ORGANIC & HYBRID PHOTONIC CRYSTALS
Davide Comoretto
Dipartimento di Chimica e Chimica Industriale
Università degli Studi di Genova
via Dodecaneso 31
16146 Genova (Italy)
[email protected]
D.
D. Comoretto
Comoretto
ORGANIC
ORGANIC&&HYBRID
HYBRID PHOTONIC
PHOTONICCRYSTALS
CRYSTALS
GISR2014,
GISR2014, Parma,
Parma, 9-11
9-11 June
June 2014
2014
GNSR – the former GISR
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
TALK OUTLINE
• Introduction to Photonic Crystals
Fluorescence (a.u.)
• Fluorescence Enhancement in Engineered Opals
Microspheres
Opal
500
550
600
650
700
Gold crescent@opal
750
Wavelength (nm)
• All-Polymer Distributed Bragg Reflector Sensors
• Polymer & Hybrid Microcavities for Lasing & Switching
PL (arb. units)
• Hybrid Plasmonic-Photonic systems (2D-3D)
500 525 550 575 600 625 650
Wavelength (nm)
• Bloch Surface Waves: Polaritons & Light Localization
Incident lightReflected light
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
PHOTONIC CRYSTALS
1D
2D
3D
The dielectric constant (e)
must be considered
(dielectric lattice)
dj ~ l of visible light
E
22 2
Electron in a
crystal lattice
Photon in
w vacuum
E
2
 kk
EE = 2 m
2m
w
Photon in a periodic
dielectric structure
ww=cckk
k
D. Comoretto
d1
d2
d2
dj >> a0 (Bohr’s radius)
Free electron
d3
d1
d1
k
ORGANIC & HYBRID PHOTONIC CRYSTALS
k
k
GISR2014, Parma, 9-11 June 2014
OPTICAL EFFECTS IN PHOTONIC CRYSTALS
polystyrene opal
film (Ø 260 nm)
STRONG LIGHT DIFFRACTION
EFFECTS
• Bright colors.
• Iridescence
orientation).
Refl./Trans.
0,3
(color
change
• Chromatic effects depend on the
dielectric environment - applied stimuli.
R
T
0,2
𝝀 = 2𝑫
0,1
𝒏𝟐𝒆𝒇𝒇
−
𝑠𝑖𝑛2 𝜽
2
𝐷=𝒂
3
0,0
400 450 500 550 600 650 700 750
Wavelength (nm)
•
•
by
Photons having energy within the PBG cannot
propagate into the PhC being backward
diffracted.
Dielectric lattice geometry and dielectric
contrast allow to engineer the PBG.
E. Pavarini, Phys. Rev. B72, 045102 (05)
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
NATURAL PHOTONIC CRYSTALS
Peacock feathers
D. Comoretto
Sea mouse
ORGANIC & HYBRID PHOTONIC CRYSTALS
Photonic berries
(Elaeocarpus fruits)
GISR2014, Parma, 9-11 June 2014
PHOTONIC FOODS
PhotonicTM Chocolate, © morphotonix
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
PHOTONIC CRYSTALS GROWTH
Inorganic materials
TOP-DOWN
Organic materials
BOTTOM-UP
F. Müller et al., J. Porous Mater. 7, 1/2/3, S. 201 (00)
E.L. Thomas group. Polymer 44, 6725 (03)
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
POLYMER PHOTONIC CRYSTALS @ WORK
Polymer photonic crystal sensors
Polymer opals fabric
http://www.np.phy.cam.ac.uk/research-themes/polymer-opals
Adv. Engin. Mater. 15, 948 (13)
E.L. Thomas group, ACS Nano 6, 8933 (12)
D. Comoretto
http://www.thegenteel.com/articles/design/rainbow-winters
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
PHOTONIC CRYSTAL IN GENOVA
2D microsphere arrays
Ø 222 nm
Opal Photonic Crystals (3D)
L. Berti, J. Phys. Chem. C114, 2403 (10)
D. Antonioli et al., Polym. Int. 4206 (12)
K. Sparnacci et al., J. Nanomat. 2012, 980541 (12)
D. Comoretto et al. Polym. Comp., 34, 1443 (13)
F. Di Stasio et al. APL. Materials 1, 042116 (13)
V. Robbiano et al. Adv. Optical Mater. 1, 389 (13)
A. Belardini et al. Adv. Optical Mater. 2, 208 (14)
Polymer multilayers and microcavities (1D)
Distributed Bragg Reflectors
(DBR)
D. Comoretto
Microcavity
ORGANIC & HYBRID PHOTONIC CRYSTALS
L. Frezza et al., J. Phys. Chem. C115, 19939 (11)
G. Canazza et al. Laser Phys. Lett. 11, 035804 (14)
S. Pirrotta et al., Appl. Phys. Lett. 104, 051111 (14)
C. Toccafondi et al. J. Mater. Chem. 2, 4692 (14)
GISR2014, Parma, 9-11 June 2014
TALK OUTLINE
• Introduction to Photonic Crystals
Fluorescence (a.u.)
• Fluorescence Enhancement in Engineered Opals
Microspheres
Opal
500
550
600
650
700
Gold crescent@opal
750
Wavelength (nm)
• All-Polymer Distributed Bragg Reflector Sensors
• Polymer & Hybrid Microcavities for Lasing & Switching
PL (arb. units)
• Hybrid Plasmonic-Photonic systems (2D-3D)
500 525 550 575 600 625 650
Wavelength (nm)
• Bloch Surface Waves: Polaritons & Light Localization
Incident lightReflected light
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
HYBRID PLASMONIC-PHOTONIC SYSTEMS
Wavelength (nm)
600
700
800
500
0.25
900 1000
260nm
Reflectance (TM)
0.20
0.15
0.10
0.05
0.00
20000
18000
16000 14000 12000
-1
Wavenumber (cm )
10000
Nanocrescents@Opals
Opals doped with AuNP
Bare Opals: Phys. Rev. B72, 045102 (05)
Gold nanoaprticles doped opals
Optical Switching: Adv. Funct. Mater. 17, 2779 (07)
Light Localization: J. Phys. Chem. C, 112, 6293 (08)
V. Robbiano et al. Adv. Optical Mater. 1, 389 (13))
Fine Band Gap Tuning: Appl. Phys. Lett. 93, 091111 (08)
D. Comoretto
A. Belardini et al. Adv. Optical Mater. 2, 208 (14)
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
100
100
80
80
60
60
340 nm
40
40
20
20
0
300
400
500
600
700
800
900
Wavelength (nm)
V. Robbiano et al. Adv. Optical Mater. 1, 389 (13)
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
0
1000
Reflectance (%)
Transmittance (%)
MICROSPHERE MONOLAYERS
NANOCRESCENTS ON MONOLAYER
• Grazing
incidence.
(20°)
AFM topography
(intermitted contact)
AFM
(phase-contrast)
SEM
(secondary electrons)
SEM
(back-scattering)
evaporation
300 nm
• Polycrystalline Au.
• Disconnected crescents.
• Strongly anisotropical system
(long axis: diameter; short axis:
arc; variable cortex thickness).
• Curved crescents.
Ø 260 nm
• The morphological analysis suggests the assignment of plasmonic modes
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
OPTICAL RESPONSE OF NANOCRESCENTS
Transmittance (%)
100
90
80
70
60
50
40
30
20
10
0
400
E-field
s
p
E-field
a=340 nm
HE
600
800
1000
1200
Wavelength (nm)
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
1400
1600
V. Robbiano et al., Adv. Optical Mater. 1, 389 (13)
GISR2014, Parma, 9-11 June 2014
MONOLAYER vs OPAL vs NANOCRESCENTS
Forward diffraction
Transmittance (%)
100
80
426 nm
60
40
Opal stop band
20
monolayer
opal
monolayer
opal
monolayer
opal
340 nm
260 nm
0
400 500 600 700 800 900 10001100400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100
Wavelength (nm)
Wavelength (nm)
Wavelength (nm)
Van Hove-like
modes
Transmittance
100
80
s
p
(d), 260 nm
60
s
p
(e), 340 nm
HE
s
p
(f), 426 nm
40
20
HE
HE
0
400 500 600 700 800 900 10001100400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100
Wavelength (nm)
D. Comoretto
Wavelength (nm)
ORGANIC & HYBRID PHOTONIC CRYSTALS
Wavelength (nm)
GISR2014, Parma, 9-11 June 2014
1600
1600
1400
1400
1200
1200
opal
1000
800
800
HE
600
240
1000
280
320
360
400
600
Opal Stop Band (nm)
LSPR (nm)
SCALING PROPERTIES OF NANOCRESCENTS
440
Sphere Diameter (nm)
• Opal stop band and LSPR along the long axis have almost the same scaling thus
making impossible their spectral overlap.
• Resonances along the nanocrescent short axis and the HE have a reduced
dependence on microsphere diameter:
• Overlap is expected in particular for light polarised along the short
nanocrescent axis (S).
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
OPALS vs NANOCRESCENTS@OPALS
OPALS
Transmittance (a.u.)
80
260 nm
426 nm
60
40
340 nm
20
0
400
500
600
700
800
900 1000 1100
Wavelength (nm)
400
500
600
700
800
900 1000 1100 400
500
600
700
800
900 1000 1100
Wavelength (nm)
Wavelength (nm)
NANOCRESCENTS @ OPALS
Transmittance (%)
50
40
30
20
10
p
s
260 nm
Wavelength (nm)
•
p
s
p
s
426 nm
0
400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100
340 nm
Wavelength (nm)
Wavelength (nm)
depending on microsphere diameter and light polarization (S), a “mixing” between the PhC modes and
the LSPR can be suggested.
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
NANOCRESCENTS vs NANOCRESCENTS@OPAL
Transmittance (%)
100
80
NANOCRESCENTS
s
p
260 nm
s
p
s
p
340 nm
426 nm
60
40
20
HE
HE
HE
0
400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100
Wavelength (nm)
NANOCRESCENTS @ OPALS
50
Transmittance (%)
Wavelength (nm)
Wavelength (nm)
40
30
20
10
p
s
260 nm
340 nm
p
s
426 nm
p
s
0
400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100
Wavelength (nm)
D. Comoretto
Wavelength (nm)
ORGANIC & HYBRID PHOTONIC CRYSTALS
Wavelength (nm)
GISR2014, Parma, 9-11 June 2014
OPALS & NANOCRESCENTS@OPALS
60
260 nm (a)
Angle (deg)
50
40
340 nm (b)
426 nm (c)
OPALS
30
20
10
0
300 400 500 600 700 800 9001000 400 500 600 700 800 90010001100 400 500 600 700 800 90010001100
Wavelength (nm)
Wavelength (nm)
NANOCRESCENTS @ OPALS
60
260 nm (d)
50
Angle (deg)
Wavelength (nm)
340 nm (e)
426 nm (f)
40
30
20
10
0
300 400 500 600 700 800 9001000 400 500 600 700 800 90010001100 400 500 600 700 800 90010001100
Wavelength (nm)
D. Comoretto
Wavelength (nm)
ORGANIC & HYBRID PHOTONIC CRYSTALS
Wavelength (nm)
GISR2014, Parma, 9-11 June 2014
DISPERSION PROPERTIES OF HYBRID SYSTEM
• No spectral
shift
• Unchanged
dispersion
(a)
260 nm
580
560
540
520
500
n =1,39 Bare Opal
eff
• Spectral Shift
• Unchanged
dispersion
n =1,38 Hybrid
eff
0
8
16
24
32
40
1000
Wavelength (nm)
Wavelength (nm)
600
426 nm
950
900
850 neff=1,40 Bare Opal
neff=1,35 Hybrid
800
0
8 16 24 32
Angle (deg)
40
Angle (deg)
2
𝑚𝜆 = 2𝐷 𝑛𝑒𝑓𝑓
− 𝑠𝑖𝑛2 𝜗
2
𝐷=𝑎
3
Wavelngth (nm)
800
340 nm
775
750
• Spectral shift
• Strongly modified
dispersion
725
700 n
675
=1,41 Bare Opal
eff
n
=? Hybrid
eff
650
0
8 16 24
32
40
Angle (deg)
• Photons lose their wavevector dependence by transferring it to localised plasmons.
• An HYBRID PLASMONIC-PHOTONIC EXCITATION is created.
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
SECOND HARMONIC
GENERATION CIRCULAR
80
DICHROISM IN(b)
NANOCRESCENTS
80
60
SECOND HARMONIC
w=800 nm
2w=400 nm
(a)
(b)
ght
s or p pol. light
anded
ight
SECOND HARMONIC
20
SHG (arb. u.)
a
FIRST HARMONIC40
a
p pol. light
or
0
left/right handed -40
circ. pol light
60
Anisotropical response40
strongly dependent on20
0 microsphere
20
40
the-20
diameter
Incidence angle (deg)
0
0
20
40
Incidence anlge (deg)
0
4-40
Sample 2 p-s
Sample 4 p-s
Sample 5 p-p
p(w):s(2w)
-40
D. Comoretto
-20
40
20
Sample 1 p-s
Sample 2 p-s
Sample 3 p-s
2
-45
-20
-30
-15
0
15
Incidence angle (deg)
0
20
ORGANIC & HYBRID PHOTONIC CRYSTALS
Sampleangle
1 shg-cd
s
Incidence
(deg)
0
Incidence anlge (d
Sample 2 p-s
Sample 4 p-s
Sample 5 p-p
(c)
50
0
-60
-20
(d)100
SHG (arb. un.)
SHG (arb. u.)
Sample
2: 340 nm + gold
Sample 1 p-s
Sample 2 p-s
nanocrescents
(c)100
Sample 3 p-s
Sample 4: 340
nm
nanocrescents 80
Sample 5: gold film
s or p pol. light
60
100
SHG (arb. un.)
ONIC
SHG (arb. u.)
Sample 1 p-p
Sample 2 p-p
Sample 3 p-p
30
45
40
2
50
0
60
0
-60
A. Belardini et al. Adv. Optical Mater. 2, 208 (14)
-45
-30
-15
GISR2014, Parma, 9-11 June 2014
0
15
Incidence angle (de
Incidence anlge (deg)
100
100
4
Sample 1 p-s
Sample 2 p-s
Sample 3 p-s
B1
B2
C
80
40
20
Au flux
direction
0
-40
-20
Au flux
direction
0
20
Transmission (%)
A
Au flux
direction
Au flux
direction
(c)
80
0
60
-1
-2
-40
20
0
400
Sample 2 no-gold CALC.
Sample 2  CALC.
Sample 2
 EXPER.
-20
Sample 2 || CALC.
Sample 2 || EXPER.
0
20
Incidence angle (deg)
500
600
260 nm, chirality
q=0°
500
800
s(2w)
(f)
0
60
20
40
-1
-2
-40
0
400
wavelength (nm)
D. Comoretto
Sample
s
600 1 shg-cd 700
Sample 2 shg-cd s
Sample 3(nm)
shg-cd s
wavelength
(d)
800 chirality q=0°
500
340 nm,
700
0
60
1
Sample 1 shg-cd p
Sample 2 shg-cd p 40
Sample 3 shg-cd p
40
0
2
100
Transmission (%)
SHG-CD
Transmission (%)
80
2𝜔
𝐼𝐿2𝜔
15 −30𝐼𝑅 45
Sample 1 
EXPER.
𝑆𝐻𝐺
−𝐶𝐷 = 2𝜔
Sample 1 || CALC.
(𝐼𝐿 (deg)
+ 𝐼𝑅2𝜔 ) 2
Sample 1 || EXPER.Incidence angle
0Sample 1 no-gold CALC.
Sample
1  CALC.
-60 -45
-30 -15
40
0
400
1
100
2
Sample 1: 260 nm + gold nanocrescents
60
Sample
2: 340 nm + gold nanocrescents
Sample
3: 426 nm + gold nanocrescents
40
20
p(2w)
(e)
(b)
A. Belardini et al. Adv. Optical Mater. 2, 208 (14)
50
Incidence angle (deg)
(a)
2
SHG (arb. un.)
100
60
SHG-CD
SHG (arb. u.)
SECOND
HARMONIC
(c)GENERATION CIRCULAR
(d)
80
DICHROISM IN NANOCRESCENTS
Sample 2 p-s
Sample 4 p-s
Sample 5 p-p
Sample 3 no-gold CALC.
Sample 3  CALC.
-20 3  EXPER.0
Sample
Sample 3 || CALC.
Incidence
angle
Sample
3 || EXPER.
20
40
(deg)
600 nm,
700 chirality
800
900
426
only
for q0°
wavelength (nm)
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
TALK OUTLINE
• Introduction to Photonic Crystals
Fluorescence (a.u.)
• Fluorescence Enhancement in Engineered Opals
Microspheres
Opal
500
550
600
650
700
Gold crescent@opal
750
Wavelength (nm)
• All-Polymer Distributed Bragg Reflector Sensors
• Polymer & Hybrid Microcavities for Lasing & Switching
PL (arb. units)
• Hybrid Plasmonic-Photonic systems (2D-3D)
500 525 550 575 600 625 650
Wavelength (nm)
• Bloch Surface Waves: Polaritons & Light Localization
Incident lightReflected light
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
SPIN CAST 1D POLYMER PHOTONIC CRYSTALS
Applying solution
Rotating
Drying
L. Frezza et al., J. Phys. Chem. C115, 19939 (11)
G. Canazza et al. Laser Physics Lett. 11, 035804 (14).
Cellulose Acetate
(CA, n= 1,47)
Fluorescence
Poly(phenylene-oxide)
(PPO, n= 1,57)
Poly(vinyl alcohol) G. Guerra - Salerno
Polystyrene
(PVA, n= 1,5)
(PS, n= 1,59)
Poly(vinyl carbazole)
(PVK, n=1.67)
Photochromism
N
N
S
Poly(9,9-di-n-octylfluorene-altbenzothiadiazole) (F8BT)
CdSe:CdS
dot@rod
D. Comoretto
Branched
Poly(vinylsulfide)
(n> 1,7)
B. Voit - Dresden
ORGANIC & HYBRID PHOTONIC CRYSTALS
C. Bertarelli - POLIMI
G. Galli - PISA
GISR2014, Parma, 9-11 June 2014
SPIN CAST 1D POLYMER PHOTONIC CRYSTALS
•
1D polymer PhC
Multilayers = Distributed
Bragg Reflectors (DBR).
Increased dielectric contrast
provides wider band gap and
more intense reflection peak.
For l/4 condition
𝜆
𝜆
𝑑1 =
= 𝑑2 =
4𝑛1
4𝑛2
4 𝑛1 − 𝑛2
∆𝐸 = 𝐸
𝜋 𝑛1 + 𝑛2
𝑛1
𝑅 =1−4
𝑛2
D. Comoretto
2𝑁
90
80
Reflectance (%)
•
100
70
5 bi-layers
10 bi-layers
15 bi-layers
20 bi-layers
25 bi-layers
PPO:CA
1.57:1.47
60
50
40
30
20
10
0
500
550
600
650
700
750
Wavelength (nm)
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
800
SPIN CAST 1D POLYMER PHOTONIC CRYSTALS
•
Wavelength (nm)
1D polymer PhC
1000800
100
Multilayers = Distributed
Bragg Reflectors (DBR).
80
Increased dielectric contrast
provides wider band gap and
more intense reflection peak.
40
For l/4 condition
𝜆
𝜆
𝑑1 =
= 𝑑2 =
4𝑛1
4𝑛2
4 𝑛1 − 𝑛2
∆𝐸 = 𝐸
𝜋 𝑛1 + 𝑛2
𝑛1
𝑅 =1−4
𝑛2
D. Comoretto
2𝑁
600
400
PS:CA
1.59:1.47
60
Reflectance (%)
•
20
0
100
80
PVK:CA
1.67:1.47
60
40
20
0
10000 15000 20000 25000 30000 35000
-1
Wavenumbers (cm )
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
DBR: X-RAY REFLECTANCE SPECTROSCOPY
PVK: Thickness 62.4±0.1 nm; roughness 0,29±0.01 nm
PS: Thickness 112.1±0.1 nm; roughness 0,26±0.01 nm
Thanks to
Roland Resel
Kiessig fringes
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
TALK OUTLINE
• Introduction to Photonic Crystals
Fluorescence (a.u.)
• Fluorescence Enhancement in Engineered Opals
Microspheres
Opal
500
550
600
650
700
Gold crescent@opal
750
Wavelength (nm)
• All-Polymer Distributed Bragg Reflector Sensors
• Polymer & Hybrid Microcavities for Lasing & Switching
PL (arb. units)
• Hybrid Plasmonic-Photonic systems (2D-3D)
500 525 550 575 600 625 650
Wavelength (nm)
• Bloch Surface Waves: Polaritons & Light Localization
Incident lightReflected light
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
POLYMER MULTILAYERS & MICROCAVITIES
1,0
Transmittance
DBR
0,8
0,6
0,4
0,2
PS:CA
Exp
Fit
N
F8BT
10-150 nm
microcavity
N
S
Transmittance
1,0
0,8
0,6
0,4
0,2
Exp
Fit
350 400 450 500 550 600 650 700 750
Wavelength (nm)
L. Frezza et al., J. Phys. Chem. C115, 19939 (11)
G. Canazza et al. Laser Physics Lett. 11, 035804 (14).
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
FLUORESCENCE OF MICROCAVITIES
N
N
S
Transmittance (%)
100
lexc=405 nm, CW
80
60
PS:CA
Microcavity Quality Factor
(Q)
40
20
𝑬
𝐐=
= 2𝜋𝜈𝜏𝑐
𝜟𝑬
F8BT
Fluorescence (a.u.)
0
E=hn, emission energy
DE, FWHM (16 nm)
tc, photon lifetime in the cavity
350 400 450 500 550 600 650 700 750
Wavelength (nm)
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
F8BT PL and ASE (a.u.)
MICROCAVITY TUNED ON ASE
ASE
Emission
microcavity mode
510 540 570 600 630 660 690
Wavelength (nm)
N
N
S
Transmittance (%)
F8BT
absorption
100
90
80
70
60
50
40
30
20
10
0
350 400 450 500 550 600 650 700 750
Wavelength (nm)
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
MICROCAVITY LASING?
High
pump
intensity
550
555
560
pump intensity
increase
550
555
560
565
570
Wavelength (nm)
575
580
Normalized Intensity
Emission Intensity (a.u.)
150 fs pumping (390 nm)
565
low pump
intensity
570
575
580
3 nm
4 nm
550
555
560
565
570
Wavelength (nm)
575
580
• For very low pumping intensity, the linewidth is very small, indicating an high
optical quality of all-polymer microcavities.
• No apparent evidence of line sharpening is observed for strong pumping.
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
MICROCAVITY EMISSION: PEAK ASIMMETRY
TWO GAUSSIANS
FWHM  4.4 nm
FWHM  1.8 nm
150 fs pumping (390 nm)
Intensity (arb. units)
Intensity (arb. units)
SINGLE GAUSSIAN
FWHM=4.2 nm
550
560
570
580
550
Wavelength (nm)
570
Wavelength (nm)
High pump 20 mJ/cm2
( threshold)
Low pump 1,2 nJ/cm2
(< threshold)
D. Comoretto
560
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
580
LASING FROM ALL POLYMER MICROCAVITIES
4
Laser threshold
3
2
FWHM (nm)
Intensity OUT (arb. units)
5
1
0
200 400 600 800 1000 1200 1400 1600
2
Pumping Fluence (mJ/cm )
0
M. Zavelani-Rossi et al. IIT@POLIMI
• Very low threshold (<20 mJ/cm2).
• Gain switching regime above threshold: avalanche excited state decay
makes faster and faster the emission thus broadening it.
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
CONCLUSIONS
• I reported an overview of the work on organic & hybrid photonic
crystals we are performing in Genoa.
• Opals, microsphere monolayer arrays and polymer multilayers are
simple and cheap playgrounds useful to address different photonic
topics like lasing, fluorescence enhancement, hybrid photonicplasmonic or photonic-excitonic excitations, switching and sensing.
• I hope this talk could foster your curiosity and stimulate the
study of novel phenomena or technological applications by
using functional polymer/hybrid photonic/plasmonic materials.
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
ACKNOWLEDGMENTS
Plasmonic Nanostructures @ Opals
F. Buatier de Mongeot & Co.
Dipartimento di Fisica Università di Genova
Special Thanks to:
Serena Gazzo
Giovanni Manfredi
Robert J. Knarr
Francesco Campanella
Filippo La Rosa
Marina Alloisio
Rosa Silvia Raggio
Giancarlo Canazza
Simone Congiu
Paola Lova
Luca Occhi
Valentina Robbiano
Marco Pisano
Emanuele Bozzoni
Opals & Engineered Colloids
M. Laus, K. Sparnacci & Co.
Università del Piemonte Orientale (AL)
Azo-type Photochromic polymer synthesis
G. Galli et Co.
Università di Pisa
SEM Photonic crystals
L. Boarino & Co.
INRIM - Torino
Advanced Optics & Theory
M. Patrini, M. Liscidini, F. Marabelli, L.C. Andreani
Dipartimento di Fisica “A. Volta”, Università di Pavia
Lasing action in all-polymer microcavities
F. Scotognella, M. Zavelani-Rossi, G. Lanzani
IIT@Polimi
Materiali Polimerici Nanostrutturati con strutture molecolari e cristalline
mirate, per tecnologie avanzate e per l’ambiente (2010XLLNM3)
Conjugated Polymers @ Opals
F. Cacialli, F. Di Stasio, V. Robbiano
UCL (UK)
Hybrid Photonic Crystals
X-Ray Reflectance
C. Soci, P. Lova
R. Resel
NTU - Singapore
TU – Graz (A)
Clathrating Polymers for Photonics Nano Crystals @ Polymer Microcavities
G. Guerra & Co.
F. Di Stasio, R. Krahne
Università di Salerno
IIT@Genova
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
ADVERTISING
EOSAM 2014
Location: Berlin Adlershof, Germany
Duration: 15 - 19 September 2014
TOM 7 – ENERGY HARVESTING AND ORGANIC PHOTONICS
Chair:
Guglielmo Lanzani, Istituto Italiano di Tecnologia, (IT)
Co-chairs: David Lidzey, University of Sheffield (GB)
Davide Comoretto, University of Genova (IT)
INVITED SPEAKERS
Jeremy Baumberg, Cambridge University (GB) - PLENARY
Christoph J. Brabec, Friedrich-Alexander University, Erlangen-Nürnberg (DE)
Francesco Buatier de Mongeot, University of Genova (ITA)
Franco Cacialli, University College London (GB)
Fredrik Krebs, Technical University of Denmark (DK)
Gianluca Farinola, University of Bari (IT)
Graham Turnbull, University of St. Andrews (GB)
Jérôme Cornil, Université de Mons (BE)
Jochen Feldmann, Ludwig-Maximilians University Munchen (DE)
Jordi Martorell, Institut de Ciències Fotòniques (ES)
Olle Inganäs, Linköping University (SE)
Roland Resel, Graz University of Technology (AT)
Stephan Kena Cohen, Imperial College (GB)
D. Comoretto
ORGANIC & HYBRID PHOTONIC CRYSTALS
GISR2014, Parma, 9-11 June 2014
Scarica

organic & hybrid photonic crystals