento di un edificio pubblico di struttura mista acciaio-calcestruzzo 429 Sessione 8: Rinforzo con compositi, ponti, strutture speciali presidenti: 431 441 451 461 471 481 491 501 511 D. Lavorato, C. Nuti, S. Santini: Influence of detailing on seismic response of repaired RC bridge piers L. Carnevale, D. Lavorato, C. Nuti, I. Vanzi: Response of continuous deck bridges to non synchronous seismic motion M. Pecce, F. Ceroni: Anchorage Systems of FRP EBR for Strengthening of R.C. elements *C. Nuti, S. Santini, L. Sguerri: Experimental tests on FRP Shear retrofitted R.C .beams G. De Canio, M. Mongelli, I. Roselli, F. Di Biagio: Remotely-shared experimental tests on semi-passive devices for seismic protection of systems and components for civil applications, cultural heritage and strategic infrastructures T. Trombetti, S.Silvestri, G. Gasparini, I.Ricci: Results of pseudo-static tests with cyclic horizontal load on H shaped substructure composed of concrete/polystyrene sandwich bearing panels without openings T. Trombetti, S.Silvestri, G. Gasparini, I.Ricci: Correlations between the experimental results of Pseudo-Static Tests with Cyclic Horizontal Load on concrete/polystyrene sandwich bearing panels and their analytical and numerical counterparts T. Trombetti, S.Silvestri, G. Gasparini, I.Ricci: Results of pseudo-static tests with cyclic horizontal load on concrete/polystyrene sandwich bearing panels without openings *F. Paolacci, R. Giannini, M De Angelis: Applicability of passive control systems for the seismic protection of major-hazard industrial plants 9 KEYNOTES Strategie di sviluppo sostenibile per le costruzioni in Cina, in Europa e in Italia ISBN 978–88–548–4418–6 DOI 10.4399/97888548441861 p. 13-15 (febbraio 2012) SUSTAINABLE DEVELOPMENT STRATEGIES FOR BRIDGE ENGINEERING IN CHINA FRAMEWORK, CASE STUDY AND PERSPECTIVE * Keynote Airong Chen Department of Bridge Engineering, Tongji University, Shanghai, PRC CONTENTS 1. 2. 3. 4. 5. 6. Major bridge projects in China: completed and under going projects Frame for life-cycle design for bridge Bridge Form Design: Topologic technique Safety and Risk: Design for low probabilità Durability Design: not only material Prospective 13 13 14Keynotes Keynotes 14 * Powerpoint presentation by this author can be found in the CD-ROM A. Chen – Sustainable Airong Chen Sustainabledevelopment developmentstrategies strategiesfor forbridge bridgeengineering engineeringininChina15 China 15 Airong Chen Education: Tongji Univ., Shanghai, P.R. China, Dr. Eng., Civil Eng., 1993 Xian Highway Transportation Univ., Xi’an, Shanxi Province, P.R. China, M.S. Civil Eng., 1989 Tongji Univ., Shanghai, P.R. China, B.S., Civil Eng., 1983 Current position: Vice Dean and Professor of School of Civil Engineering, Experience: Xian Highway Transportation Univ., Xian, Shanxi Province, China Lecturer, Department of Highways, 1989-1990 Tongji Univ., Shanghai, China Associate Professor, Dept. of Bridge Engineering and Wind Tunnel Lab. of the State Key Lab. of Disaster Reduction in Civil Engineering,1995-1999 Tongji Univ., Shanghai, China Professor& Director of Dept. of Bridge Engineering and Wind Tunnel Lab. of the State Key Lab. of Disaster Reduction in Civil Engineering1999-2006 Tongji Univ., Shanghai, China Professor of Dept. of Bridge Engineering, Duputy Dean of College of Civil Engineering, 2006-Present Research Areas: Lift Cycle Design Theory of Bridge, Bridge Risk Assessment Method And Process, Bridge Aesthetic Design Method And Process, Bridge Performance Under Extreme Events, Traffic Safety On Bridge Under Disaster Climates, Bridge Aerodynamics, Conceptual Design of Bridge. Honors and Awards: First Award of State Education Council Award (1995), Third Award of Scientific and technological progress of Shanghai (2000), honorary title of “New Long March pioneer” of Shanghai (2001), First Award of outstanding engineering counseling (2003), First Award of Structural Branch of Liguohao Award of Tongji Univ. (2004), Second Award of Scientific and technological progress of Shanghai (2004), Outstanding achievements of graduate students of Shanghai (2006). Strategie di sviluppo sostenibile per le costruzioni in Cina, in Europa e in Italia ISBN 978–88–548–4418–6 DOI 10.4399/97888548441862 p. 16 (febbraio 2012) 16 Keynotes Klaus H.Ostenfeld Date of Birth: 9 April 1943. Nationality: Danish. Education: M.Sc., Civil and Structural Eng. Technical University of Denmark, 1966; Registered Professional Engineer (Civil Engineer), Arizona, USA, 1972. Current position: COWI Foundation, Board of Directors. Experience: Special consultant to the United Nations Economic Commission of Africa and Europe regarding technical feasibility of a bridge across the Strait of Gibraltar, member as the bridge expert. Member of a multidisciplinary World Bank Expert Panel regarding the 10 km bridge across the Jamuna River in Bangladesh completed in June 1998 Member of the expert panel "Preisgericht" for the "Tiefbauamt" in Basel, Switzerland, regarding the Nordtangente Bridge across the Rhein Member of the Expert Panel regarding the new East Bay crossing with a self-anchored suspension span in San Francisco/Oakland, California USA. Member of the international expert panel appointed by the Governor of Jiangsu Province for the recently completed world record 1088 m span cable stayed Sutong Bridge, Jiangsu Province, China. Key Qualifications: From 2000 - 2008, Mr. Ostenfeld has been Group President, CEO of COWI A/S, From 1992 to 2000 he was Executive Director of COWI's Transportation Division and member of the COWI Executive Board, Mr Ostenfeld has pioneered many technical developments in bridge engineering including, full span prefabrication of bridges, replacement of deteoriated columns for bridges under traffic, aerodynamic improvements of bridge girders, use of offshore techniques for deep water foundations, long continuous bridge girders with large expansion joints for low maintenance and driver comfort and recently use of carbon fiber for cables for cable stayed bridges, posttensioning cables and non stressed concrete reinforcement, use of hydraulic devices and jacks for support and stabilization of bridge girders for live load, temperature and wind loads, development of wind screens for long span bridges protecting traffic for winds without reduction of aerodynamic stability of bridge. Mr. Ostenfeld is the author or co-author of more than 100 articles on major bridge and tunnel and fixed link projects internationally as well as the extreme buildings for the Olympic structures in Montreal 1976. Distinctions: The Gueritte Medal 1975 of the British Section of Societe des Ingenieurs Civils de France, The Oscar Faber Award 1976, Institution of Structural Engineers, Great Britain, Cited by Engineering News Record, New York, as "One of those who made marks in 1982", Awarded the G.A. Hagemann's Gold Medal by the Technical University of Denmark 2004 for international accomplishments for consulting engineering, in particular within major bridges and tunnels, Honoury member of IABSE (International Association of Bridge and Structural Engineers), Honoury member (Korrespondierende Mitglied) of VDI(Verein Deutscher Ingenieure). 16 Strategie di sviluppo sostenibile per le costruzioni in Cina, in Europa e in Italia ISBN 978–88–548–4418–6 DOI 10.4399/97888548441863 p. 17-40 (febbraio 2012) Qilin Zang Static and dynamic properties of the membrane structure for Expo Axis of Shanghai Expo 2010 17 STATIC AND DYNAMIC PROPERTIES OF THE MEMBRANE STRUCTURE FOR EXPO AXIS OF SHANGHAI EXPO 2010 Keynote Q. Zhang Tongji University, School of Civil Engineering, Shanghai 200092, China [email protected] ABSTRACT In this paper a series of experiments and researches on the static and dynamic properties of the membrane structure for Expo Axis of Shanghai Expo 2010 is introduced, which includes the studies on mechanics behaviors of different kinds of joints for the free-from steel truss, on strengths of membrane material and different fasteners, on robust properties of the pre-tensioned cablemembrane system, on wind-induced dynamic behaviors of the membrane roof, and on the behavior inspection and monitoring of the structure. All the researches ensure the safety of the established large scale cable-membrane structure. KEYWORDS Large scale cable membrane structure, free-form steel truss, joint behaviors, material and fastener strengths, wind-induced dynamic behaviors, inspection and monitoring. 1. INTRODUCTION Expo Axis is the main entrance and main axis of Shanghai Expo 2010 site. It employs new architecture style to be a semi-open structure, two layers underground and two layers above ground. Four Pavilions along the Central Axis are the major permanent buildings within the Expo Site. The Expo Axis is a large, integrated commercial and traffic complex providing commercial, catering, entertainment, and exhibition services. It is also the largest single building of the Expo. The Expo Axis is sited in the central area of Pudong Expo site, measuring about 1,000 meters long from north to south, 80 meters wide from east to west, seen as in Figure.1. Figure.1 Expo Axis for Shanghai Expo 2010 17 18Keynotes Keynotes 18 Expo Axis consists of the reinforced concrete frame, six “Sun Valleys” made of “free-form” steel lattice shell, and large membrane roofs. The “Sun Valleys” construct the comfortable “green underground space”. It collects sunshine from 40 meters high and transfers it and fresh air to the underground. Rainwater can also flow into underground water accumulating tunnel through those wide mouth vase-shaped circular glass curtains, converge to the reservoir of 7000 m3 volume and be reutilized through water treatment. The membrane structure could be used as very effective sunshades. Those “large umbrellas” above are assembled by 69 pieces of huge white membranes. The total area is 68,000 m2 and service life is 30 years. Although the thickness is only about 1mm, it provides the highest design tension force which is 5 tones per meter. The maximum wind swing for this kind of membrane is 3 meters up and down. To ensure the safety of the structure, a series of experiments and researches is conducted and introduced in this paper. The monitoring results up to now on the established structure show that its mechanics parameters have good agreement with the design prospection in general and its safety can be ensured. 2. TEST ON ULTIMATE STRENGTH OF STEEL MEMBER JOINTS FOR THE “SUN VALLEYS” Four different kinds of joints, including plate welded, bolted, bolted but flange welded and cast steel welded, are considered, in which one should be selected and used in the steel “Sun Valleys” depending on their working behaviors observed from the test. According to the preliminary design and computation, the joint with larger internal forces in the “Sun Valley” is taken as specimen, seen as in Figure.2. Figuire.3 shows the four kinds of joints. Figure.2 Joint in “Sun Valley” taken as specimen (a) Plate welded joint (tf,j=tf,m=25mm, tw,j=10mm, tw,m=5mm) Qilin Zang Static and dynamic properties of the membrane structure for Expo Axis of Shanghai Expo 2010 19 Qilin Q. Zhang – Static and dynamic properties of the membranestructure structurefor forExpo Expo Axis Axis of Shanghai Zang Static and dynamic properties of the membrane ShanghaiExpo Expo201019 2010 19 (b) Cast steel joint (tf,j=30mm, tw,j=10mm, tf,m=25,tw,m=5mm) (b) Cast steel joint (tf,j=30mm, tw,j=10mm, tf,m=25,tw,m=5mm) (c) Bolted joints with and without welding of flanges (tf,j=30mm, tw,j=10mm, tf,m=25,tw,m=5mm) (c) Bolted joints with and without welding of flanges (tf,j=30mm, tw,j=10mm, tf,m=25,tw,m=5mm) Figure.3 Four kinds of joints Figure.3 Four kinds of joints The numerical simulation was firstly carried out to find out the higher stress points of the specimen Thewhich numerical simulation out to find out the stress points thestresses specimen on the strain gaugeswas canfirstly be set.carried The loading test was thenhigher carried out and theofreal on which the strain gauges can be set. The loading test was then carried out and the real stresses can be measured. The reliability and the accuracy of the numerical results have been proven by can be measured. The accuracy of measuring the numerical results proven by making comparison of reliability it with the and realthe stresses on the points. Thehave innerbeen stress distribution making comparison of it with the real stresses on the measuring points. The inner stress distribution can be obtained from the numerical simulation. From both numerical analysis and test, the working can be obtained the numerical simulation. From both numerical analysis and test, the working properties of thefrom four joints can be studied. properties of the four joints can be studied. 20Keynotes Keynotes 20 Four specimens for corresponding four kinds of joints with the same outline size are manufactured as seen in Figure.4. Figure.4 Outline size and details of specimen The self-equilibrium resistance frame is designed as in Figure.5. The ends E and F are fixed to the frame, and the other four ends A,B,C,D are loaded with tensile or compresive forces P1,P2,P3,P4, respectively. Two loading cases are considered, in which the shear forces are neglected and the bending moments are realized through setting the eccentricities. Figure.5 Self-equilibrium resistance frame Numerical models in ANSYS are established. Figure.6 shows the plate welded and bolted joints. Figure.6 Numerical models for joints Numerical simulation is carried out and maded comparison with the measurement from test. Both results show good agreement with each other. The ultimate load factor and corresponding Mises stresses are shown in Figure.7.