Dirac and Majorana Neutrino Masses Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino Neutrino Unbound: http://www.nu.to.infn.it La Massa dei Neutrini, Padova, 4-6 May 2010 C. Giunti and C.W. Kim Fundamentals of Neutrino Physics and Astrophysics Oxford University Press 15 March 2007 – 728 pages C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 1 Fermion Mass Spectrum 1012 t 1011 1010 b c 109 10 107 m [eV] s µ 8 106 τ ντ d u e νµ 105 104 103 102 10 νe 1 10−1 C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 2 Dirac Lepton Masses LL L `L ! `R R Lepton-Higgs Yukawa Lagrangian y ` LL Φ `R LD = e R + H.c. y LL Φ Symmetry Breaking 1 Φ(x) = p 2 L D C. Giunti 0 v = ! e = i 2 Φ = p1 Φ 2 ` py L 2 `L py L 2 `L 0! v v! 0 Dirac and Majorana Neutrino Masses v 0 `R R + H.c. 5 May 2010 3 ! LD = v y ` p `L `R 2 m` = y ` pv C. Giunti 2 v y p L R + H.c. 2 m = y Dirac and Majorana Neutrino Masses pv 2 5 May 2010 4 Three-Generations Dirac Neutrino Masses 0 0 eL L0eL `0eL eL0 0 L0L 1 A 1 0 L A `0L L0 `0R R0 0 R `0eR eR0 0 eR 0 0 L L0 L `0 L L0 `0 R R0 0 R Lepton-Higgs Yukawa Lagrangian LD = h X ; =e ;; Symmetry Breaking 0 1 0 1 Φ(x) = p A 2 v C. Giunti i 0` L0 Φ `0 + Y 0 L0 Φ e 0 Y L R + H.c. R L 0 1 e = i 2 Φ = p1 v A Φ 2 0 Dirac and Majorana Neutrino Masses 5 May 2010 5 1 A L D X 0` `0 `0 + pv Y 0 0 0 + H.c. pv Y L R L R 2 2 ; =e ;; = L D = 0 01 e B LC ℓ0L 0L A v ℓ0L M 0` ℓ0R + p νL0 M 0 νR0 + H.c. 2 0 01 e B R0 C ℓ0R R A L0 R0 M 0` = pv 2 Y 0` 1 0 0` Mee Me0` Me0` B 0` M 0` C M 0` M0`e M A M0`e 0` M 0` M C. Giunti 0 0 1 B eL C νL0 0 L A 0 0 1 B eR C νR0 0 R A 0 L M 0 = 0 R pv 2 Y 0 1 0 0 Mee Me0 Me0 B 0 M 0 C M 0 M0e M A Dirac and Majorana Neutrino Masses M0e 5 May 2010 0 M 6 0 M LD = ℓ0L M 0` ℓ0R νL0 M 0 νR0 + H.c. Diagonalization of M 0` and M 0 with unitary VL` , VR` , VL , VR ℓ0L = VL` ℓL ℓ0R = VR` ℓR νL0 = VL nL νR0 = VR nR Kinetic terms are invariant under unitary transformations of the fields LD = `y ℓL VL M 0` VR` ℓR y νL VL M 0 VR νR + H.c. `y VL M 0` VR` = M ` ` = m` Æ M (; = e ; ; ) y VL M 0 VR = M = m Æ Mkj k kj (k ; j = 1; 2; 3) Real and Positive m` , mk C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 7 Massive Chiral Lepton Fields 0 1 eL C B C B `y ℓ0 C ℓL = V L L B B L C A 0 1 eR C B C B `y ℓ0 C ℓR = V R R B BR C A 0 L1 1L C B B C y 0 nL = VL νL B B2L C C A 0 R 1 1R C B B C y 0 nR = VR νR B B2R C C A 3L LD = = ℓL M ` ℓR X =e ;; C. Giunti 3R nL M nR + H.c. m` `L `R 3 X mk kL kR + H.c. k=1 Dirac and Majorana Neutrino Masses 5 May 2010 8 Mixing Charged-Current Weak Interaction Lagrangian (CC) LI = pg 2 2 Weak Charged Current: jW W + H.c. jW = jW ;L + jW ;Q Leptonic Weak Charged Current X 0 0 jW ;L = 2 L `L = 2 νL0 ℓ0L =e ;; ℓ0L = VL` ℓL νL0 = VL nL y y jW ;L = 2 nL VL VL` ℓL = 2 nL VL VL` ℓL = 2 nL U y ℓL Mixing Matrix y U y = VL VL` C. Giunti `y U = VL VL Dirac and Majorana Neutrino Masses 5 May 2010 9 ◮ Definition: Left-Handed Flavor Neutrino Fields 0 1 eL B C `y νL = U nL = VL νL0 = L A L ◮ They allow us to write the Leptonic Weak Charged Current as in the SM: X jW ;L = 2 νL ℓL = 2 L `L =e ;; ◮ Each left-handed flavor neutrino field is associated with the corresponding charged lepton field which describes a massive charged lepton: jW ;L = 2 (eL eL + L L + L L ) C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 10 Flavor Lepton Numbers Flavor Neutrino Fields are useful for defining Flavor Lepton Numbers as in the SM Le L L +1 0 0 ) 0 +1 0 ) 0 0 +1 (e ; e ) ( ; ( ; (ec ; e + ) c ; + (c ; + ) Le L L 1 0 0 0 0 1 0 0 1 L = Le + L + L Standard Model: C. Giunti Lepton numbers are conserved Dirac and Majorana Neutrino Masses 5 May 2010 11 LD = eL L 10 1 0 D D D B mee me me C B eR C D D L mDe m m A R A + H.c. mDe D m D m R Le , L , L are not conserved L is conserved: C. Giunti L(R ) = L( L ) Dirac and Majorana Neutrino Masses ) j∆Lj = 0 5 May 2010 12 Mixing Matrix ◮ 0 1 Ue1 Ue2 Ue3 B C `y U = VL VL = U1 U2 U3 A U 1 U 2 U 3 ◮ Unitary N N matrix depends on N 2 independent real parameters N=3 =) N (N 1) =3 2 N (N + 1) =6 2 Mixing Angles Phases ◮ Not all phases are physical observables ◮ Only physical effect of mixing matrix occurs through its presence in the Leptonic Weak Charged Current C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 13 ◮ Weak Charged Current: jW ;L = 2 3 X X k=1 =e ;; kL U k `L ◮ Apart from the Weak Charged Current, the Lagrangian is invariant under the global phase transformations (6 arbitrary phases) k ! e i 'k k (k = 1; 2; 3) ; ` ! e i ' ` ( = e ; ; ) ◮ Performing this transformation, the Charged Current becomes 3 X X jW ;L = 2 kL e i 'k U k e i ' `L k=1 =e ;; 3 'e ) X X e i ('k '1 ) U e i (' 'e ) ` kL | L {z } {z } k | {z } k=1 =e ;; 1 2 2 There are 5 arbitrary phases of the fields that can be chosen to eliminate 5 of the 6 phases of the mixing matrix 5 and not 6 phases of the mixing matrix can be eliminated because a common rephasing of all the fields leaves the Charged Current invariant () conservation of Total Lepton Number. jW ;L = 2 e| ◮ ◮ i ('1 C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 14 ◮ The mixing matrix contains 1 Physical Phase. ◮ It is convenient to express the 3 3 unitary mixing matrix only in terms of the four physical parameters: 3 Mixing Angles and 1 Phase C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 15 Majorana Mass Dirac Mass Lagrangian LD = R 1 D L 2 LM = m 2 C. Giunti ! m (R L + L R ) ! LC = C L T m 2 LT C y L + L C L T Majorana Mass Lagrangian LT C y L + L C L T = Dirac and Majorana Neutrino Masses m C 2 L 5 May 2010 L + L LC 16 = L + LC ◮ Majorana Field: ◮ Majorana Condition: ◮ 1 Majorana Lagrangian: L M = m 2 ◮ ◮ C = The factor 1=2 distinguishes the Majorana Lagrangian from the Dirac Lagrangian Common terminology: Majorana neutrino with negative helicity neutrino Majorana neutrino with positive helicity antineutrino C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 17 Lepton Number Z Z L ! = C Z L= +1 Z =) L = +1 LM = LC m C 2 L Z Z Z L= Z1 =) L = L + L LC 1 Total Lepton Number is not conserved: ∆L = 2 Best process to find violation of Total Lepton Number: Neutrinoless Double- Decay N (A; Z ) ! N (A; Z + 2) + 2e + H 2¯ H e + N (A; Z ) ! N (A; Z 2) + 2e + H 2 H e C. Giunti Dirac and Majorana Neutrino Masses (0 ) (0+ ) 5 May 2010 18 No Majorana Neutrino Mass in the SM h ◮ ◮ Eigenvalues of the weak isospin I , of its third component I3 , of the hypercharge Y and of the charge Q of the lepton and Higgs multiplets: lepton doublet lepton singlet Higgs doublet ◮ i Majorana Mass Term / LT C y L L C L T involves only the neutrino left-handed chiral field L , which is present in the SM (one for each lepton generation) 0 1 L LL = A `L 1=2 `R 0 0 1 + (x)A Φ(x) = 1=2 0 (x) LT C y L has I3 = 1 and Y C. Giunti I = I3 Y Q = I3 + 1=2 1 0 1=2 1=2 0 1 1=2 Y 2 2 1 1 +1 0 2 =) needed Higgs triplet with Y = 2 Dirac and Majorana Neutrino Masses 5 May 2010 19 Mixing of Three Majorana Neutrinos ◮ ◮ 1 L M = νL0T 2 0 0 1 B eL C νL0 0 L A 0 L = C y M L νL0 + H.c. 1 X L 0T C y M 0 L + H.c. 2 ; =e ;; L In general, the matrix M L is a complex symmetric matrix X 0T y L 0 L C M L = X 0T L L M (C y )T 0 L ; X 0T y L 0 X L = L C M L = 0TL C y M 0 L ; ; L L M = M C. Giunti ; () ML = ML Dirac and Majorana Neutrino Masses T 5 May 2010 20 ◮ ◮ ◮ ◮ 1 L M = νL0T 2 0 ν =V n L L L C y M L νL0 + H.c. =) (VL )T M L VL = M ; Mkj = mk Ækj C y M L VL νL0 + H.c. (k ; j = 1; 2; 3) 0 1 1L B C y 0 Left-handed chiral fields with definite mass: nL = VL νL = 2L A LM = ◮ 1 L M = νL0T (VL )T 2 3 X 1 mk 2 k=1 T y kL C kL kL C kLT Majorana fields of massive neutrinos: LM = C. Giunti k 3L C = kL + kL kC 3 1X mk k k 2 k=1 Dirac and Majorana Neutrino Masses 5 May 2010 21 = k Mixing Matrix ◮ Leptonic Weak Charged Current: jW ;L = 2 nL U y ℓL ◮ with `y U = VL VL Definition of the left-handed flavor neutrino fields: 0 1 eL B C `y νL = U nL = VL νL0 = L A L ◮ Leptonic Weak Charged Current has the SM form X jW ;L = 2 νL ℓL = 2 L `L =e ;; ◮ Important difference with respect to Dirac case: Two additional CP-violating phases: Majorana phases C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 22 ◮ 3 1X T y mk kL Majorana Mass Term L = C kL + H.c. is not invariant 2 k=1 under the global U(1) gauge transformations (k = 1; 2; 3) ! e i 'k M kL kL ◮ Left-handed massive neutrino fields cannot be rephased in order to eliminate two Majorana phases factorized0on the right of1mixing matrix: 1 0 0 B C U = UD DM D M = 0 e i 2 0 A 0 0 e i 3 ◮ U D is analogous to a Dirac mixing matrix, with one Dirac phase ◮ Standard parameterization: 0 U= s12 c23 s12 s23 c12 c13 c12 s23 s13 e i Æ13 c12 c23 s13 e i Æ13 C. Giunti c12 c23 c12 s23 s12 c13 s12 s23 s13 e i Æ13 s12 c23 s13 e i Æ13 Dirac and Majorana Neutrino Masses 10 1 s13 e i Æ13 s23 c13 A 0 0 c23 c13 5 May 2010 23 0 e i 2 0 1 0 0 A e i 3 One Generation Dirac-Majorana Mass Term If R exists, the most general mass term is the Dirac-Majorana Mass Term L D+M = L D + L L + L R LD = LL = LR = mD R L + H.c. 1 mL LT 2 1 mR RT 2 C. Giunti C y L + H.c. C y R + H.c. Dirac Mass Term Majorana Mass Term New Majorana Mass Term! Dirac and Majorana Neutrino Masses 5 May 2010 24 ◮ Column matrix of left-handed chiral fields: NL = L D+M = ◮ ◮ 1 T N 2 L C y M NL + H.c. Diagonalization: nL = U y NL = 1L = mL mD mD mR ! 2L! L D+M = m1 0 0 m2 1 X T y mk kL C kL + H.c. = 2 k=1;2 k ◮ ! L C! R T ! The Dirac-Majorana Mass Term has the structure of a Majorana Mass Term for two chiral neutrino fields coupled by the Dirac mass UT M U = ◮ M= L RC C = kL + kL Massive neutrinos are Majorana! C. Giunti Real mk 0 1 X mk k k 2 k=1;2 k = kC Dirac and Majorana Neutrino Masses 5 May 2010 25 Real Mass Matrix ◮ ◮ ◮ CP is conserved if the mass matrix is real: M = M M= mL mD mD mR ! we consider real and positive mR and mD and real mL A real symmetric mass matrix ! with U = O ! can be diagonalized sin # = 01 0 O = cossin## cos 2k = 1 # 2 MO ! 2mD m10 0 = tan 2# = 0 0 m2 mR mL q 1 2 m20 ;1 = mL + mR (mL mR )2 + 4 mD 2 ◮ O ◮ m10 is negative if mL mR T U MU = T T O C. Giunti T < mD2 M O = 21 m10 0 0 2 2 m20 Dirac and Majorana Neutrino Masses ! =) 5 May 2010 mk = 2k mk0 26 ◮ m20 is always positive: q 1 0 m2 = m2 = mL + mR + (mL 2 ◮ If mL mR 1 = 1 and 2 = 1 If mL mR mR ) + 2 4 mD mD2 , then m10 0 and 21 = 1 1 m1 = mL + mR 2 ◮ 2 q (mL =) 1 = i 1 2 q (mL and C. Giunti 2 = 1 mR ) + U= cos # sin # sin # cos # 1 2 mR )2 + 4 mD =) 2 4 mD ! < mD2 , then m10 < 0 and 21 = m1 = 2 (mL + mR ) ! U= Dirac and Majorana Neutrino Masses i cos # sin # i sin # cos # 5 May 2010 27 Special cases: =) ◮ mL = mR ◮ mL = mR = 0 =) Dirac Limit ◮ ◮ Maximal Mixing jmL j; mR mD =) Pseudo-Dirac Neutrinos mL = 0 mD mR =) See-Saw Mechanism C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 28 Maximal Mixing mL = mR # = =4 ( 21 = +1 ; 21 = 1 ; m20 ;1 = mL mD m1 = mL mD if m1 = mD mL if m2 = mL + mD mL mL mL mD < mD < mD 8 i > > < 1L = p L RC 2 1 > > : = p + C 2L L R 2 8 h i i > C > = p (L + R ) LC + RC < 1 = 1L + 1L 2 i 1 h > C > : 2 = 2L + 2L = p (L + R ) + LC + RC 2 C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 29 Dirac Limit ◮ ◮ mL = mR = 0 21 = 1 ; 22 = +1 ; The two Majorana fields 1 and 2 m20 ;1 = mD =) field: ◮ ( m1 = mD m2 = mD can be combined to give one Dirac =p A Dirac field 1 (i 1 + 2 ) = L + R 2 can always be split in two Majorana fields: i 1 h C + + C 2 ! C i 1 =p i p +p 2 2 2 = ◮ C + p 2 ! = p1 (i 1 + 2 ) 2 A Dirac field is equivalent to two Majorana fields with the same mass C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 30 Pseudo-Dirac Neutrinos jmL j ; mR mD ◮ m20 ;1 ◮ m10 ◮ The two massive Majorana neutrinos are almost degenerate in mass ◮ The best way to reveal pseudo-Dirac neutrinos are active-sterile neutrino oscillations due to the small squared-mass difference ' mL +2 mR mD <0 =) 21 = 1 =) m2;1 ∆m2 ◮ ' mD mL +2 mR ' mD (mL + mR ) The oscillations occur with practically maximal mixing: tan 2# = C. Giunti 2mD mR mL 1 =) Dirac and Majorana Neutrino Masses # ' =4 5 May 2010 31 See-Saw Mechanism [Minkowski, PLB 67 (1977) 42; Yanagida (1979); Gell-Mann, Ramond, Slansky (1979); Mohapatra, Senjanovic, PRL 44 (1980) 912] mR is forbidden by SM symmetries =) mL = 0 mD . v 100 GeV is generated by SM Higgs Mechanism mL = 0 mD ◮ LL ◮ (protected by SM symmetries) ◮ ◮ mR is not protected by SM symmetries =) mR m10 2 D ' m mR m20 ' mR 9 = ; =) 8 < 2 = 1 ; 1 : 2 MGUT v 2 D 'm mR 2 = +1 ; m2 ' mR m1 ◮ Natural explanation of smallness of neutrino masses ◮ Mixing angle is very small: tan 2# = 2 ◮ 1 is composed mainly of L : 1L ' ◮ mD mR ν1 ν2 1 i L 2 is composed mainly of R : 2L ' RC C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 32 Three-Generation Mixing L D+M = L D + L L + L R L D NS X X = LL = s=1 =e ;; 1 X L 0 L + H.c. 0T C y M 2 ; =e ;; L S 1 X 0T 2 s ;s 0 =1 sR N LR = N0L L D+M ! νL0 ν 0C 1 = N0LT 2 R 0 M D 0 + H.c. sR s L C y MssR 0 s0 0 R + H.c. 0 0 1 B eL C νL0 0 L A 0 L C y M D+M N0L + H.c. C. Giunti 0 0C 1 1R C B 0 C νR ... A N0CS R M Dirac and Majorana Neutrino Masses D+M T ML MD = MD MR 5 May 2010 33 ! ◮ Diagonalization of the Dirac-Majorana Mass Term =) massive Majorana neutrinos ◮ See-Saw Mechanism =) right-handed neutrinos have large masses and are decoupled from the low-energy phenomenology ◮ At low energy we have an effective mixing of three Majorana neutrinos C. Giunti Dirac and Majorana Neutrino Masses 5 May 2010 34