03/11/2014 Intestinal microbiota, diet and health. Kieran Tuohy Alimentazione Agricoltura Fondazione Edmund Mach, TN Migliore output con minore input Fondazione Edmund Mach Research & Innovation Centre The human gut microbiota Up to 1000 species Interactions with; •Diet •Drugs 70% unculturable •Immune system •Gut physiology •Bile acids/liver •Systemic metabolism Closely co‐evolved microbial partners •Adipose tissue •Brain development & function 03/11/2014 Impact of Western style diet on colonic fermentation Proximal colon ~ saccharolytic Distal colon ~ proteolytic SCFA Acetate Propionate Butyrate Amines Indoles Ammonia Sulphides N‐nitroso Energy source Apoptosis Differentiation Epigenetics Gene expression Gut hormones Gut permeability DNA damage Tumours Cytotoxicity Leaky gut Liver disease Altered mucosal permeability and systemic inflammation? Modified from Geroge Macfarlane 03/11/2014 Impact of traditional diets rich in fiber, polyphenols on colonic fermentation Proximal colon ~ saccharolytic Distal colon ~ proteolytic SCFA Acetate Propionate Butyrate Amines Indoles Ammonia Sulphides N‐nitroso Energy source Apoptosis DNA damage Tumours Differentiation Epigenetics Cytotoxicity Leaky gut Gene expression Liver disease Gut hormones Gut permeability High fiber diets, Paleolitic, Mediterranean, rural African and Asian Enhanced mucosal barrier function and immune homeostasis Modified from Geroge Macfarlane Koeth et al 2013 Nature Medicine •TMA/TMAO confirmed strong link with CVD in patients •confirmed microbiota metabolism of L-carnitine/choline → TMA→TMAO •TMA not produced in vegans •confirmed inflammatory activity & linked to macrophages reverse cholesterol transport •TMAO reduced bile acid pool Log count of bacteria /g feces 03/11/2014 12 Bacteroids, Eubacterium, Peptococooccae 10 Bifidobacterium Group I 8 Escherichia coli, Streptococcus 6 Lactobacillus 4 Group II Clostridium perfringens Group III 2 birth babies weanings infants adults aged Human diet shaped our closely coevolved human:microbe ecosystem Human microbiome evolution Dietary evolution •Neolithic times: ~10,000 yrs BP (birth of agriculture) •Agricultural/Industrial revolutions: Late 18th and early 19th century •Recent changes: Over the last 50 yrs (Westernstyle diet) 03/11/2014 Estimated daily fiber intake in Palaeolithic /Traditional diets and Modern diet Dietary pattern Fiber content Palaeolithic diet first reported in 1985 (Eaton SB) 45.7g Palaeolithic diet modified in 1990 (Eaton SB) >100g Palaeolithic diet reported in 1996/1997 (Eaton SB) 104g Rural Chinese diet 77g Rural African diet 120g Current US diet 10-20g Recommended fiber content in US 25-38g Current UK diet 12g Recommended fiber content in UK 18g (Tuohy et al. Current Pharmaceutical Design, 2009) Total polyphenols (catechin equivalents, mg/100 g) 800 WILD BERRIES CULTIVATED BERRIES 645 641 600 475 424 408 411 400 330 FRUITS 294 280 291 292 231 211 211 193 179 200 Mango 28 27 21 Fig Peach 38 Banana 54 40 Papaia 54 Persimmon 57 Pear (n=3) 111 98 Kiwi Pomegranate Apple (n=28) Cherry (n=7) Sour cherry Plum (n=6) Raspberry (n=5) Strawberry (n=9) Blueberry (n=9) Gooseberry, white White currant Blackberry (n=3) Red currant Wild strawberry Black currant Elderberry Wild raspberry Wild bilberry Wild blackberry 0 Redrawn from: Mattivi F., Dietas Mediterráneas: La evidencia científica, 2004, 99-111 03/11/2014 Gut microbiota differs between children following Western-style diet in Italy and children in rural Africa following traditional diet. De Filippo et al., PNAS (2010) Increasing De Filippo et al., PNAS (2010) 03/11/2014 Aberrant gut microbiota associated with Western-style diet British Journal of Nutrition 2011 •SCFA about 3-4 fold higher in African children than Italian children •Abundance of Enterobacterial groups commonly associated with gastrointestinal disease higher in EU/Italian children De Filippo et al., PNAS (2010) Gut microbiota differs between children following Western-style diet in Italy and children in rural Africa following traditional diet. De Filippo et al., PNAS (2010) 03/11/2014 Total daily food intake in relation to the average of maximum quantity ingested per day 300 BF rural Daily Intake 250 BF urban b . EU 200 g/day a . 150 c . d . e . f . 100 50 0 Protein Fat Carbohydrate (fiber included) Fiber The diet of ‐BF rural children is low in fat and rich in fibers and plant‐polysaccharides and predominantly vegetarian ‐BF urban children maintain the consumption of cereals and legumes but introduces milk, meat, fish, egg and peanuts. ‐ EU is a a typical western diet high in animal protein, sugar, starch, and fat and low in fiber. a) Millet; b) Millet flour; c‐d) black‐ eyed peas, Niebè, e) Parkia biglobosa tree (Néré); f) Soumbalà , Nerè fruits fermented. Nutritional composition of foods is available from http://www.inran.it for EU and http://www.fao.org for BF Quantification of SCFAs in fecal samples from BF and EU populations by SPME‐GC‐MS. ACETIC * 60,0 PROPANOIC 35,0 * 50,0 µmol/g 30,0 20,0 20,0 15,0 10,0 10,0 5,0 0,0 0,0 Rural BF Urban BF EU Rural BF * 14,0 Urban BF EU PENTANOIC BUTANOIC 16,0 ** * 1,8 1,6 1,4 12,0 1,2 10,0 µmol/g µmol/g ** 25,0 40,0 µmol/g * 30,0 ** 8,0 6,0 1,0 0,8 0,6 4,0 0,4 2,0 0,2 0,0 0,0 Rural BF Urban BF EU Rural BF Urban BF EU 03/11/2014 Gut microbiota….. but not as we know it! OBESITY EPIDEMIC • Currently 300 million people obese worldwide • Obese adults are up to 80 times more likely to develop type 2 diabetes than nonobese adults • Obese adults are 2-3 times more likely to develop heart disease • Obese adults have a 40% increased risk of dieing from cancer 03/11/2014 The 3Ps: Probiotics, Prebiotics & Polyphenols • PROBIOTICS....“live microorganisms which when administered in adequate amount confer a health benefit on the host” (FAO, 2001). - Lactobacillus Bifidobacterium Escherichia coli Nissle 1917, Bacillus sporogenes, Enteorcoccus faecium, Clostridium butyricum, Saccharomyces ceriviseae • PREBIOTICS…. a selectively fermented ingredient that results in specific changes, in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Gibson et al (2010) – Inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, lactulose, arabinogalactan, arabinoxylan, pectic‐oligosaccharides, glucooligosaccharides – Resistant starch and certain whole plant foods including whole grain wheat, whole grain oats • POLYPHENOLS….. 90% resistant to digestion and reach the colon, plant secondary metabolites, usually antioxidant, antimicrobial activities, enzyme/nutrient binding properties and possibly prebiotic type properties, e.g. red‐wine polyphenols, apple tannins Gut microbiota and systemic health Cancer (CRC) Obesity Immune function IBD Probiotics Blood glucose Satiety Diarrhoea/IBS Lipid metabolism Laxation Mineral absorption 03/11/2014 • Lb. reuteri selected for Bile Salt Hydrolase activity (2 capsules/day at 2 x 109 CFU/capsule) for 9 weeks • Randomized, double-blind, placebo-controlled, parallel-arm, multicenter study • N=127 hypercholesterolemic patients • Probiotic reduced plasma – – – – – TC by 9.14% LDL-C by 11.64% LDL-C/HDL-C ratio by 13.39% Non-cholesterol plant sterols Increased circulating deconjugated bile acids • Proposed new cholesterol lowering activity of probiotics via modified absorption of lipids from the gut Journal of Hepatology (2011) Enterohepatic BA circulation microbiota (deconjugation, 1°→ 2°) FXRα BA, fat & glucose homeostasis Inflammation (NF-κB) VDR PXR Table 1. Cellular actions described for TGR5 in different cell types. ∗Macrophages include alveolar macrophages, Kupffer cells and THP-1 cells. 03/11/2014 Influencing the Gut:brain axis 03/11/2014 03/11/2014 GABA….. An effective immunomodulatory molecule •GABA receptors also on human PBMC, monocytes and neutraphils GABA treatment improves IN sensitivity 03/11/2014 Lactobacillus plantarum/brevis FEM 1874: GABA producer and BSH positive 140 High producers of GABA GABA PRODUCTION (mg/L) 120 100 80 60 40 20 0 Not all cheeses are equal. 03/11/2014 Smelly cheeses – live cheeses! Anti‐pathogen activity of Trentino cheese lactic acid bacteria Escherichia coli DSM 1103 Listeria monocitogenes 309 Listeria monocitogenes 306 Staphilococcus aureus ATCC 25923 Bacillus cereus DSM 345 Candida albicans ATCC 14053 Salmonella enterica DSM 14221 NI NI NI NI +++++ +++++ NI +++++ NI +++++ +++++ +++++ NI +++++ NI NI NI NI NI +++++ NI Lactobacillus paracasei P210 (1M) +++++ +++++ +++++ +++++ +++++ +++++ +++++ Lactobacillus cas/par/rham St 2 (1M) +++++ +++++ +++++ +++++ +++++ NI +++++ +++++ +++++ +++++ +++++ +++++ NI +++++ +++ +++ NI NI NI NI NI +++++ ++++ ++++ ++++ +++++ NI +++++ + + + + + NI + LAB Strain Lactobacillus paracasei Vi44 (6M) Lactobacillus rhamnosus 2360 Lactobacillus delbrueckii P243 Enterococcus faecalis Vi4 (3M) Lactobacillus paracasei 2689 Lactobacillus cas/par/rham S43 (2M) Leuconostoc mesenteroides Vi 47 (3M) 03/11/2014 Acid (pH 2) and bile tolerance of Trentino cheese lactic acid bacteria pH 2 incubation 1,E+08 Log 10 CFU/ml 1,E+07 1,E+06 1,E+05 1,E+04 1,E+03 1,E+02 0,35 0% 0.2 % 0.4 % 0,30 0,25 Growth Rate (h‐1) Lb paracasei P210 Lc mesenteroides Vi47 Lb cas/par/rham Sp43 E. faecalis V4 Lb cas/par/rham St2 Lb paracasei 2689 Lb paracasei 2360 Lb paracasei Vi44 Lb delbrueckii P243 1,E+09 0,20 0,15 0,10 0,05 1,E+01 0,00 1,E+00 0 20 40 60 80 100 120 140 Minutes P210 2689 2360 Sp43 St2 V4 Vi44 ‐0,05 Strain Survival of selected Trentino cheese lactic acid bacteria under simulated gastrointestinal conditions of pH and bile – a first screen for potential as probiotics TrentinoGut Lorenza Conterno and Alice de Angelis In vitro Digestion Mouth Food ground in buffer Stomach pH to 2.5 Add pepsin gastric and gastric lipase 37 °C/ 2h. pH (6N NaOH) to 6.5 Add bile salts Liver & Pancreas Amylase, trypsin, chymotrypsin, colipase Large intestine 37 °C/ 1h Vi47 P243 03/11/2014 Selection of putative probiotics from lactic acid bacteria isolated from Trentino cheeses •…. •Aim: to select putative probiotics suitable for cheese applications from Trnetino dairy Microbiome •TrentinoGut - Lorenza Conterno •University of Camerino, Stefania Silvi and Alice de Angelis •Strains kindly isolated and provided by Elena Franciosi Putative Trentino probiotic survival under gastrointestinal conditions in presence and absernce of cheese matrix CultureBroth CultureinModelCheese 70 60 Survival% 50 40 30 20 10 0 2689 St2 2360 Strain 2689 St2 2360 = = = TrentinoGut Lactobacillus paracasei Lactobacillus casei paracasei rhamnosus Lactobacillus rhamnosus Lorenza Conterno and Alice de Angelis 03/11/2014 The 3Ps: Probiotics, Prebiotics & Polyphenols • PROBIOTICS....“live microorganisms which when administered in adequate amount confer a health benefit on the host” (FAO, 2001). - Lactobacillus Bifidobacterium Escherichia coli Nissle 1917, Bacillus sporogenes, Enteorcoccus faecium, Clostridium butyricum, Saccharomyces ceriviseae • PREBIOTICS…. a selectively fermented ingredient that results in specific changes, in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Gibson et al (2010) – Inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, lactulose, arabinogalactan, arabinoxylan, pectic‐oligosaccharides, glucooligosaccharides – Resistant starch and certain whole plant foods including whole grain wheat, whole grain oats • POLYPHENOLS….. 90% resistant to digestion and reach the colon, plant secondary metabolites, usually antioxidant, antimicrobial activities, enzyme/nutrient binding properties and possibly prebiotic type properties, e.g. red‐wine polyphenols, apple tannins CCC 03/11/2014 CCC Gut microbiota and systemic health Cancer (CRC) Obesity Immune function IBD Prebiotics Blood glucose Satiety Diarrhoea/IBS Lipid metabolism Laxation Mineral absorption 03/11/2014 Delaying the progression of obesity with fermentable carbohydrates and prebiotics • Does dietary supplementation with prebiotics or fermentable CHO/fiber reduce body weight through enhanced satiety • High fat fed animals (control) • High fat supplemented with Inulin (Synergy 1 (10% w/w) • High fat supplemented with β-glucan (10% w/w) – Diets were isoenergetic with cellulose used to reduce calorie load of control, high fat diet. – Measures: magnetic resonance imaging (whole body fat deposition and stimulation of hypothalamus appetite centres), PYY, gut microbiota and caecal/faecal metabolites Tulika Arora, Gary Frost et al. PLoS One 2012 10 8 6 * * * ** ** *** Control Beta glucan Inulin 4 2 0 1 2 3 4 5 6 7 8 Cumulative food intake (g) Cumulative BW gain (g) Inulin and β-glucan reduce body weight gain *** 200 175 150 *** 125 *** 100 50 25 0 1 Weights (in g) * 1.5 *** ** 1.0 0.5 0.0 Liv er Epididymal Adipose tissue Cae cum Tissue Colon 2 3 * 25 % Body adiposity Control Beta glucan Inulin * *** * * 75 Week 2.0 *** Control Beta glucan Inulin 4 5 6 7 8 Week Control 20 Beta glucan Inulin 15 10 5 0 Control Inulin Groups Beta glucan 03/11/2014 Effect of inulin and β-glucan supplementation on adiposity parameters and PYY level in high fat fed mice. HFD-C HFD-I HFD-BG Epididymal adipose tissue (g) 1.14±0.16a 0.59±0.10b 0.77±0.10a Whole body adiposity (%) 18.03±2.72a 8.95±1.66b 12.17±1.92a Liver lipid content (%) 6.30±1.62a 6.02±1.97a 6.02±1.36a Muscle lipid content (%) 0.96±0.149a 0.72±0.05a 1.29±0.57a Visceral fat (g) 2.17±0.46a 1.23±0.17a 1.49±0.27a Subcutaneous fat (g) 3.40±0.53a 2.08±0.13a 2.44±0.28a Adipocyte size (μm) 122.25±10.2a 72.95±8.72 111.19±4.03 ac b Adipocyte number (x107) 1.43E+08a 1.31E+08a 1.86E+08a Liver size (g) 1.43±0.13a 1.23±0.15a 1.40±0.06a Caecum (g) 0.21±0.01a 0.69±0.05b 0.49±0.03c Colon (g) 0.13±0.01a 0.19±0.02a 0.14±0.02a PYY (pmol/ml) 0.10±0.012a 0.10±0.008 0.13±0.016a a Colonic PYY 27.3 3.7 22.8 5.3 19.9 1.6 The values with different superscripts letters are significantly different from each other Effect of inulin and β-glucan supplementation on changes in signal intensity in the appetite centres of the brain measured by MRI Control Inulin Beta glucan Arcuate nucleus 60 * 50 40 30 20 10 0 -10 10 20 40 60 80 Time (in mins) 100 120 140 Normalized percent enhancement Normalize d perce nt e nhance me nt 80 70 Control Inulin Beta glucan Ventromedial hypothalamic nucleus 60 50 *** 40 30 20 10 0 -10 10 20 40 60 80 100 120 140 Time (in mins) The arrow shows the start of Mn2+ infusion and grey bar represents the duration of Mn2+ infusion. 03/11/2014 Effect of inulin and β-glucan supplementation on changes in signal intensity in the appetite centres of the brain measured by MRI Control Inulin Beta glucan Paraventricular nucleus Normalized percent enhancement 8 Normalized percent enhanceme nt 40 ** 30 20 10 0 -10 10 20 40 60 80 100 120 140 Time (in mins) Control Inulin Beta glucan Periventricular nucleus 70 Normalized percent enhancement Control Inulin Beta glucan Nucleus of tractus solitarius 50 7 6 5 4 * 3 2 1 0 -1 -2 -3 -4 10 20 40 60 60 80 100 120 140 Time (in mins) 50 40 ** *** 30 The arrow shows the start of Mn2+ infusion and grey bar represents the duration of Mn2+ infusion. 20 10 0 -10 10 20 40 60 80 100 120 140 Time (in mins) 11.0 11.0 10.5 10.0 9.5 Control Inulin Beta glucan 10.5 10.0 9.5 9.0 A: Total bacteria Control Inulin B: Mouse Intestinal Bacteria 9 8 7 Control Inulin D: Lactobacillus Beta glucan Log10 cells/gfaeces Log10 cells/g faeces *** 10.0 9.5 9.0 Control Inulin Control week 0 Control week 4 Control week 8 9 Inulin week 0 Inulin week 4 8 Inulin week 8 Beta Glucan week 0 Beta Gllucan week 4 7 Beta Glucan week 8 Control Inulin Beta glucan C: Eubacterium rectale-Clostridium coccoides *** 10 *** * 10.5 8.5 Beta glucan *** 10 ** 11.0 *** Log 10cells/g faeces *** 11.5 Log10 cells/g faeces Log10 cells/g faeces Effect of inulin and β-glucan supplementation on murine gut microbiota compared to high fat diet supplemented with cellulose Beta glucan E: Bifidobacterium Similar findings observed for caecal contents at week 8. 03/11/2014 Effect of inulin and β-glucan supplementation on murine faecal metabolite profiles (NMR) compared to high fat diet supplemented with cellulose NMR based metabolomics separates cellulose from inulin or β-glucan supplemented animals on high fat diets PCA scores plot of fecel metabolite profiles showing clear clustering patterns for mice fed with HFD-C, HFD-BG and HFD-I groups. 03/11/2014 Fermentable fibers/prebiotics reduce body weight but by different mechanisms • β‐glucan reduced cumulative body weight apparantly through reduced stimulation of hypothalamic appetite centres, increased satiety and reduced food intake. • Inulin appeared to reduce cumulative body weight gain through reduced adipocyte size and whole body adiposity • SCFA concentrations in the caecum β‐glucan > inulin > high fat control • Inulin gave increased caecum weight • β‐glucan had higher excretion of glucose in faeces while high‐fat control had higher excretion of butyrate and propionate Arora et al. PLoS One 2012 Whole grain oats vs non-whole grain breakfast cereal dietary intervention in subjects “at risk” of developing the metabolic syndrome •Randomized, crossover study, 30 volunteers, male and female with slightly elevated levels of either total cholesterol or fasting glucose at risk of developing metabolic disorders Run-in WGO Wash out NWG Follow up Run-in NWG Wash out WGO Follow up 2 weeks 6 weeks 4 weeks 6 weeks 4 weeks •Two 6 week treatment periods separated by 4 week washout periods. •Whole oat grain (WGO) vs non-whole grain cereal (NWG) •Samples collected before and after cereal consumption and then 4 weeks following end of consumption. •Blood (fasted), 24 hour urine, saliva and fecal samples Connolly et al. In preparation Supported by Jordans Cereals 03/11/2014 Whole grain oats modified gut microbiota in beneficial manner compared to non-whole grain cereal WGO WGO Whole grain oats significantly increased faecal bifidobacteria and lactobacilli but no other bacterial groups measured. Whole grain oats improved blood cholesterol profiles WGO •Whole grain oats significantly reduced LDL and total cholesterol, reversing a trend towards elevated LDL and TC in the non-whole grain breakfast cereal treatment. WGO 03/11/2014 Impact of wheat bran fibre (WBF) on gut microbiota & markers of CVD in overweight adults Run-in WBF (bread, biscuits, breakfast cereals) Run-in Cellulose (bread, biscuits, breakfast cereals) 2 weeks 8 weeks •Subjects: n=80, BMI > 27 •FEM & Santa Chiara Hospital (Dr Carlo Pedrolli), APSS, Trento •Biomarkers of CVD risk •Gut microbiota (454-pyrosequencing, FISH, qPCR) •MS based metabolomics (targeted and untargeted) The 3Ps: Probiotics, Prebiotics & Polyphenols • PROBIOTICS....“live microorganisms which when administered in adequate amount confer a health benefit on the host” (FAO, 2001). - Lactobacillus Bifidobacterium Escherichia coli Nissle 1917, Bacillus sporogenes, Enteorcoccus faecium, Clostridium butyricum, Saccharomyces ceriviseae • PREBIOTICS…. a selectively fermented ingredient that results in specific changes, in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Gibson et al (2010) – Inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, lactulose, arabinogalactan, arabinoxylan, pectic‐oligosaccharides, glucooligosaccharides – Resistant starch and certain whole plant foods including whole grain wheat, whole grain oats • POLYPHENOLS….. 90% resistant to digestion and reach the colon, plant secondary metabolites, usually antioxidant, antimicrobial activities, enzyme/nutrient binding properties and possibly prebiotic type properties, e.g. red‐wine polyphenols, apple tannins 03/11/2014 Gut microbiota and systemic health Cancer (CRC) Obesity Immune function Blood glucose Polyphenols IBD Satiety Diarrhoea/IBS Lipid metabolism Laxation Mineral absorption 14 10 * * 8 * * * 12 * * * * Basline De-alcoholized red wine Red wine Gin 6 4 2 nt a lla le te riu m la Eg ge r th e ac ob Bi fid Pr ev ot el ifo rm is de s un de s ct er oi gr ou ct er oi Ba Ba ac te r iu m re ct al e yt ic um st ol hi m iu tia co cc oi de sEu b lo st rid C Bl au p ou p gr iu m illu s lo st rid C ac ct ob La te ro co cc u s 0 En 16S rRNA gene copies/g faeces, mean +/- SD, n=10 American Journal of Clinical Nutrition, 2012 03/11/2014 (2011) 93:62-72. 03/11/2014 Measuring the impact of raspberries of different polyphenol content on gut microbiota •Raspberries digested and fermented •Alpen Gold (yellow), Tulameen (red), Anne (yellow), Sugana Yellow (yellow), Sugana Red (red) •Controls (inulin and cellulose) qPCR (total, Enterobacteriaceae, LAB, Bifidobacterium spp) FISH (totals, Bifidobacterium spp., Bacteroidaceae e Prevotellaceae (Bac303), Clostridium hystoliticum (Chis), Clostridium coccoides-Eubacterium rectale (Erec), Faecalibacterium prausnitzii (Fpra) ARISA Targeted Metabolomic: Anthocyanins and Ellagitannins (UPLC-MS) SCFA (GC-MS) 03/11/2014 Significant increase in bifidobacterial abundance as measured by FISH Log10 cells/mL 8,2 a a a 8,4 a a a 8 7,8 0 5 10 24 7,6 7,4 7,2 7 HOURS 6,8 6,6 os e C el lu l In ul in e R ed Su ga na An ne S ug an aY el lo w Tu la m ee n A lp en G ol d 6,4 a: average of five significantly higher Total anthocyanins and anthocyanins profile during fermentation for Tulameen or Sugana Red T0 T5 T10 T24 6000 5000 pg: pelargonidin cy: cyanidin ng/ml 4000 glu: glucoside gal: galactoside samb: sambubioside rut: rutinoside soph: sophoroside 3000 2000 1000 0 Alpen Gold Tulameen Anne Sugana Yellow Sugana Red Inuline 4000 4000 ng/ml 3000 2000 0 5 10 24 5000 0 5 10 24 5000 ng/ml Cellulose 3000 2000 1000 1000 0 0 pg3glu cy3glu cy3gal cy3samb anthocyanin cy3rut cy3soph pg3glu cy3glu cy3gal cy3samb anthocyanin cy3rut cy3soph 03/11/2014 Ellagitannins measured during raspberry fermentation Lambertianin C T 0 T 5 T 10 T 24 ng/ml 0,15 Casuarictin: monomer Sanguiin: dimer Lambertianin: trimer 0,10 0,05 0,00 Alpen Tulameen Anne Gold Sugana Sugana Inuline Cellulose Yellow Red Increasing fruit and vegetable intake in vivo – FLAVURS project Flavonoid‐rich F&V Flavonoid‐poor F&V +2 + 4 + 6 +2 + 4 + 6 ? Habitual diet Wk 0 Wk 6 Wk 12 Wk 18 Visit 1 Visit 2 Visit 3 Visit 4 03/11/2014 High Flavonoid group Apple crumble Dried cranberries/ blueberries Fruit smoothies (Strawberry and raspberry/ Blackberry and blueberry) Fruit juices (Blackcurrant /apple/cranberry /orange ) Roasted peppers Pepperdew cherry peppers All fruits and vegetables contain ≥ 15mg/100g of flavonoids Low Flavonoid group Rhubarb crumble Dried fruits (raisins, currants, mango) Fruit smoothies (tropical mix) Fruit juices (mango/ pineapple) Guacamole Houmous Soups (Carrot & coriander/broccoli & stilton) All fruits and vegetables contain < 5mg/100g of flavonoids Canned chopped tomatoes 03/11/2014 FLAVONOIDS +2 +4 +6 Additional F&V portions Dietary intake: HF dose dependent increase HF higher vs LF & CT +2,+4,+6 Time x treatment (P=0.006) +2 +4 +6 Additional F&V portions Biomarker : 24h urinary flavonoid & metabolites HF dose dependent increase HF higher vs LF & CT +2, +4, +6 Time x treatment (P=0.0001) VITAMIN C +2 +4 +6 Additional F&V portions Dietary intake: HF & LF dose increase HF & LF vs CT higher +2, +4, +6 Time x treatment (P=0.0001) +2 +4 +6 Additional F&V portions Biomarker: Plasma vitamin C HF & LF dose increase HF & LF vs CT higher +2, +4, +6 Time x treatment (P=0.0001) 03/11/2014 Dietary carotene (µg/day) CAROTENOIDS +2 +4 +6 Additional F&V portions Dietary intake : LF dose dependent increase HF & LF higher CT all points Time x treatment (P=0.001) +2 +4 +6 Additional F&V portions Biomarker : Total plasma carotenoids LF dose dependent increase HF & LF higher CT all points Time x treatment (P=0.0001) Non-starch polysaccharide (NSP) changes HF & LF higher than the CT all time points LF dose dependent increase Time x treatment interaction (P=0.0001). 03/11/2014 F&V impact on arterial stiffness measured by PWA HF and LF attenuated increase shown in CT group Time x treatment P=0.009 when standardised for HR75 P=0.03 Other blood parameters +2 +4 +6 Additional F&V portions Total plasma nitrate/nitrite HF higher than LF & CT +6 Time x treatment (p=0.03) +2 +4 +6 Additional F&V portions Plasma FRAP HF dose dependent increase LF higher +4 & +6 vs baseline Time x treatment (P=0.009) 03/11/2014 High fruit and veg diet appears to modulate gut microbiota in “benificial”manner Lactobacilli 9,60 9,50 9,40 9,30 9,20 9,10 9,00 8,90 0,00 2,00 4,00 Log10 cells/g faeces (mean +/- SEM) Log10 cells/g faeces (mean +/- SEM) Bifidobacteria 9,70 9,00 8,90 8,70 •In “right”direction 8,60 8,50 8,40 •HF Eu. rectale 8,30 8,20 8,10 0,00 9,70 9,60 9,50 9,40 9,30 9,20 0,00 2,00 4,00 2,00 4,00 •LF F. prausnitzii C. perfringens/histolyticum Log10 cells/g faeces (mean +/- SEM) Log10 cells/g faeces (mean +/- SEM) Atopobium 9,80 •Small changes 8,80 9,20 •LF Bacteroides 9,10 9,00 HF LF ▲ CT 8,90 8,80 8,70 8,60 8,50 0,00 2,00 4,00 P<0.05 Sig diff to wk 0 Wilcoxon Test; P<0.05 sig diff to CT Kruskal-Wallis Test UNTARGETED METABOLOMIC ANALYSIS OF URINE • Urine dilution 1:5 • HPLC Analysis on RP column in positive and negative ionization mode • XL Orbitrap in Full Scan MS and MS/MS within high resolution and mass accuracy Approaches • Substances considered as biomarkers when p<0.005 (t-test) • Annotation of metabolites: − Mass accuracy of precursor ion [M+H]+ (< 3 ppm error) − Isotopic pattern distribution • Databases used for annotation: In-house data base, Human Metabolome Database, Metlin, MAssBank, LipidMaps 03/11/2014 Metabolomics workflow F + C N H3C Samples: urine, plasma, fecal water Biomarker identification N NH O CH3 Separation on Sample preparation: extraction of all analytes LC column Statistic analysis Untargeted analysis with HR mass spectrometer ALLIGNMENT OF CHROMATOGRAMS, BATCH CORRECTIONS, PEAK PICKING UNIVARIATE ANALYSIS with XCMS Data processing - XCMS using the “matchedFilter” peak picking method with Spectra Filter Window Mower function. For each mass feature two linear mixed models were fitted, diet-time interaction and time alone. Both models were adjusted for baseline. p values for all features were corrected for multiple testing according to the two-stage Benjamini and Hochberg step-up false discovery rate (FDR). 03/11/2014 Rt 1.10 Annotation; Elemental Composition, MW, adjusted p value ProlineBetaine; MMW: 143.0946, p 0.002 ↑Diet A; 2.20 N-acetyl-S-(2-hydroxypropyl) cysteine, MMW: C8H15NO4S; p 3.80 Hydroxy Hippuric Acid (isomer); MMW: 195.0531, p 0.02 ↑Diet A; 4.40 Hydroxy Hippuric Acid (isomer); MMW: 195.0531, p 0.002 ↑Diet A, 4.82 Vanilloylglycine, MMW: 225.0637; p.0.03 ↑ Diet A, B; 5.70 Hippuric Acid, MMW: 179.0582; p 0.002 ↑Diet A 5.89 Phenylacetylglutamine, MMW: 264.1110, p 0.04 ↑Diet A; 6.15 FerulicAcid Sulfate , MMW: 274.0731, p 0.04; ↑Diet B 6.26 Dihydroxyphenyl-γ-valerolactone-O-sulphate MMW:288.0306 p 0.0003 ↑Diet A; 6.56 Dihydroxyphenyl-γ-valerolactone-O-methyl-O-GLC, p 0.01 ↑ Diet A; 7.14 Cresol-Glucuronide, MMW: 284.0896; p 0.001 ↓Diet A; 7.35 Hydroxy Hippuric Acid (isomer), MMW: 195.0531, p 0.01 ↑ Diet A; 7.76 Hydroxy-tridecenoic acid GLC, MMW: 404.2046, p 0.001 ↑ Diet A; 12.38 Iberin N-acetyl-cysteine MMW: p 0.0001 ↑ Diet A & p 0.001↑ Diet B Nutrition and Nutrigenomics Alimentazione Apples Gut Microbiota Modulation Adding value to the food chain FOOD QUALITY AND NUTRITION DEPARTMENT Pre ‐ treatment Group 1 Whole Apple (WA) Wash out Apple Juice (AJ) Apple Juice (AJ) Wash out Whole Apple (WA) 2 weeks Habitual diet Group 2 8 weeks Visit 1 (V1) 0 week 8 weeks 4 weeks Visit 2 (V2) 8 week Visit 3 (V3) Visit 4 (V4) 13 week 21 week Biological samples: Blood, Urine and Faecal samples Measurements •% body fat composition, DEXA •blood pressure, •vascular stiffness (pulse wave analysis, PWA) •and vascular reactivity (laser Doppler imaging, LDI) •Gut microbiota (454‐pyrosequencing) •Untargeted metabolomics. 03/11/2014 “Conslusions: Adherence to an MD pattern is associated with better HRQL. The association is stronger with mental health than with physical health. Dietary total antioxidant and fibre content independently explain this relationship”. Dietary patterns – Mediterranean diet & Gut Microbiome “ecosystem support” CHRONIC DISEASE PYRAMID GUT MICROBIOTA PYRAMID INRAN, FAO Double Pyramid Barilla Centre for Food Nutrition: Double Pyramid: healthy food for people, sustainable food for the planet http://www.barillacfn.com/en/position-paper/pp-doppia-piramide-alimentazione/ 03/11/2014 Fondazione Edmund Mach •Thank you: SINU, Professor Brighenti •Fulvio Mattivi, Duccio Cavalieri and Roberto Viola, FEM-IASMA •NN Group: Lorenza Conterno, Francesca Fava, Elena Franciosi, Carlotta de Filippo, Athanasios Koutsos, Ilaria Caraffa, Florencia Ceppa, Andrea Manchini •University of Reading, Glenn Gibson, Bob Rastall, Julie Lovegrove, Parveen Yaqoob, Christine Williams, Ian Rowland, Michael Connolly •Gary Frost, Imperial College London, Daniele Del Rio, University of Parma