ORGANIC & HYBRID PHOTONIC CRYSTALS Davide Comoretto Dipartimento di Chimica e Chimica Industriale Università degli Studi di Genova via Dodecaneso 31 16146 Genova (Italy) [email protected] D. D. Comoretto Comoretto ORGANIC ORGANIC&&HYBRID HYBRID PHOTONIC PHOTONICCRYSTALS CRYSTALS GISR2014, GISR2014, Parma, Parma, 9-11 9-11 June June 2014 2014 GNSR – the former GISR D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 TALK OUTLINE • Introduction to Photonic Crystals Fluorescence (a.u.) • Fluorescence Enhancement in Engineered Opals Microspheres Opal 500 550 600 650 700 Gold crescent@opal 750 Wavelength (nm) • All-Polymer Distributed Bragg Reflector Sensors • Polymer & Hybrid Microcavities for Lasing & Switching PL (arb. units) • Hybrid Plasmonic-Photonic systems (2D-3D) 500 525 550 575 600 625 650 Wavelength (nm) • Bloch Surface Waves: Polaritons & Light Localization Incident lightReflected light D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 PHOTONIC CRYSTALS 1D 2D 3D The dielectric constant (e) must be considered (dielectric lattice) dj ~ l of visible light E 22 2 Electron in a crystal lattice Photon in w vacuum E 2 kk EE = 2 m 2m w Photon in a periodic dielectric structure ww=cckk k D. Comoretto d1 d2 d2 dj >> a0 (Bohr’s radius) Free electron d3 d1 d1 k ORGANIC & HYBRID PHOTONIC CRYSTALS k k GISR2014, Parma, 9-11 June 2014 OPTICAL EFFECTS IN PHOTONIC CRYSTALS polystyrene opal film (Ø 260 nm) STRONG LIGHT DIFFRACTION EFFECTS • Bright colors. • Iridescence orientation). Refl./Trans. 0,3 (color change • Chromatic effects depend on the dielectric environment - applied stimuli. R T 0,2 𝝀 = 2𝑫 0,1 𝒏𝟐𝒆𝒇𝒇 − 𝑠𝑖𝑛2 𝜽 2 𝐷=𝒂 3 0,0 400 450 500 550 600 650 700 750 Wavelength (nm) • • by Photons having energy within the PBG cannot propagate into the PhC being backward diffracted. Dielectric lattice geometry and dielectric contrast allow to engineer the PBG. E. Pavarini, Phys. Rev. B72, 045102 (05) D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 NATURAL PHOTONIC CRYSTALS Peacock feathers D. Comoretto Sea mouse ORGANIC & HYBRID PHOTONIC CRYSTALS Photonic berries (Elaeocarpus fruits) GISR2014, Parma, 9-11 June 2014 PHOTONIC FOODS PhotonicTM Chocolate, © morphotonix D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 PHOTONIC CRYSTALS GROWTH Inorganic materials TOP-DOWN Organic materials BOTTOM-UP F. Müller et al., J. Porous Mater. 7, 1/2/3, S. 201 (00) E.L. Thomas group. Polymer 44, 6725 (03) D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 POLYMER PHOTONIC CRYSTALS @ WORK Polymer photonic crystal sensors Polymer opals fabric http://www.np.phy.cam.ac.uk/research-themes/polymer-opals Adv. Engin. Mater. 15, 948 (13) E.L. Thomas group, ACS Nano 6, 8933 (12) D. Comoretto http://www.thegenteel.com/articles/design/rainbow-winters ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 PHOTONIC CRYSTAL IN GENOVA 2D microsphere arrays Ø 222 nm Opal Photonic Crystals (3D) L. Berti, J. Phys. Chem. C114, 2403 (10) D. Antonioli et al., Polym. Int. 4206 (12) K. Sparnacci et al., J. Nanomat. 2012, 980541 (12) D. Comoretto et al. Polym. Comp., 34, 1443 (13) F. Di Stasio et al. APL. Materials 1, 042116 (13) V. Robbiano et al. Adv. Optical Mater. 1, 389 (13) A. Belardini et al. Adv. Optical Mater. 2, 208 (14) Polymer multilayers and microcavities (1D) Distributed Bragg Reflectors (DBR) D. Comoretto Microcavity ORGANIC & HYBRID PHOTONIC CRYSTALS L. Frezza et al., J. Phys. Chem. C115, 19939 (11) G. Canazza et al. Laser Phys. Lett. 11, 035804 (14) S. Pirrotta et al., Appl. Phys. Lett. 104, 051111 (14) C. Toccafondi et al. J. Mater. Chem. 2, 4692 (14) GISR2014, Parma, 9-11 June 2014 TALK OUTLINE • Introduction to Photonic Crystals Fluorescence (a.u.) • Fluorescence Enhancement in Engineered Opals Microspheres Opal 500 550 600 650 700 Gold crescent@opal 750 Wavelength (nm) • All-Polymer Distributed Bragg Reflector Sensors • Polymer & Hybrid Microcavities for Lasing & Switching PL (arb. units) • Hybrid Plasmonic-Photonic systems (2D-3D) 500 525 550 575 600 625 650 Wavelength (nm) • Bloch Surface Waves: Polaritons & Light Localization Incident lightReflected light D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 HYBRID PLASMONIC-PHOTONIC SYSTEMS Wavelength (nm) 600 700 800 500 0.25 900 1000 260nm Reflectance (TM) 0.20 0.15 0.10 0.05 0.00 20000 18000 16000 14000 12000 -1 Wavenumber (cm ) 10000 Nanocrescents@Opals Opals doped with AuNP Bare Opals: Phys. Rev. B72, 045102 (05) Gold nanoaprticles doped opals Optical Switching: Adv. Funct. Mater. 17, 2779 (07) Light Localization: J. Phys. Chem. C, 112, 6293 (08) V. Robbiano et al. Adv. Optical Mater. 1, 389 (13)) Fine Band Gap Tuning: Appl. Phys. Lett. 93, 091111 (08) D. Comoretto A. Belardini et al. Adv. Optical Mater. 2, 208 (14) ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 100 100 80 80 60 60 340 nm 40 40 20 20 0 300 400 500 600 700 800 900 Wavelength (nm) V. Robbiano et al. Adv. Optical Mater. 1, 389 (13) D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 0 1000 Reflectance (%) Transmittance (%) MICROSPHERE MONOLAYERS NANOCRESCENTS ON MONOLAYER • Grazing incidence. (20°) AFM topography (intermitted contact) AFM (phase-contrast) SEM (secondary electrons) SEM (back-scattering) evaporation 300 nm • Polycrystalline Au. • Disconnected crescents. • Strongly anisotropical system (long axis: diameter; short axis: arc; variable cortex thickness). • Curved crescents. Ø 260 nm • The morphological analysis suggests the assignment of plasmonic modes D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 OPTICAL RESPONSE OF NANOCRESCENTS Transmittance (%) 100 90 80 70 60 50 40 30 20 10 0 400 E-field s p E-field a=340 nm HE 600 800 1000 1200 Wavelength (nm) D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS 1400 1600 V. Robbiano et al., Adv. Optical Mater. 1, 389 (13) GISR2014, Parma, 9-11 June 2014 MONOLAYER vs OPAL vs NANOCRESCENTS Forward diffraction Transmittance (%) 100 80 426 nm 60 40 Opal stop band 20 monolayer opal monolayer opal monolayer opal 340 nm 260 nm 0 400 500 600 700 800 900 10001100400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100 Wavelength (nm) Wavelength (nm) Wavelength (nm) Van Hove-like modes Transmittance 100 80 s p (d), 260 nm 60 s p (e), 340 nm HE s p (f), 426 nm 40 20 HE HE 0 400 500 600 700 800 900 10001100400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100 Wavelength (nm) D. Comoretto Wavelength (nm) ORGANIC & HYBRID PHOTONIC CRYSTALS Wavelength (nm) GISR2014, Parma, 9-11 June 2014 1600 1600 1400 1400 1200 1200 opal 1000 800 800 HE 600 240 1000 280 320 360 400 600 Opal Stop Band (nm) LSPR (nm) SCALING PROPERTIES OF NANOCRESCENTS 440 Sphere Diameter (nm) • Opal stop band and LSPR along the long axis have almost the same scaling thus making impossible their spectral overlap. • Resonances along the nanocrescent short axis and the HE have a reduced dependence on microsphere diameter: • Overlap is expected in particular for light polarised along the short nanocrescent axis (S). D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 OPALS vs NANOCRESCENTS@OPALS OPALS Transmittance (a.u.) 80 260 nm 426 nm 60 40 340 nm 20 0 400 500 600 700 800 900 1000 1100 Wavelength (nm) 400 500 600 700 800 900 1000 1100 400 500 600 700 800 900 1000 1100 Wavelength (nm) Wavelength (nm) NANOCRESCENTS @ OPALS Transmittance (%) 50 40 30 20 10 p s 260 nm Wavelength (nm) • p s p s 426 nm 0 400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100 340 nm Wavelength (nm) Wavelength (nm) depending on microsphere diameter and light polarization (S), a “mixing” between the PhC modes and the LSPR can be suggested. D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 NANOCRESCENTS vs NANOCRESCENTS@OPAL Transmittance (%) 100 80 NANOCRESCENTS s p 260 nm s p s p 340 nm 426 nm 60 40 20 HE HE HE 0 400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100 Wavelength (nm) NANOCRESCENTS @ OPALS 50 Transmittance (%) Wavelength (nm) Wavelength (nm) 40 30 20 10 p s 260 nm 340 nm p s 426 nm p s 0 400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100 400 500 600 700 800 900 10001100 Wavelength (nm) D. Comoretto Wavelength (nm) ORGANIC & HYBRID PHOTONIC CRYSTALS Wavelength (nm) GISR2014, Parma, 9-11 June 2014 OPALS & NANOCRESCENTS@OPALS 60 260 nm (a) Angle (deg) 50 40 340 nm (b) 426 nm (c) OPALS 30 20 10 0 300 400 500 600 700 800 9001000 400 500 600 700 800 90010001100 400 500 600 700 800 90010001100 Wavelength (nm) Wavelength (nm) NANOCRESCENTS @ OPALS 60 260 nm (d) 50 Angle (deg) Wavelength (nm) 340 nm (e) 426 nm (f) 40 30 20 10 0 300 400 500 600 700 800 9001000 400 500 600 700 800 90010001100 400 500 600 700 800 90010001100 Wavelength (nm) D. Comoretto Wavelength (nm) ORGANIC & HYBRID PHOTONIC CRYSTALS Wavelength (nm) GISR2014, Parma, 9-11 June 2014 DISPERSION PROPERTIES OF HYBRID SYSTEM • No spectral shift • Unchanged dispersion (a) 260 nm 580 560 540 520 500 n =1,39 Bare Opal eff • Spectral Shift • Unchanged dispersion n =1,38 Hybrid eff 0 8 16 24 32 40 1000 Wavelength (nm) Wavelength (nm) 600 426 nm 950 900 850 neff=1,40 Bare Opal neff=1,35 Hybrid 800 0 8 16 24 32 Angle (deg) 40 Angle (deg) 2 𝑚𝜆 = 2𝐷 𝑛𝑒𝑓𝑓 − 𝑠𝑖𝑛2 𝜗 2 𝐷=𝑎 3 Wavelngth (nm) 800 340 nm 775 750 • Spectral shift • Strongly modified dispersion 725 700 n 675 =1,41 Bare Opal eff n =? Hybrid eff 650 0 8 16 24 32 40 Angle (deg) • Photons lose their wavevector dependence by transferring it to localised plasmons. • An HYBRID PLASMONIC-PHOTONIC EXCITATION is created. D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 SECOND HARMONIC GENERATION CIRCULAR 80 DICHROISM IN(b) NANOCRESCENTS 80 60 SECOND HARMONIC w=800 nm 2w=400 nm (a) (b) ght s or p pol. light anded ight SECOND HARMONIC 20 SHG (arb. u.) a FIRST HARMONIC40 a p pol. light or 0 left/right handed -40 circ. pol light 60 Anisotropical response40 strongly dependent on20 0 microsphere 20 40 the-20 diameter Incidence angle (deg) 0 0 20 40 Incidence anlge (deg) 0 4-40 Sample 2 p-s Sample 4 p-s Sample 5 p-p p(w):s(2w) -40 D. Comoretto -20 40 20 Sample 1 p-s Sample 2 p-s Sample 3 p-s 2 -45 -20 -30 -15 0 15 Incidence angle (deg) 0 20 ORGANIC & HYBRID PHOTONIC CRYSTALS Sampleangle 1 shg-cd s Incidence (deg) 0 Incidence anlge (d Sample 2 p-s Sample 4 p-s Sample 5 p-p (c) 50 0 -60 -20 (d)100 SHG (arb. un.) SHG (arb. u.) Sample 2: 340 nm + gold Sample 1 p-s Sample 2 p-s nanocrescents (c)100 Sample 3 p-s Sample 4: 340 nm nanocrescents 80 Sample 5: gold film s or p pol. light 60 100 SHG (arb. un.) ONIC SHG (arb. u.) Sample 1 p-p Sample 2 p-p Sample 3 p-p 30 45 40 2 50 0 60 0 -60 A. Belardini et al. Adv. Optical Mater. 2, 208 (14) -45 -30 -15 GISR2014, Parma, 9-11 June 2014 0 15 Incidence angle (de Incidence anlge (deg) 100 100 4 Sample 1 p-s Sample 2 p-s Sample 3 p-s B1 B2 C 80 40 20 Au flux direction 0 -40 -20 Au flux direction 0 20 Transmission (%) A Au flux direction Au flux direction (c) 80 0 60 -1 -2 -40 20 0 400 Sample 2 no-gold CALC. Sample 2 CALC. Sample 2 EXPER. -20 Sample 2 || CALC. Sample 2 || EXPER. 0 20 Incidence angle (deg) 500 600 260 nm, chirality q=0° 500 800 s(2w) (f) 0 60 20 40 -1 -2 -40 0 400 wavelength (nm) D. Comoretto Sample s 600 1 shg-cd 700 Sample 2 shg-cd s Sample 3(nm) shg-cd s wavelength (d) 800 chirality q=0° 500 340 nm, 700 0 60 1 Sample 1 shg-cd p Sample 2 shg-cd p 40 Sample 3 shg-cd p 40 0 2 100 Transmission (%) SHG-CD Transmission (%) 80 2𝜔 𝐼𝐿2𝜔 15 −30𝐼𝑅 45 Sample 1 EXPER. 𝑆𝐻𝐺 −𝐶𝐷 = 2𝜔 Sample 1 || CALC. (𝐼𝐿 (deg) + 𝐼𝑅2𝜔 ) 2 Sample 1 || EXPER.Incidence angle 0Sample 1 no-gold CALC. Sample 1 CALC. -60 -45 -30 -15 40 0 400 1 100 2 Sample 1: 260 nm + gold nanocrescents 60 Sample 2: 340 nm + gold nanocrescents Sample 3: 426 nm + gold nanocrescents 40 20 p(2w) (e) (b) A. Belardini et al. Adv. Optical Mater. 2, 208 (14) 50 Incidence angle (deg) (a) 2 SHG (arb. un.) 100 60 SHG-CD SHG (arb. u.) SECOND HARMONIC (c)GENERATION CIRCULAR (d) 80 DICHROISM IN NANOCRESCENTS Sample 2 p-s Sample 4 p-s Sample 5 p-p Sample 3 no-gold CALC. Sample 3 CALC. -20 3 EXPER.0 Sample Sample 3 || CALC. Incidence angle Sample 3 || EXPER. 20 40 (deg) 600 nm, 700 chirality 800 900 426 only for q0° wavelength (nm) ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 TALK OUTLINE • Introduction to Photonic Crystals Fluorescence (a.u.) • Fluorescence Enhancement in Engineered Opals Microspheres Opal 500 550 600 650 700 Gold crescent@opal 750 Wavelength (nm) • All-Polymer Distributed Bragg Reflector Sensors • Polymer & Hybrid Microcavities for Lasing & Switching PL (arb. units) • Hybrid Plasmonic-Photonic systems (2D-3D) 500 525 550 575 600 625 650 Wavelength (nm) • Bloch Surface Waves: Polaritons & Light Localization Incident lightReflected light D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 SPIN CAST 1D POLYMER PHOTONIC CRYSTALS Applying solution Rotating Drying L. Frezza et al., J. Phys. Chem. C115, 19939 (11) G. Canazza et al. Laser Physics Lett. 11, 035804 (14). Cellulose Acetate (CA, n= 1,47) Fluorescence Poly(phenylene-oxide) (PPO, n= 1,57) Poly(vinyl alcohol) G. Guerra - Salerno Polystyrene (PVA, n= 1,5) (PS, n= 1,59) Poly(vinyl carbazole) (PVK, n=1.67) Photochromism N N S Poly(9,9-di-n-octylfluorene-altbenzothiadiazole) (F8BT) CdSe:CdS dot@rod D. Comoretto Branched Poly(vinylsulfide) (n> 1,7) B. Voit - Dresden ORGANIC & HYBRID PHOTONIC CRYSTALS C. Bertarelli - POLIMI G. Galli - PISA GISR2014, Parma, 9-11 June 2014 SPIN CAST 1D POLYMER PHOTONIC CRYSTALS • 1D polymer PhC Multilayers = Distributed Bragg Reflectors (DBR). Increased dielectric contrast provides wider band gap and more intense reflection peak. For l/4 condition 𝜆 𝜆 𝑑1 = = 𝑑2 = 4𝑛1 4𝑛2 4 𝑛1 − 𝑛2 ∆𝐸 = 𝐸 𝜋 𝑛1 + 𝑛2 𝑛1 𝑅 =1−4 𝑛2 D. Comoretto 2𝑁 90 80 Reflectance (%) • 100 70 5 bi-layers 10 bi-layers 15 bi-layers 20 bi-layers 25 bi-layers PPO:CA 1.57:1.47 60 50 40 30 20 10 0 500 550 600 650 700 750 Wavelength (nm) ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 800 SPIN CAST 1D POLYMER PHOTONIC CRYSTALS • Wavelength (nm) 1D polymer PhC 1000800 100 Multilayers = Distributed Bragg Reflectors (DBR). 80 Increased dielectric contrast provides wider band gap and more intense reflection peak. 40 For l/4 condition 𝜆 𝜆 𝑑1 = = 𝑑2 = 4𝑛1 4𝑛2 4 𝑛1 − 𝑛2 ∆𝐸 = 𝐸 𝜋 𝑛1 + 𝑛2 𝑛1 𝑅 =1−4 𝑛2 D. Comoretto 2𝑁 600 400 PS:CA 1.59:1.47 60 Reflectance (%) • 20 0 100 80 PVK:CA 1.67:1.47 60 40 20 0 10000 15000 20000 25000 30000 35000 -1 Wavenumbers (cm ) ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 DBR: X-RAY REFLECTANCE SPECTROSCOPY PVK: Thickness 62.4±0.1 nm; roughness 0,29±0.01 nm PS: Thickness 112.1±0.1 nm; roughness 0,26±0.01 nm Thanks to Roland Resel Kiessig fringes D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 TALK OUTLINE • Introduction to Photonic Crystals Fluorescence (a.u.) • Fluorescence Enhancement in Engineered Opals Microspheres Opal 500 550 600 650 700 Gold crescent@opal 750 Wavelength (nm) • All-Polymer Distributed Bragg Reflector Sensors • Polymer & Hybrid Microcavities for Lasing & Switching PL (arb. units) • Hybrid Plasmonic-Photonic systems (2D-3D) 500 525 550 575 600 625 650 Wavelength (nm) • Bloch Surface Waves: Polaritons & Light Localization Incident lightReflected light D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 POLYMER MULTILAYERS & MICROCAVITIES 1,0 Transmittance DBR 0,8 0,6 0,4 0,2 PS:CA Exp Fit N F8BT 10-150 nm microcavity N S Transmittance 1,0 0,8 0,6 0,4 0,2 Exp Fit 350 400 450 500 550 600 650 700 750 Wavelength (nm) L. Frezza et al., J. Phys. Chem. C115, 19939 (11) G. Canazza et al. Laser Physics Lett. 11, 035804 (14). D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 FLUORESCENCE OF MICROCAVITIES N N S Transmittance (%) 100 lexc=405 nm, CW 80 60 PS:CA Microcavity Quality Factor (Q) 40 20 𝑬 𝐐= = 2𝜋𝜈𝜏𝑐 𝜟𝑬 F8BT Fluorescence (a.u.) 0 E=hn, emission energy DE, FWHM (16 nm) tc, photon lifetime in the cavity 350 400 450 500 550 600 650 700 750 Wavelength (nm) D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 F8BT PL and ASE (a.u.) MICROCAVITY TUNED ON ASE ASE Emission microcavity mode 510 540 570 600 630 660 690 Wavelength (nm) N N S Transmittance (%) F8BT absorption 100 90 80 70 60 50 40 30 20 10 0 350 400 450 500 550 600 650 700 750 Wavelength (nm) D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 MICROCAVITY LASING? High pump intensity 550 555 560 pump intensity increase 550 555 560 565 570 Wavelength (nm) 575 580 Normalized Intensity Emission Intensity (a.u.) 150 fs pumping (390 nm) 565 low pump intensity 570 575 580 3 nm 4 nm 550 555 560 565 570 Wavelength (nm) 575 580 • For very low pumping intensity, the linewidth is very small, indicating an high optical quality of all-polymer microcavities. • No apparent evidence of line sharpening is observed for strong pumping. D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 MICROCAVITY EMISSION: PEAK ASIMMETRY TWO GAUSSIANS FWHM 4.4 nm FWHM 1.8 nm 150 fs pumping (390 nm) Intensity (arb. units) Intensity (arb. units) SINGLE GAUSSIAN FWHM=4.2 nm 550 560 570 580 550 Wavelength (nm) 570 Wavelength (nm) High pump 20 mJ/cm2 ( threshold) Low pump 1,2 nJ/cm2 (< threshold) D. Comoretto 560 ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 580 LASING FROM ALL POLYMER MICROCAVITIES 4 Laser threshold 3 2 FWHM (nm) Intensity OUT (arb. units) 5 1 0 200 400 600 800 1000 1200 1400 1600 2 Pumping Fluence (mJ/cm ) 0 M. Zavelani-Rossi et al. IIT@POLIMI • Very low threshold (<20 mJ/cm2). • Gain switching regime above threshold: avalanche excited state decay makes faster and faster the emission thus broadening it. D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 CONCLUSIONS • I reported an overview of the work on organic & hybrid photonic crystals we are performing in Genoa. • Opals, microsphere monolayer arrays and polymer multilayers are simple and cheap playgrounds useful to address different photonic topics like lasing, fluorescence enhancement, hybrid photonicplasmonic or photonic-excitonic excitations, switching and sensing. • I hope this talk could foster your curiosity and stimulate the study of novel phenomena or technological applications by using functional polymer/hybrid photonic/plasmonic materials. D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 ACKNOWLEDGMENTS Plasmonic Nanostructures @ Opals F. Buatier de Mongeot & Co. Dipartimento di Fisica Università di Genova Special Thanks to: Serena Gazzo Giovanni Manfredi Robert J. Knarr Francesco Campanella Filippo La Rosa Marina Alloisio Rosa Silvia Raggio Giancarlo Canazza Simone Congiu Paola Lova Luca Occhi Valentina Robbiano Marco Pisano Emanuele Bozzoni Opals & Engineered Colloids M. Laus, K. Sparnacci & Co. Università del Piemonte Orientale (AL) Azo-type Photochromic polymer synthesis G. Galli et Co. Università di Pisa SEM Photonic crystals L. Boarino & Co. INRIM - Torino Advanced Optics & Theory M. Patrini, M. Liscidini, F. Marabelli, L.C. Andreani Dipartimento di Fisica “A. Volta”, Università di Pavia Lasing action in all-polymer microcavities F. Scotognella, M. Zavelani-Rossi, G. Lanzani IIT@Polimi Materiali Polimerici Nanostrutturati con strutture molecolari e cristalline mirate, per tecnologie avanzate e per l’ambiente (2010XLLNM3) Conjugated Polymers @ Opals F. Cacialli, F. Di Stasio, V. Robbiano UCL (UK) Hybrid Photonic Crystals X-Ray Reflectance C. Soci, P. Lova R. Resel NTU - Singapore TU – Graz (A) Clathrating Polymers for Photonics Nano Crystals @ Polymer Microcavities G. Guerra & Co. F. Di Stasio, R. Krahne Università di Salerno IIT@Genova D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014 ADVERTISING EOSAM 2014 Location: Berlin Adlershof, Germany Duration: 15 - 19 September 2014 TOM 7 – ENERGY HARVESTING AND ORGANIC PHOTONICS Chair: Guglielmo Lanzani, Istituto Italiano di Tecnologia, (IT) Co-chairs: David Lidzey, University of Sheffield (GB) Davide Comoretto, University of Genova (IT) INVITED SPEAKERS Jeremy Baumberg, Cambridge University (GB) - PLENARY Christoph J. Brabec, Friedrich-Alexander University, Erlangen-Nürnberg (DE) Francesco Buatier de Mongeot, University of Genova (ITA) Franco Cacialli, University College London (GB) Fredrik Krebs, Technical University of Denmark (DK) Gianluca Farinola, University of Bari (IT) Graham Turnbull, University of St. Andrews (GB) Jérôme Cornil, Université de Mons (BE) Jochen Feldmann, Ludwig-Maximilians University Munchen (DE) Jordi Martorell, Institut de Ciències Fotòniques (ES) Olle Inganäs, Linköping University (SE) Roland Resel, Graz University of Technology (AT) Stephan Kena Cohen, Imperial College (GB) D. Comoretto ORGANIC & HYBRID PHOTONIC CRYSTALS GISR2014, Parma, 9-11 June 2014