2328-13 Preparatory School to the Winter College on Optics and the Winter College on Optics: Advances in Nano-Optics and Plasmonics 30 January - 17 February, 2012 BLOCH SURFACE WAVES ON PHOTONIC CRYSTALS APPLICATIONS TO GAS SENSING AND BIOPHOTONICS F. Michelotti University Roma La Sapienza Roma Italy BLOCH SURFACE WAVES ON PHOTONIC CRYSTALS APPLICATIONS TO GAS SENSING AND BIOPHOTONICS SAPIENZA Università di Roma Department of Basic and Applied Sciences for Engineering Molecular Photonics Laboratory Francesco Michelotti International Centre for Theoretical Physics, Trieste, February 2010 Collaboration and Credits SAPIENZA Università di Roma 'LSDUWLPHQWRGL6FLHQ]HGL%DVH$SSOLFDWHSHUO¶,QJHJQHULD F.Michelotti, L. Dominici, A.Sinibaldi, G.Figliozzi POLITECNICO di Torino FLab and Dipartimento di Scienza dei Materiali ed Ingegneria Chimica E. Descrovi, M. Ballarini, G. Digregorio, F. Frascella, P. Rivolo, B. Sciacca, F. Geobaldo, F. Giorgis, M. Quaglio, M. Cocuzza and F. Pirri IMT- Ecole Polytechnique Fédérale de Lausanne (EPFL) - Neuchatel T. Sfez, L. Yu, and H.-P. Herzig NAM- Ecole Polytechnique Fédérale de Lausanne (EPFL) D. Brunazzo and O. J. F. Martin IOF - Applied Optics and Fine Mechanics ± Jena N.Danz IWS - Materials and Beam Technology ± Dresden F.Sonntag Plasmonics DURING THESE TWO WEEKS MANY PLASMONICS EXPERIMENTS AND APPLICATIONS WERE OR WILL BE DESCRIBED PLASMONICS RECENTLY BECAME A VERY HOT RESEARCH FIELD. SO POPULAR THAT «. APPLICATIONS BASED ON PLASMONS SHOW SOME LIMITATIONS WHICH CAN BE OVERCOME ADOPTING ALTERNATIVE APPROACHES ONE OF THE POSSIBLE APPROACHES ARE BLOCH SURFACE WAVES ON PHOTONIC CRYSTALS Examples ± SPR Biosensing Z [ rad/s ] 2.5x10 16 Zspp Zp 1 H2 TM 2.0x10 16 1.5x10 16 Zp 1.0x10 16 Zspp 0.5x10 16 0 T Linea di luce Z c Z2 Z 2 2Z Z Dispersione del SPP p Dispersione della luce nel vuoto 2 Frequenza del plasmone2di superficie Frequenza di plasma p q(Z ) 0 0.5 1.0 7 ȁȁȁȁȁȁȁȁȁ ¸¸¸¸¸¸¸¸¸ R 1.5 -1 q [ 10 m ] SPP dispersion at a metal(ideal)/dielectric interface T Examples ± SPR Biosensing 2.0 Substrate PAM, Otto 1.5 R [ arb.un. ] Air Metal Film O = 1550 nm 1.0 0.5 Ti TP Substrate Metal Film PMA, Kretschmann Au (40nm) + SiO2 (184nm) Bare BK7 prism 0 -40 -30 -20 -10 0 Ti [ deg ] 10 20 30 Examples ± SPR Biosensing Examples ± SPR Biosensing Absorption losses in metal layers give rise to broad resonances and limit the sensitivity of SPR devices The limit of resolution is 'n=2#10-7 RIU (Biacore) The resolution does not permit to detect small molecules (<250 dalton) SPR devices never really accessed the Point-of-Care level The sensitivity can be improved by making use of long range surface plasmon polaritons but problems due to the symmetry of dielectric layers arise. Examples ± Fluorescence Imaging Bare Cover slip Au coated Cover slip (45nm) Surface Plasmon Coupled Emission (SPCE) and Surface Plasmon Field-enhanced Fluorescence (SPFS) Examples ± SW-SPCF Fluorescence Imaging Examples ± DLSPPW and LRSPP Waveguiding Dielectric thickness 500nm Can we do similar things in a different way? We can exploit the propagation of surface electromagnetic waves (SEW) at the truncation interface of finite one dimensional photonic crystals (1DPC) We shall refer to such waves with the name Bloch Surface Waves (BSW) To demonstrate such possibility in the following we will describe the: Mon 10?? ± 1100 General properties of BSW on 1DPC (Theory) Tue 1000 - 1100 Experimental techniques for the detection of SPP and BSW (Experimental) Tue 1130 ± 1230 Applications of BSW to gas sensing (Experimental) Wed 1430 - 1530 Applications of BSW to biophotonics (Experimental) Lecture 1 General properties of BSW on 1DPC (Theory) BSW at the truncation interface of 1DPC Propagation of light in infinite 1DPC cell n-‐1 cell n n(x) = n2 n(x) = n1 with for 0 < x < b for ďфdžфȿ Ŷ;džнȿͿсŶ;džͿ 0 E x, z E x e iEz In each layer the field can be expressed as the superposition of forward and backward propagating waves ( a n(D ) e ikDx ( xn/ ) bn(D ) e ikDx ( xn/ ) )e iEz E ( x, z) With k Dx ^>Z / c n D @ 2 E `, 1 2 2 D=1,2 In a vectorial representation § a n(D ) · ¨ (D ) ¸ ¨b ¸ © n ¹ Propagation of light in infinite 1DPC § a n( 1 ) · ¨ ¸ ¨ b( 1 ) ¸ © n ¹ For the sake of notation simplicity § a n 1 · ¨¨ ¸¸ © bn 1 ¹ §A ¨¨ ©C B ·§ a n · ¸¸¨¨ ¸¸ D ¹© bn ¹ §A ¨¨ ©C B· ¸¸ T D¹ § an · ¨¨ ¸¸ © bn ¹ § a n( 2 ) · ¨ ¸ ¨ b( 2 ) ¸ © n ¹ § cn · ¨¨ ¸¸ © dn ¹ The unit cell / translation operator is unimodular AD-‐CB=1 TE case ª º k · 1 §k A e ik 1 x a «cos k 2 xb i ¨¨ 2 x 1x ¸¸ sin k 2 xb» 2 © k1 x k 2 x ¹ «¬ »¼ C e ik 1 x a ª 1 º § k 2 x k1 x · ¨ ¸ i sin k b « ¨ 2x » ¸ 2 k k «¬ © 1 x »¼ 2x ¹ B D ª 1 §k º k · e ik 1 x a « i ¨¨ 2 x 1x ¸¸ sin k 2 xb» «¬ 2 © k1 x k 2 x ¹ »¼ e ik 1 x a ª º 1 § k 2 x k1 x · ¸¸ sin k 2 xb» «cos k 2 xb i ¨¨ 2 k k «¬ »¼ 2x ¹ © 1x Propagation of light in infinite 1DPC § a n( 1 ) · ¨ ¸ ¨ b( 1 ) ¸ © n ¹ For the sake of notation simplicity § a n 1 · ¨¨ ¸¸ © bn 1 ¹ §A ¨¨ ©C B ·§ a n · ¸¸¨¨ ¸¸ D ¹© bn ¹ §A ¨¨ ©C B· ¸¸ T D¹ C e ª 1 § n22 k1 x n12 k 2 x · º ¨ ¸ i sin k b « ¨ 2 2x » 2 ¸ 2 n k n k «¬ © 1 2 x »¼ 2 1x ¹ § a n( 2 ) · ¨ ¸ ¨ b( 2 ) ¸ © n ¹ § cn · ¨¨ ¸¸ © dn ¹ The unit cell / translation operator is unimodular AD-‐CB=1 TM case ª º 1 §¨ n22 k1x n12 k 2 x ·¸ ik 1 x a A e 2 ¸ sin k 2 xb» B e ik «cos k 2 xb i ¨ 2 2 © n1 k 2 x n2 k1x ¹ ¬« ¼» ik 1 x a § an · ¨¨ ¸¸ © bn ¹ D e 1xa ik 1 x a ª 1 § n22 k1 x n12 k 2 x · º ¨ ¸ i sin k b « 2x » 2 ¨ n2 k ¸ 2 n k «¬ »¼ 2 1x ¹ © 1 2x ª º 1 §¨ n22 k1x n12 k 2 x ·¸ 2 ¸ sin k 2 xb» «cos k 2 xb i ¨ 2 2 © n1 k 2 x n2 k1 x ¹ ¬« ¼» Propagation of light in infinite 1DPC Only one vector is independent § an · ¨¨ ¸¸ © bn ¹ §c · Note that: ¨¨ n ¸¸ © dn ¹ § A' ¨¨ © C' B' · ¸ D' ¸¹ n § c0 · ¨¨ ¸¸ © c0 ¹ §A ¨¨ ©C and that: B· ¸¸ D¹ § A' ¨¨ © C' n § a0 · ¨¨ ¸¸ © b0 ¹ § D ¨¨ © C B' · § A ¸¸ z ¨¨ D' ¹ © C B· ¸¸ A ¹ B· ¸¸ D¹ The unit cell translation operator is such that: Tx x l/ T E ( x) E (T 1 x) E ( x l/). Floquet theorem for a wave propagating in a periodic medium: E K ( x , z ) E K ( x )e iKx e iEz ® ¯E K ( x / ) E K ( x ) K := Bloch wavenumber n § a0 · ¨¨ ¸¸ © b0 ¹ Propagation of light in infinite 1DPC Periodicity § an · ¨¨ ¸¸ © bn ¹ e iK / § a n 1 · ¨¨ ¸¸ © bn 1 ¹ Eigenvalues §A ¨¨ ©C B ·§ a n · ¸¸¨¨ ¸¸ D ¹© bn ¹ Eigenvectors ½ 1 °ª 1 º iK / A D r ®« A D » 1°¾ e 2 °̄¬ 2 ° ¼ ¿ Unimodularity of T implies that: 2 1 § a0 · ¨¨ ¸¸ © b0 ¹ 2 1 ª1 º cos 1 « A D » / ¬2 ¼ K (E , Z ) B § · ¨¨ iK/ ¸¸ A¹ ©e Dispersion relation The field in the n1 layer of the n-‐th cell is: E K ( x)e iKx >a e 0 ik1 x ( x n/ ) @ b0 e ik1x ( xn/ ) e iK ( xn/ ) e iKx e iK / § an · ¨¨ ¸¸ © bn ¹ Propagation of light in infinite 1DPC TE Case 1 A D 1 K R 2 TE Propagating waves (permitted) 1 A D ! 1 K 2 mS iK i C / Evanescent waves (forbidden in 1DPC) 1 A D 1 2 Band edges TM BSW at the truncation interface of 1DPC z na n2 n1 x y If the 1DPC is finite the evanescent solutions are permitted at the interface and decay in the 1DPC with an envelope (Bloch Surface Wave -‐ BSW): e Ki x The BSW field has the transverse structure: E ( x ) De qa x xd0 with q a ® iKx xt0 ¯ E ( x ) E K ( x )e K C Continuity of E and 0E/ 0x ^E 2 >Z / c na @ Æ BSW live in the forbidden bands Æ BSW dispersion relation qa qe iK/ A B / e iK/ A B 2 ` 1 2 EXAMPLE: a-Si1-xNx :H 1DPC L t=294nm n=1.75 @ O=1530nm H t=240nm n=2.23 @ O=1530nm 10 periods Glass Band Diagram Finite and non periodic 1DPC z na n1 n2 ... n N In the case the 1DPC is finite and/or non periodic the analytical approach from Yariv cannot be applied. The solution must be seeked numerically. x y We can applied the Transfer Matrix Method (TMM) to calculate the reflectance of an arbitrary structure. Ti Suppose we wish to calculate the reflectance of a finite 1DPC in the Kretschmann prism coupling configuration. T Substrate 1DPC PMA, Kretschmann Finite and non periodic 1DPC Step 1 ± The single layer transfer matrix is: Interface matrix Propagation matrix TE case Finite and non periodic 1DPC Step 2 ± The multilayer transfer matrix is: Finite and non periodic 1DPC Step 3 ± The reflectance and transmittance are calculated imposing that bN+1=0: R T r 2 t 2 Finite and non periodic 1DPC Step 4 ± The field distribution at any position inside the structure is calculated imposing that a0=1 and b0=r: EXAMPLE: a-Si1-xNx :H 1DPC L t=294nm n=1.75 @ O=1530nm H t=240nm n=2.23 @ O=1530nm 1 0.9 10 periods 0.8 0.7 R 0.6 0.5 0.4 Glass 0.3 0.2 0.1 30 35 40 45 50 55 Angle ( deg ) 60 65 70 EXAMPLE: a-Si1-xNx :H 1DPC L t=294nm n=1.75 @ O=1530nm H t=240nm n=2.23 @ O=1530nm 10 periods Glass EXAMPLE: a-Si1-xNx :H 1DPC L t=294nm n=1.75 @ O=1530nm H t=240nm n=2.23 @ O=1530nm 10 periods Glass Transfer Matrix Method on MATLAB L t=294nm n=1.75 @ O=1530nm H t=240nm n=2.23 @ O=1530nm 10 periods Glass «a small preview of Lecture 2 L t=294nm n=1.75 @ O=1530nm H t=240nm n=2.23 @ O=1530nm 10 periods Glass Band Diagram Hydrogenated amorphous silicon nitride ( Si1-xNx :H) by PECVD F.Giorgis, E.Descrovi Politecnico di Torino NH 3 +SiH 4 x=N/(Si+N) 0.6 50 nm T=200 C NH 3 +SiH 4 +H 2 T=200 C 0.4 0.2 0.0 0 20 40 60 80 100 a-Si1-xNx:H alloy 13.56 MHz PECVD (SiH4+NH3) material with tunable optical gap and refractive index varying the N content growth of a-Si1-xNx:H thin films and multilayers with an excellent control of the thickness and composition refractive index at 1500 nm Ammonia fraction in the reactor (NH 3 %) 3.5 3.0 2.5 2.0 1.5 0.0 0.1 0.2 0.3 0.4 x=N/(Si+N) 0.5 0.6 a-Si1-xNx :H based 1D Photonic Crystal Linewidths are smaller than observed for SPPs O=1530nm TE T BSW Kretschmann a-Si1-xNx :H based 1D Photonic Crystal a-Si1-xNx :H ± Kretschman reflectance 633 nm SE W G uided Modes 830 nm a-Si1-xNx :H ± Kretschman reflectance 1300 nm 1550 nm Kretschman Reflectance Map 2.0 TE T R [ arb.un. ] R [ arb.un. ] 1.5 2.0 1.0 1.5 0.5 1.0 0 30 SEW 40 0.5 SEW Kretschmann 50 O=1550nm 60 70 T [ deg ] SPP on Au @ O=1550 nm Bare BK7 prism 0 30 40 50 T [ deg ] 60 70