Air Quality Assessment via FPCA G. Agrò, F. Di Salvo*, A. Plaia, M. Ruggieri *[email protected] Dipartimento di Scienze Statistiche e Matematiche “Silvio Vianelli” Università di Palermo Bologna, July 5-9, 2009 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 1 / 57 Outline 1 Introduction 2 The Air Pollution data Aggregation and Standardization Steps Exploring Data 3 The Functional Data Analysis Approach Observed Functional Data Multivariate Functional Principal Component Analysis 4 Further Developments Use of the optimal empirical orthonormal basis Methodological Perspective G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 2 / 57 Introduction Introduction The present study focus on the assesment of Air Pollution in Palermo The approach used is the Functional Principal Component Analysis Air quality data for the municipal area are provided from a monitoring network of 9 stations. Validated data are available for the year 2006. Our main objective is to understand the dynamic of the spatial and temporal variations of four monitored pollutants The Functional Principal Component Analysis is is used to find directions in the observation space along which the data have the highest variability. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 3 / 57 Introduction Introduction The present study focus on the assesment of Air Pollution in Palermo The approach used is the Functional Principal Component Analysis Air quality data for the municipal area are provided from a monitoring network of 9 stations. Validated data are available for the year 2006. Our main objective is to understand the dynamic of the spatial and temporal variations of four monitored pollutants The Functional Principal Component Analysis is is used to find directions in the observation space along which the data have the highest variability. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 3 / 57 Introduction Introduction The present study focus on the assesment of Air Pollution in Palermo The approach used is the Functional Principal Component Analysis Air quality data for the municipal area are provided from a monitoring network of 9 stations. Validated data are available for the year 2006. Our main objective is to understand the dynamic of the spatial and temporal variations of four monitored pollutants The Functional Principal Component Analysis is is used to find directions in the observation space along which the data have the highest variability. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 3 / 57 Introduction Air Pollution in Palermo - 2006 Air Pollution Data: The 2006 Palermo Study The Sicilian capital Palermo is applying the European Directive on air quality from 1996 The local council has put in a place a system to monitor air quality and to announce the results to the public. The main culprit of this urban pollution is the car traffic, which is particularly chaotic in this southern city. At present, they are studying a traffic management and public transport development scheme. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 4 / 57 The Air Pollution data Pollutants and Monitoring Sites Time: From 1st of January to 31th of December 2006 Pollutants: NO2 CO PM10 O3 SO2 Monitoring Sites: 9 monitors were instrumented to continously record hourly average concentrations Readings of Ozone are taken only at two sites. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 5 / 57 The Air Pollution data Pollutants and Monitoring Sites Time: From 1st of January to 31th of December 2006 Pollutants: NO2 CO PM10 O3 SO2 Monitoring Sites: 9 monitors were instrumented to continously record hourly average concentrations Readings of Ozone are taken only at two sites. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 5 / 57 The Air Pollution data Figure: 1 - Air Monitoring Sites G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 6 / 57 The Air Pollution data Aggregation and Standardization Steps Aggregation: from hourly data to daily data Daily air pollutants measurements has been provided by the monitoring networks in accordance with International directive: Table: Daily Synthesis Pollutant NO2 PM10 CO O3 SO2 Daily Synthesis Daily Maximum Daily Average maximum 8-hour moving average maximum 8-hour moving average Daily Average Standards 200µg /m3 (2010) 50µg /m3 10mg /m3 120µg /m3 125µg /m3 For the calculation of daily values, it is required to have at least 75% of the one hour values on that particular day. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 7 / 57 The Air Pollution data Aggregation and Standardization Steps Standardization Step Table: Breakpoints of the EPA AQI (Murena,2004) Pollution category Unhealthy Unhealthy for sensitive groups Moderate pollution Low pollution Good quality AQIk PM10 24h NO2 1h CO 8h SO2 24h O3 8h 85 - 100 70 - 85 50 - 70 25 - 50 0 - 25 238 - 500 144 - 238 50 - 144 20 - 50 0 - 20 950 - 1900 400 - 950 200 - 400 40 - 200 0 - 40 15.5 - 30 11.6 - 15.5 10 - 11.6 4 - 10 0-4 500 - 1000 250 - 500 125 - 250 20 - 125 0 - 20 223 - 500 180 - 223 120 - 180 65 - 120 0 - 65 AQIk = IH −IL BPH −BPL · (Ck − BPL ) + IL AQIk is the index for pollutant k; Ck is the concentration (daily synthesis) of the pollutant k; BPH is the breakpoint ≥ Ck ; BPL is the breakpoint ≤ Ck ; IH is the AQI value corresponding to BPH ; IL is the AQI value corresponding to BPL . G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 8 / 57 The Air Pollution data Exploring Data Methods:Functional Data Analysis In air quality monitoring data come to us through a process naturally described as functional . Table: Data Structure s,p X(t) t = 1, 2, ..., 365 s = 1, 2, ..., 9 p = 1, 2, ..., 5 Day Station Pollutant Functional datum is recorded in discrete readings: s,p X(1) ...s,p X(365) G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 9 / 57 The Air Pollution data Exploring Data What are the main ways in which the patterns vary from one to another? Figure: Daily series of 5 Pollutants for 9 Stations pollutant: PM10 Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Day Day pollutant: CO pollutant: O3 Sep Oct Sep Oct 300 Jul 200 Jun 100 May 0 Apr Nov Dec Nov Dec Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Day Jun Jul Aug 300 Jun 200 May 100 Apr 0 Mar 300 Feb 200 Jan 100 0 0 10 5 20 10 15 30 20 40 25 50 30 60 Mar 300 Feb 200 Jan 100 0 0 10 10 20 20 30 30 40 40 50 50 60 70 60 pollutant: NO2 Day 6 Belgio Boccadifalco Castelnuovo Cep DiBlasi GiulioCesare Indipendenza Torrelunga UnitàItalia Aug Sep Oct Nov Dec 10 Jul Day 8 Jun 6 May 4 Apr 2 Mar 300 Feb 200 Jan 100 0 0 2 10 4 20 30 1:10 40 8 50 10 pollutant: SO2 1:10 The basic idea is to decompose the space of curves into principal directions of variation. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 10 / 57 The Air Pollution data Exploring Data Exploring Data Figure: Monthly aggregated data: Standard deviations vs Means 7.5 NO2 PM10 SO2 5 11 7.0 7 9 7 12 6 10 3 6 8 9 6.5 4 1 2 3 8 4 2 6.0 5 7 4 9 6 6 1 5 10 4 5.5 1 2 10 8 3 5 28 29 30 31 7 11 32 33 32 34 36 38 CO 3 5 5.0 12 27 8 6 40 42 7 4 9 12 11 5 6 7 8 9 10 O3 7 16 6 12 11 6 10 14 5 9 12 2 4 3 95 4 7 3 10 4 3 10 6 5 12 11 8 8 4 8 1 6 8 10 12 2 1 20 25 30 35 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 11 / 57 The Air Pollution data Exploring Data Correlations of the Pollutants at the 9 Stations NO2 PM10 CO SO2 NO2 1.00 0.37 0.56 0.52 PM10 0.37 1.00 0.41 0.39 CO 0.56 0.41 1.00 0.37 SO2 0.52 0.39 0.37 1.00 NO2 1.00 0.31 0.56 0.43 PM10 0.31 1.00 0.30 0.53 CO 0.56 0.30 1.00 0.33 SO2 0.43 0.53 0.33 1.00 NO2 1.00 0.43 0.45 0.52 PM10 0.43 1.00 0.19 0.46 CO 0.45 0.19 1.00 -0.01 SO2 0.52 0.46 -0.01 1.00 NO2 PM10 CO SO2 1.00 0.48 0.56 0.43 0.48 1.00 0.45 0.34 0.56 0.45 1.00 0.60 0.43 0.34 0.60 1.00 1.00 0.48 0.65 0.59 0.48 1.00 0.50 0.43 0.65 0.50 1.00 0.51 0.59 0.43 0.51 1.00 1.00 0.44 0.50 0.29 0.44 1.00 0.50 0.26 0.50 0.50 1.00 0.46 0.29 0.26 0.46 1.00 NO2 PM10 CO SO2 1.00 0.48 0.48 0.39 0.48 1.00 0.39 0.34 0.48 0.39 1.00 0.29 0.39 0.34 0.29 1.00 1.00 0.24 0.33 0.39 0.24 1.00 0.41 0.12 0.33 0.41 1.00 0.47 0.39 0.12 0.47 1.00 1.00 0.52 0.58 0.38 0.52 1.00 0.50 0.27 0.58 0.50 1.00 0.35 0.38 0.27 0.35 1.00 Station2-O3 NO2 -0.27 PM10 0.32 CO -0.16 SO2 0.27 Station3-O3 -0.27 - 0.18 -0.61 -0.06 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 12 / 57 The Air Pollution data Exploring Data Spatial Correlations Table: Geographic Distances between Monitoring Sites 1 2 3 4 5 6 7 8 9 1 0.00 5.80 3.68 2.39 3.12 5.54 4.83 7.94 1.86 2 3 4 5 6 7 8 9 0.00 4.65 3.04 2.54 5.31 3.94 7.57 4.69 0.00 4.21 2.29 1.86 1.58 4.28 1.83 0.00 2.30 5.78 4.61 8.31 3.05 0.00 3.56 2.33 6.09 2.19 0.00 1.37 2.55 3.70 0.00 3.80 3.15 0.00 6.08 0.00 Table: Correlation Matrix for PM10 Belgio Boccadifalco Castelnuovo Cep DiBlasi GiulioCesare Indipendenza Torrelunga UnitàItalia Belg 1.000 0.594 0.823 0.737 0.767 0.745 0.723 0.753 0.875 Boccd 0.594 1.000 0.734 0.630 0.570 0.586 0.706 0.559 0.637 Castel 0.823 0.734 1.000 0.662 0.715 0.766 0.823 0.715 0.847 Cep 0.737 0.630 0.662 1.000 0.644 0.667 0.562 0.683 0.728 DBlsi 0.767 0.570 0.715 0.644 1.000 0.766 0.687 0.667 0.752 Cesar 0.745 0.586 0.766 0.667 0.766 1.000 0.758 0.686 0.815 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Indip 0.723 0.706 0.823 0.562 0.687 0.758 1.000 0.640 0.778 Torre 0.753 0.559 0.715 0.683 0.667 0.686 0.640 1.000 0.763 UItal 0.875 0.637 0.847 0.728 0.752 0.815 0.778 0.763 1.000 Bologna, July 5-9, 2009 13 / 57 The Air Pollution data Exploring Data Spatial Correlations Figure: Spatial Correlogram for each pollutant ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.8 ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● 2 3 4 5 6 7 8 2 3 distance(km) 4 ● ● ● ● ● ● ● ● ● ●● ● ● ● 8 ● ● ● ● ● 6 7 8 ● 0.0 ● ● ● ● ● 0.0 ● 7 O3 ● ● ● ● 6 0.8 ● 5 0.4 ● ● ● ● ● ● Correlation ● 0.4 0.8 ● ● distance(km) CO Correlation ● ● ●● ● ● ● ● ● ● ● 0.4 ● ● ● ● 0.0 0.4 ● ● ● ●● ●● ● ●● ● Correlation 0.8 ● ● PM10 0.0 Correlation NO2 2 3 4 5 6 7 8 2 distance(km) 3 4 5 distance(km) 0.8 ● ● ●●● ● ● 0.4 Correlation SO2 ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● 2 ● ● ● ● ● ● ● 0.0 ● ● ● ● ● 3 4 ● 5 6 7 8 distance(km) G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 14 / 57 The Air Pollution data Exploring Data Table: Distributions of the 735 overcomings Belgio Boccadifalco Castelnuovo Cep DiBlasi GiulioCesare Indipendenza Torrelunga UnitàItalia NO2 0 1 5 0 2 3 2 0 3 16 O3 31 0 31 PM10 96 19 63 53 223 72 38 28 95 687 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA SO2 0 0 1 0 0 0 0 0 0 1 Bologna, July 5-9, 2009 15 / 57 The Air Pollution data Exploring Data 70 Figure: Exceeding values over the threshold NO2 ● PM10 ● O3 ● ● 65 ● ● ● ● ● ● ●● ● ● 60 concentrations SO2 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 55 ● ●● ● ● ● ● ● ● ● ●● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● Jan ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ●● ●●●● ● ● ● ● ● ● ● ● ● ●●● ● ●●●● ● ● ● ● ● ●●● ●● ● ● ● ●● ●● ● ●● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ●● ● ● ●● ● ● ●● ●● ● ● ● ● ● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●●●●● ●● ● ● ● ● ● ● ● 50 ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● Feb ● Mar Apr May ● ● ● ●● ●● ● ●● ● ● ● ● ● ●●● ● ● ●● ● ●● ● ●● ● ●●● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ●●● ● ● ● ●● ● ● ● ●●●●●● ● ● ● ● ● ●● ● ● ●● ●● ● ●● ●● ● ●● ●● ●● ● ● ●● ●● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●●● ●● ●● ●● ● ●● ● ● ●● ●● ● ●● Jun Jul G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA ● ●● ● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ● ● ● ●●●● ● ● Aug ● ● ●● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●●● ● ●●● ● ● ●● ●● ● ●● ●● ● ●● ●● ● ● ●● ● ●● ● ● ●●●● ● ● ●●●●● ● ● ●● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ● Sep Oct ● ● ● ●● ● ● ● ● ●● ●● ● ● ● ●● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ●●●● ●●● ●● ● ● ● ● Nov ● ● ● ● ●●● ● ●● ● ● ● ● ● ● ●●● ● ●● ● ● ●● ● ● ● ● ●● ● ● ●● ●● ● ● ●● ● ●● ●● ● ●● ●●●● ● ●●● ● ● ●●●●●●● ● ● ● ● ● ●● ● ● ● ● Dec Bologna, July 5-9, 2009 16 / 57 The Air Pollution data Exploring Data 70 Figure: Exceeding values over the threshold Belgio ● Boccadifalco ● Castelnuovo ● ● ● DiBlasi ● ● GiulioCesare ● ● Indipendenza ● UnitàItalia ● ● ● ● ● ● 55 ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● Jan ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ●● ●●●● ● ● ● ● ● ● ● ● ● ●●● ● ●●●● ● ● ● ● ● ●●● ●● ● ● ● ●● ●● ● ●● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ●● ● ● ●● ● ● ●● ●● ● ● ● ● ● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●●●●● ●● ● ● ● ● ● ● ● 50 ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● Feb ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● Torrelunga 60 concentrations 65 Cep ● Mar Apr May ● ● ● ●● ●● ● ●● ● ● ● ● ● ●●● ● ● ●● ● ●● ● ●● ● ●●● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ●●● ● ● ● ●● ● ● ● ●●●●●● ● ● ● ● ● ●● ● ● ●● ●● ● ●● ●● ● ●● ●● ●● ● ● ●● ●● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●●● ●● ●● ●● ● ●● ● ● ●● ●● ● ●● Jun Jul ● ●● ● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ● ● ● ●●●● ● ● Aug G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA ● ● ●● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●●● ● ●●● ● ● ●● ●● ● ●● ●● ● ●● ●● ● ● ●● ● ●● ● ● ●●●● ● ● ●●●●● ● ● ●● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ● Sep Oct ● ● ● ●● ● ● ● ● ●● ●● ● ● ● ●● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ●●●● ●●● ●● ● ● ● ● Nov ● ● ● ● ●●● ● ●● ● ● ● ● ● ● ●●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ●● ● ● ●● ● ●● ●● ● ●● ●●●● ● ●●● ● ● ●●●●●●● ● ● ● ● ● ●● ● ● ● ● Dec Bologna, July 5-9, 2009 17 / 57 The Functional Data Analysis Approach Observed Functional Data The basic idea of Functional Analysis is that any centered process of order two can be expressed as a combination of orthonormal functions. s,p X(t) = K X s,p ck φk (t) (1) k=1 where {φk (t)} is the set of basis functions. Use cubic B-spline smoothing : φk (t) = (t − τk )3 where τk knots equally spaced Begin with a dense set of knots Estimate the function by minimizing the Penalized Residual Sum of Squares: ( )2 2 Z 2 K X X d x(s) +λ PENSSEλ (x|y ) = X − c φ (t ) ds s,p (tj ) s,p k k j ds j k=1 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 18 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Multivariate Functional Principal Component Analysis The focus is on simultaneuos variability of the 4 pollutants, NO2, PM10, CO, SO2 excluding O3 -, at the 9 sites and along the year. We apply a Multivariate version of the Functional PC at the functional data. The functional eigenequation: Z V (s, t)ξ(t)dt = ρξ(s) 1 2 3 can be written out as: Z V Z V Z V Z V NO2,NO2 PM10,NO2 CO,NO2 SO2,NO2 (s, t)ξ (s, t)ξ (s, t)ξ NO2 NO2 NO2 (s, t) ξ Z (s)ds + V Z (s)ds + V Z (s) ds + NO2 V PM10,PM10 CO,PM10 Z (s) ds + NO2,PM10 V (s, t) ξ (s, t)ξ (s, t) ξ SO2,PM10 PM10 PM10 PM10 (s, t)ξ Z (s)ds. . . + NO2,SO2 (s, t)ξ SO2 (s)ds = ρξ NO2 PM10,SO2 (s, t)ξ SO2 (s)ds = ρξ PM10 = ρξ CO = ρξ SO2 V Z (s)ds . . . + V Z (s)ds . . . + PM10 V CO,SO2 Z (s)ds . . . + V (s, t)ξ SO2,SO2 SO2 (s, t)ξ (s) ds SO2 (s)ds (t) (t) (t) (t) The resulting mth eigenvector, named harmonic is: NO2 PM10 CO SO2 ξm = (ξm , ξm , ξm , ξm ) G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 19 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis For the mth eigenvalue ρm , measuring the proportion of variability explained by the mth principal component, the mth harmonic ξm has: kξm k2 = 1 and p 2 kξm k is the proportion of the variability in the mth principal component accounted for by variation in the p th Pollutant. The eigenvectors are orthonormal. 1 We implemented the procedure in R, and in particular we used the library fda (Ramsay, 2005) to perform some of the analyses. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 20 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis For the mth eigenvalue ρm , measuring the proportion of variability explained by the mth principal component, the mth harmonic ξm has: kξm k2 = 1 and p 2 kξm k is the proportion of the variability in the mth principal component accounted for by variation in the p th Pollutant. The eigenvectors are orthonormal. 1 We implemented the procedure in R, and in particular we used the library fda (Ramsay, 2005) to perform some of the analyses. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 20 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Some Results Table: Main results from Multivariate Principal Component Analysis 4 P p ξm 2 p 2 ξm Prop. of variab. p=1 explained by PC PC1 0.75 PC2 0.11 PC3 0.04 0.90 NO2 0.312 0.136 0.210 PM10 0.447 0.110 0.588 CO 0.153 0.021 0.109 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA SO2 0.082 0.698 0.029 1 1 1 Bologna, July 5-9, 2009 21 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Plots of the first three Harmonics 0.05 0.00 −0.10 −0.10 0.00 0.05 0.10 PM10 0.10 NO2 0 100 200 300 0 100 300 0.05 0.00 −0.10 −0.10 0.00 0.05 0.10 SO2 0.10 CO 200 0 100 200 300 0 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA 100 200 300 Bologna, July 5-9, 2009 22 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0.00 −0.05 Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct 300 Mar 200 Feb 100 Jan Nov Dec Nov Dec 300 200 100 0 10 20 30 40 50 60 0 −0.10 harmonics 0.05 Harmonics - PM10 2 PC1(75% ), PC2(11%), PC3(4%) - ξ1PM10 = 0.447 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 23 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0.02 0.00 Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct 300 Mar 200 Feb 100 Jan Nov Dec Nov Dec 300 200 100 0 10 20 30 40 50 0 −0.04 −0.02 harmonics 0.04 0.06 Harmonics - NO2 2 PC1(75% ), PC2(11%), PC3(4%) - ξ1NO2 = .312 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 24 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0.06 0.04 0.02 Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct 300 Mar 200 Feb 100 Jan Nov Dec Nov Dec 300 200 100 0 0 5 10 15 20 25 30 35 0 −0.02 0.00 harmonics 0.08 0.10 Harmonics - SO2 2 PC1(75% ), PC2(11%), PC3(4%) - ξ2SO2 = .698 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 25 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Monthly Averages pollutant: PM10 20 15 20 30 25 40 30 35 50 40 pollutant: NO2 4 6 8 10 12 2 4 6 8 Month Month pollutant: CO pollutant: SO2 10 12 10 12 0 0 5 5 10 10 15 15 20 20 25 2 2 4 6 8 10 12 2 Month G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA 4 6 8 Month Bologna, July 5-9, 2009 26 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0.00 −0.05 Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct 300 Mar 200 Feb 100 Jan Nov Dec Nov Dec 300 200 100 0 10 20 30 40 50 60 0 −0.10 harmonics 0.05 Harmonics - PM10 2 PC1(75% ), PC2(11%), PC3(4%) - ξ3PM10 = .588 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 27 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0.02 0.01 0.00 Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct 300 Mar 200 Feb 100 Jan Nov Dec Nov Dec 300 200 100 0 0 5 10 15 20 25 0 −0.01 harmonics 0.03 Harmonics - CO 2 2 2 PC1(75% ), PC2(11%), PC3(4%) - ξ1C 0 = .153; ξ2C 0 = .021; ξ3C 0 = .109 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 28 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0 100 200 60 50 40 30 Harmonic 1 20 + + + + ++ ++ + + + + ++ + + + ++ + − + + ++ ++++++ ++ + + ++ ++ + ++ ++++ ++ ++ +++++ + ++ ++++ + + ++ +++++ + + + + +++ − + + ++ +++ + + ++ +++ + ++ − − ++ − − −−−+ − − − −−− − − + + − + − −− − − − − −−−−−− − −− −− − − − − −− − −− −− − − − − −−−− − − − − − − −−− − − −−− − − − − − − − − −− −−− −−− −− −− −− −− − − − − − − − 10 35 30 25 15 20 Harmonic 1 40 The effects of the first three PC - Harmonic ξ1 300 + ++++ + + ++ −−− + + + ++ − + ++ +++++ + +++ − +++ + ++ +− + + + + + +++ + + + + + + + + + + −+ + + + +++++ +++++ ++ −+ + + + + − − + + − + − +− ++ − −++ −+ + − −− + ++++ − −− +−+ + + − ++−+ − − − − − − − − − + − +− −− −−− −−−−− + −− − − − − − − − − − − − − − −− −− − −−− +−−−− − − − −− − −− − − − − −−− −− − −− −− − − − − + + − 0 x Pollutant[ 1 ]: NO2 − PCA 1 (Percent. of variability 75.1 ) 0 100 200 300 300 + 15 10 5 Harmonic 1 20 + x Pollutant[ 3 ]: CO − PCA 1 (Percent. of variability 75.1 ) 200 x Pollutant[ 2 ]: PM10 − PCA 1 (Percent. of variability 75.1 ) 0 15 10 0 5 Harmonic 1 20 + + ++++ ++ + + + + + + ++ ++ + ++ + ++ + + + ++ ++++ + ++ + +++++ +++ + + + − ++ +++ ++++ + −+ − −− +++ ++++++++++ ++ + + ++ + + + − −−−− +++ +++++ +++ −−−− −− −−− − −−− − + − − ++ +++ − − − − − −− −−− −−−−−−−−−− −− −− −−−− −− −− − − + −−− −−−−− −−− −−−− −−−−−−−−−−−−−− − −− − − − −− −− − 100 +++ + + + + + + + ++ −+ + + + ++ + + +++ + ++ + + + + −−− ++ − + + + + ++ + + +++ ++ ++ ++++++++ ++ ++ + +++ + + − + + + + − ++ +++ − − + + + − + − +++ − − −+ + − − −++ − + −−−− + −− − − +++ −++−−− −− − − − −−−− + +− − −−− −− − − −− −−− −+−−−−−−+ ++ −− −−− −−− −−−−−− − −−−− − −+− − −− −−−− − − − − − − −− − − − 0 100 200 300 x Pollutant[ 4 ]: SO2 − PCA 1 (Percent. of variability 75.1 ) G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 29 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis The effects of the first three PC - Harmonic ξ2 0 100 200 50 40 30 Harmonic 2 20 35 30 20 25 Harmonic 2 40 + − + −+ − −− − +− − + + ++ ++ + + − − − − − +− +−+ − + −− −− − +−+ −+++ + −−+ −+− −− ++−++ − − + + − − − − +−−− − − − − + + −+ −−−+ + − ++− + −− ++− + −+−−−− −+−− +−−− + ++ −+ − − + −− ++ − +−− + − −− − +− + + +− − ++−−− − −++−− +−− ++ + − − − − +++ − +− ++++ +++ − + + + − + + + ++ − +− − ++ + + + +−+ ++ − + + + + + + −++ + − + −+ −−− + − −− − − + +− − − + + − + + + + −+− −− − + +− −−+− − +++− + +−+++ ++ ++ + − + − + −−− − + +−+ ++ −− −++ +− ++−−+ − +−+ − − + + + + − − + + − −− − + − + −−−− −+ + − ++ − −− − − + − + − + − − + ++ − + + ++− +− + − − +−− + −− + − + + − + + + − − − − + + − − +− ++ − + + − −−− − +− + −+− + + + − −− ++ + − + + + − + + − − 300 0 0 100 200 300 x Pollutant[ 3 ]: CO − PCA 2 (Percent. of variability 11 ) 200 300 15 10 Harmonic 2 20 25 Pollutant[ 2 ]: PM10 − PCA 2 (Percent. of variability 11 ) 5 − − + + − −− − − − + − − − −+++ −− − +− + ++ + + − −++− − −+ − +− +− + +++ + +− − + −−− −+ + −− − − −− +−− − + + − + − + + + + + − ++ −−− ++−−+ −− −− −− −− − +++−+− + +− −−− + −+++ −+ −+ +−+ + −−− −−− −++++ + − + −−−−+ −− −− + + + − + + + − +− + − + + + + + − + ++ ++++− ++− − +− +− ++++− +−+ − + + − + +− ++ − +− + − 100 x 0 10 5 Harmonic 2 15 x Pollutant[ 1 ]: NO2 − PCA 2 (Percent. of variability 11 ) + + ++ ++ + + + ++ ++ + ++ + + ++ + ++ + + + +− + + ++ + + + − + +− − ++−+ ++++ + + ++ ++ ++++ +++++ +−− − +++ +++ + −− −−−++ + + − + ++ − + − ++−−−− − + ++++ −−−−− − − − + ++ + + ++ −− +++− − −+−− +−−−−−−−−−−−+ +− − −− + −−+−− −− −−− −−− − −−− −−−++ −−−−−−−−−−−−−− − − − −−− − −− + − −−−− − − 0 100 200 300 x Pollutant[ 4 ]: SO2 − PCA 2 (Percent. of variability 11 ) G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 30 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0 100 200 50 40 Harmonic 3 30 + − + + ++ + −+ − + −+ ++ +++ − − − + ++ + −+ − +−− +− − − ++− −−− − + − + − ++ + −+− −− − +− ++−− − − − − +−− − + +− +− +− ++ −− +− + −− ++ +−+ − − + ++ +++ +− +−−+−+−+ + − ++ + ++ + ++ + ++ − −+ + +− + −+− +−−++−+−++ − − − − − ++ + ++ + − − − + −− −+−+ − −−− + + − +−− −− − − + − − + +− −− − +− + − − + + − − + − + − − − 20 35 30 25 Harmonic 3 40 The effects of the first three PC - Harmonic ξ3 300 − +−− + − − − ++ +− − −− + − −− + − − + − +− + − +− +− − − + −− −+ + ++−−− − − +++−− − − ++ +− + ++ − ++− − + +− − ++ − + − +−−++− + −+ − ++ +−−+ + +−− +− + + +−− + − + − − − −+ + − + −−− − + + − −+ + −++− ++− + − − − − − + − ++ +− − − + − + −−+++ + + + − ++ + − ++ −+ ++− + +++ −− − + +−− − +− ++ − −−−− − ++ + + + + + + − − + 0 x Pollutant[ 1 ]: NO2 − PCA 3 (Percent. of variability 4.2 ) 100 200 Pollutant[ 2 ]: PM10 − PCA 3 (Percent. of variability 4.2 ) 0 100 200 300 x Pollutant[ 3 ]: CO − PCA 3 (Percent. of variability 4.2 ) + − 15 Harmonic 3 10 5 10 5 Harmonic 3 15 + + − +− ++++ ++ + − +− + −−+ +− + +− − + − − − + − +− + −+ +− ++ − −−−+ −−+−+ ++ − − ++− + + +− ++ + −+++ +++−+ − + − − − + + + + − + + + + − − −− − −++ +++ +− −−−−++ −− −+++++++++−− +−− + +−−+−−− − − + + + + + − + − + + − + − + + + − + − −+ − − + +− − −−− −− −−−−+ −−+−−−−−+−+− −− +++ − − −+−+ − −− −− − + 300 x +− −− + + − ++ −− ++ − − − − + −+ − + −+− − − − +− + + + + +− − +− − − ++− +++− − + − + + − − + + + ++ +− + − + − + + + − + − + −+ ++− −− + ++− + +− −+ − − − − + − +− + +− − +− + +− + +− − + − + + − + + ++−− + − − − + − + + + + +++ −− + − +−++ + −+−− +− − +− − − +− +− + − + − + + + − −+ −−−− + −+− − − − +− − ++− + − − − +−+ − + − −− + 0 100 200 300 x Pollutant[ 4 ]: SO2 − PCA 3 (Percent. of variability 4.2 ) G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 31 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Examination of Scores Table: Principal Component Scores Belgio Boccadifalco Castelnuovo Cep DiBlasi GiulioCesare Indipendenza Torrelunga UnitàItalia PC1 65.54 -372.96 73.35 -202.96 311.07 136.90 -32.78 -63.22 85.06 PC2 -60.40 87.69 163.64 -52.58 37.69 -23.77 -41.91 -92.20 -18.14 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA PC3 -24.23 12.16 9.58 -108.89 -27.52 22.49 98.25 30.68 -12.52 Bologna, July 5-9, 2009 32 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Examination of Scores Figure: Plots of the first three Principal Component Scores of the stations 150 ● Cep 100 100 150 ● Castelnuovo 50 ● Torrelunga −50 −50 ● Cep ● Belgio −200 −100 −100 ● Torrelunga −400 0 ● Castelnuovo ● GiulioCesare ● Boccadifalco ● UnitàItalia ● GiulioCesare ● Indipendenza ● DiBlasi ● Belgio ● UnitàItalia 0 PC3 (perc.var. 4%) 50 ● DiBlasi 0 PC2 (perc.var. 11%) ● Boccadifalco 200 400 ● Indipendenza −400 PC1 (perc.var. 75%) G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA −200 0 200 400 PC1 (perc.var. 75%) Bologna, July 5-9, 2009 33 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 70 Figure: Threshold value overcomings Belgio ● Boccadifalco ● Castelnuovo ● ● ● DiBlasi ● ● GiulioCesare ● ● Indipendenza ● UnitàItalia ● ● ● ● ● ● 55 ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● Jan ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ●● ●●●● ● ● ● ● ● ● ● ● ● ●●● ● ●●●● ● ● ● ● ● ●●● ●● ● ● ● ●● ●● ● ●● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ●● ● ● ●● ● ● ●● ●● ● ● ● ● ● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●●●●● ●● ● ● ● ● ● ● ● 50 ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● Feb ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● Torrelunga 60 concentrations 65 Cep ● Mar Apr May ● ● ● ●● ●● ● ●● ● ● ● ● ● ●●● ● ● ●● ● ●● ● ●● ● ●●● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ●●● ● ● ● ●● ● ● ● ●●●●●● ● ● ● ● ● ●● ● ● ●● ●● ● ●● ●● ● ●● ●● ●● ● ● ●● ●● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●●● ●● ●● ●● ● ●● ● ● ●● ●● ● ●● Jun Jul ● ●● ● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ● ● ● ●●●● ● ● Aug G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA ● ● ●● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●●● ● ●●● ● ● ●● ●● ● ●● ●● ● ●● ●● ● ● ●● ● ●● ● ● ●●●● ● ● ●●●●● ● ● ●● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ● Sep Oct ● ● ● ●● ● ● ● ● ●● ●● ● ● ● ●● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ●●●● ●●● ●● ● ● ● ● Nov ● ● ● ● ●●● ● ●● ● ● ● ● ● ● ●●● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ●● ● ● ●● ● ●● ●● ● ●● ●●●● ● ●●● ● ● ●●●●●●● ● ● ● ● ● ●● ● ● ● ● Dec Bologna, July 5-9, 2009 34 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Monthly Averages Values pollutant: PM10 20 15 20 30 25 40 30 35 50 40 pollutant: NO2 4 6 8 10 12 2 4 6 8 Month Month pollutant: CO pollutant: SO2 10 12 10 12 0 0 5 5 10 10 15 15 20 20 25 2 2 4 6 8 10 12 2 Month G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA 4 6 8 Month Bologna, July 5-9, 2009 35 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Functional PCA for 5 Pollutants 1 Now we consider a quite different situation, reintroducing the OZONE (O3) Figure: Ozone series at 2 Sites OZONE Boccadifalco Boccadifalco Boccadifalco Castelnuovo Castelnuovo Castelnuovo Jan Mar May Jul Aug Oct G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Dec Bologna, July 5-9, 2009 36 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Functional PCA for 5 Pollutants 1 2 3 Now we consider a quite different situation, reintroducing the OZONE (O3) The serie of Ozone of Castelnuovo are used as series for the other urban sites. We repeat the Functional PCA to understanding the effects of this ”‘perturbation”’ of the data on the results. Figure: Ozone series at 9 Sites OZONE Boccadifalco Other_8_Sites G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 37 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Functional PCA for 5 Pollutants 1 We have obtained the following results: Prop. of variab. explained by PC PC1 0.717 PC2 0.137 PC3 0.05 0.904 NO2 0.267 0.392 0.237 p 2 ξm PM10 CO 0.369 0.125 0.131 0.011 0.070 0.165 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA SO2 0.178 0.054 0.093 O3 .057 .391 .396 1 1 1 Bologna, July 5-9, 2009 38 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Examination of Scores - 5 Pollutants ● Boccadifalco ● DiBlasi 50 ● Castelnuovo −50 0 ● GiulioCesare ● UnitàItalia ● Belgio ● Indipendenza −100 PC2(perc.var.:0.14%) 100 150 Figure: Plots of the first three principal component scores of the stations ● Torrelunga −150 ● Cep −400 −200 0 200 400 PC1 (perc.var.:0.72%) G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 39 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Examination of Scores Figure: Plots of the first three principal component scores of the stations 150 100 ● Boccadifalco ● UnitàItalia ● GiulioCesare ● Indipendenza ● Cep ● Belgio 50 −100 ● Belgio ● Indipendenza ● Torrelunga ● Cep −150 −150 −100 ● Torrelunga ● GiulioCesare ● UnitàItalia 0 PC2(perc.var.:0.14%) 50 0 ● DiBlasi −400 −200 0 200 400 ● DiBlasi ● Castelnuovo −50 ● Boccadifalco −50 PC2 (perc.var. 11%) 100 150 ● Castelnuovo −400 PC1 (perc.var. 75%) G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA −200 0 200 400 PC1 (perc.var.:0.72%) Bologna, July 5-9, 2009 40 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis Figure: Plots of the first three Harmonics −0.05 −0.05 0.05 PM10 0.05 NO2 0 100 200 300 0 100 300 −0.05 −0.05 0.05 O3 0.05 CO 200 0 100 200 300 0 100 200 300 −0.05 0.05 SO2 0 100 200 300 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 41 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0.00 Mar Apr May Jun Jul Aug Sep Oct Aug Sep Oct 300 Feb 200 Jan 100 0 −0.04 −0.02 XSI[, , 2] 0.02 0.04 PM10 Nov Dec Nov Dec 50 40 30 20 Mar Apr May Jun Jul 1:365 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA 300 Feb 200 Jan 100 0 10 PRED.spline1[, , 2] 60 1:365 Bologna, July 5-9, 2009 42 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0.00 Mar Apr May Jun Jul Aug Sep Oct Aug Sep Oct 300 Feb 200 Jan 100 0 −0.05 XSI[, , 5] 0.05 SO2 Nov Dec Nov Dec 30 25 20 15 10 5 Mar Apr May Jun Jul 1:365 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA 300 Feb 200 Jan 100 0 0 PRED.spline1[, , 5] 35 1:365 Bologna, July 5-9, 2009 43 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0.02 0.00 Mar Apr May Jun Jul Aug Sep Oct Aug Sep Oct 300 Feb 200 Jan 100 0 −0.04 −0.02 XSI[, , 4] 0.04 0.06 O3 Nov Dec Nov Dec 50 40 30 20 Mar Apr May Jun Jul 1:365 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA 300 Feb 200 Jan 100 0 10 PRED.spline1[, , 4] 1:365 Bologna, July 5-9, 2009 44 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0.02 0.01 0.00 Mar Apr May Jun Jul Aug Sep Oct Aug Sep Oct 300 Feb 200 Jan 100 0 −0.02 −0.01 XSI[, , 1] 0.03 0.04 NO2 Nov Dec Nov Dec 40 30 20 Mar Apr May Jun Jul 1:365 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA 300 Feb 200 Jan 100 0 10 PRED.spline1[, , 1] 50 1:365 Bologna, July 5-9, 2009 45 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 0.02 0.01 Mar Apr May Jun Jul Aug Sep Oct Aug Sep Oct 300 Feb 200 Jan 100 0 0.00 XSI[, , 3] 0.03 CO Nov Dec Nov Dec 25 20 15 10 5 Mar Apr May Jun Jul 1:365 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA 300 Feb 200 Jan 100 0 0 PRED.spline1[, , 3] 1:365 Bologna, July 5-9, 2009 46 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 100 200 60 40 Harmonic 1 + + ++ + ++ + ++ −+ −− + ++ ++ + ++ + + + + ++ − + ++++ + ++ +−− + ++ +++ + ++ + + ++ +++ + + ++ + + ++++ +++ + + ++++++ − + + +− −+ ++ + − −−++++−−+ − + + − + − −− − + + + + + −+ − + +− −−− − −− +− +++ −− −−−− − − − − −− −− − − − −−−−− −− − + − − − −−− − − − −− −− − −−−− +−−− − − − −− −− − − − −− − − − − −− − −− − − − 300 0 20 15 10 5 300 − −− − − − −−−−−+− −−++ − −− − − −− −− − − + − − − −− + − + −− −− − − −−− − − −− −−− − + −− −−−−+− ++ + + − ++ + − − + ++ − −−− −− − ++ − + −− − − ++ + + + −−−+ +− + ++ −− − −− + −− + + + ++ + ++++− +−−− −+ + −− −− −−− ++ + + + ++ ++ + + + − + − + + + +++ ++ + −− −++ ++ + ++ +++ + + + + + ++ ++− ++ + + + + + +− ++++ + + 100 200 300 20 30 40 + + + ++++ ++ + + +++ ++++ + + + ++ + + + ++ + + + + + + ++ + + + − ++++ + ++ + +++ +++ ++ ++ + − + − − −− +++ ++++++++++ ++++ + ++ +++++ + + + ++ − − − −− −− − + ++ + +++ − −− − −−− − − − −−−−− −− + −−− + − − −−− − −−−−−−− − − − + − − − −−− + −−−−−−−−−− −−−−−− −−−−−−−−−− − −−−−−−−−−− − − − − −− − 0 x Pollutant[ 3 ]: CO − PCA 1 (Percent. of variability 71.7 ) Harmonic 1 200 x Pollutant[ 2 ]: PM10 − PCA 1 (Percent. of variability 71.7 ) 0 0 100 x Pollutant[ 1 ]: NO2 − PCA 1 (Percent. of variability 71.7 ) Harmonic 1 20 5 10 0 Harmonic 1 0 20 + + + ++ ++ ++ + + + + + + + + − + + ++ +++++ + ++ + + + ++ + ++++ ++ ++ + + +++++ ++ +++ + + +++ + ++ +++ ++ + ++ + + + +++ + + + + + − ++ ++ + ++ + + + ++ − + + −− + − −− − − − − − − − + − + − − −− − − − − −−−− −−− + − − −−−−− − − − −− − − − − − − − − −− −− − −− − − −−− − − − − − −− − − − − − − − −− − −−− −− −−− −−− − −− − − − − − − 10 35 25 15 Harmonic 1 The effects of the first three PC 100 200 300 x Pollutant[ 4 ]: O3 − PCA 1 (Percent. of variability 71.7 ) + +++ +++ + + +− + + + + + + + −−+ + +++ + + ++ + + +− + − ++ + + +++ + +− +++ ++ + + ++++ ++++ + ++ + − + − − ++ ++ ++ + ++++++ −+ + −++ + + ++++ ++ − − − − − − − + − − − − ++− + −− − −− − − + +− −− − − − − ++ −− +− −− −−+−−−− +− − − −−−− − −−−−−−−−− − − −+ − −− − −− − − +− − − + +−− − − − + − − − −− − −− − −−−− − − − G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 47 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis The effects of the first three PC 100 200 Harmonic 2 20 30 40 50 + −++ + + − + − −− −+ + − − ++ − +− + + − − −− − + +− + − + + +− + − ++− + ++ + + ++ + − + +− +− ++ + −+ − ++ ++++ − ++− − + + +−−+ − − + +−−−−+− + −+− − + + − − + − − − − + + + + + + ++− + − − −+− + +− − −+− +++ +++−− − −−− −− − + − ++− + − ++ − − + + − −+ − − − + − + + ++ −−−+ − −− −+ + −− − +− − +− +− − − − − − −− + + − + − − + − 300 0 100 200 300 x Pollutant[ 2 ]: PM10 − PCA 2 (Percent. of variability 13.7 ) + − + − + ++ + + + + + + − − +− − +−− ++ − +− ++− + −− + −− − ++− − − − + + − ++− −− − + + ++ +− + + + − + + − −− − + + − − + − − + +− + − ++ −− + + − +− + +− − +++ +− +− ++ − − −− + + − − +−+ + ++− ++− + ++ − − ++ + −−++ +++++ + ++ +−−++ ++− −+ − − +−− +−− − − −− −− +−−+ − −+−−−−−+− + −− +− − −− ++− − − − +−+ − − − − + − + ++ − −+ + + +++++ + ++ −−+ ++ + ++ ++ +−−−−− + ++ + + ++ −+−− − ++ ++ − + + − +++ + +++ +++ +−−−−++ ++++−+− + + + −− − − − +−− +++− ++ + −+ ++ + + − − + − + − − − − −− − ++ − − −− − − ++ −+ + − + ++ − − −− −− − − −− − − −− − +−−+++ +− −− −++−++ +++−− − − − − ++++−−+ − − − −− −−+ −− − − − −+− − −−−− − − − 0 100 200 300 15 25 35 x Pollutant[ 1 ]: NO2 − PCA 2 (Percent. of variability 13.7 ) Harmonic 2 15 10 5 Harmonic 2 0 5 Harmonic 2 25 30 35 40 + + − + − −+ − + + ++ + ++ + + −− − − − +++ + + +− +− ++− − − + + − +− + + ++ + −−− + − ++ −−+− + − ++ − − + − + ++ +− −− − + + −− +− ++ − ++ − −+ − +− −− − +− + + −− −+ − −−− +− +− +− − −+ − + − − − − − − − − − + − +− ++ + − − −− + − − +− + + ++ ++++−− − − ++ ++ − +− −+− + + − − −−− +− − − + − + − ++ − + − ++ − + ++ − + − − + − + − + + + 0 x Pollutant[ 3 ]: CO − PCA 2 (Percent. of variability 13.7 ) 100 200 300 x Pollutant[ 4 ]: O3 − PCA 2 (Percent. of variability 13.7 ) 20 10 5 0 Harmonic 2 + +++ + + + +++ + + + + ++ + + + ++ + + ++ ++ + ++ + + ++ − + + ++ +− + + − +++ +++ + +−−−+− −− ++ + − + + + − − + + +++ ++ −+ ++++++ + +−++ + +++ − −−−− −−− − − − − ++ +++++ + + +− − − − ++−−−+− −+−−−− +−−−−−−−−− −+−+ − + − − − − − + − − −− − −− − − − − − −−−− +− −− − − −− +− + − −− − − −−−−−−−−− − − − −−− G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 48 / 57 The Functional Data Analysis Approach Multivariate Functional Principal Component Analysis 100 200 50 40 30 Harmonic 3 300 − ++− + − − +− − +− + − + + − − + +− +− − + +− + − + +− + − + +− + − + + +− − + +− +− − ++− + − − +− +++ − − +− + − ++ −− − − + − − +− +− +− + + +− +− + + − + +− + +− + +− + + − − ++ − + − + −−− + − − − − + + −+− + − − + + − + − − − + + − +++ + + − − − +− + + − − + +− −+ ++− ++−++ + − − +− −− +−− − ++ + − + +− + −− −− + − − −+ − − + − − − + + − 0 20 15 10 5 300 + ++ − + −− ++− + + + −+ + + + +− ++ ++ + ++ + − − +−− − − −− +− −+ ++ − +− + − − ++ ++ + + +−− ++−+− − + −− + + +− +− + ++− + − ++ − − −− − ++−+ + ++−+− ++ + − − − +−−+− +− ++ + − − +−−+− + − +− ++− + − − −− −+−− − −− + −+−++− + − + − − +− + ++ + − −− ++−+− −− − + +−+ − −+ − − +− + −− − + − −− ++ − +−− −−−+ − − + − 100 200 300 15 25 35 + + − − + ++++ ++ + + − ++ +− −−−−+ + − − + + + + − − − ++ +− −− ++ + ++ + + −− + −−− + − +−− −+ + + + +++ +++ − −++ ++ + ++ +++− +−+ − − − − −+ + + + −− +−−−++ +++++++ −− + + − −− −+−+ −− − +++++ −−−++ +++++ + ++ +−−+−−− − − + −−− − + −−−−−−−−−− −−−− − −−−−−−−−+−+++−−+++− − − − − − − −−− − + 0 x Pollutant[ 3 ]: CO − PCA 3 (Percent. of variability 5 ) Harmonic 3 200 x Pollutant[ 2 ]: PM10 − PCA 3 (Percent. of variability 5 ) 0 0 100 x Pollutant[ 1 ]: NO2 − PCA 3 (Percent. of variability 5 ) Harmonic 3 15 10 5 Harmonic 3 0 20 − + + + − ++ −+ − − + + − + + ++ + −− + − + −+ + − +− − + + + − +− − +− + − − −− − − ++− + + + − − + + + ++ + + + + ++ + − − + + + −−−+− + −− + − + ++ + −++ + + −− − −+− +− +− − +− − − − − + −−+− − − −+ +− + − + ++− + ++ + −+ + − + + + − + −− + −+ + − − +− ++ − + − − −− + −+ + + + − + − − − − −−− +−+ −+ +− − − −+ − − +− + − − − + − − + − + − − − − 5 35 30 25 20 Harmonic 3 40 Figure: The effect of the harmonic 3 on each pollutant 100 200 300 x Pollutant[ 4 ]: O3 − PCA 3 (Percent. of variability 5 ) − −− − −+ − − − − −− − − − + −− −−−− − + − −+++ −− +− − − + −− +− −− ++ + + + + − −+ + + − − − −+ − − +− −−− −−−− − −− + +−+ + − ++ + − + −− −−− − ++ + +−+− −+ +−++ + +− +− ++ ++ +− − + + ++− + +++++− + −− −+ + − −−−− − −−+ +− − + +− + + + − − −− + + − +− + + +− + + − + + ++ − −−− + ++ ++ +++++++−− ++ ++ ++++ + − + + 0 100 200 300 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 49 / 57 Further Developments Use of the optimal empirical orthonormal basis Optimal Empirical Orthonormal Basis 1 Use of the optimal empirical orthonormal basis for approximating the functional data. As Principal Components form a orthogonal base: s,p X(t) = 3 X ξkp (t)PCs,k k=1 In matrix notation, for a fixed p (the Pollutant), let : F3,9 = PC T p ξ365x3 = ξ1p , ξ2p , ξ3p p p X365x9 = ξ365x3 F3,9 G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 50 / 57 Further Developments Use of the optimal empirical orthonormal basis Optimal Empirical Orthonormal Basis functional data − PM10 Approximation via EOB − PM10 Figure: PM10: Plots the approximated data via Optimal EOB (left panels) and observed functional data (right panel) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Mar Apr May Jun Jul Aug Sep Oct Nov Bologna, July 5-9, 2009 Dec 51 / 57 Further Developments Use of the optimal empirical orthonormal basis Optimal Empirical Orthonormal Basis functional data − NO2 Approximation via EOB − NO2 Figure: NO2: Plots the approximated data via Optimal EOB (left panels) and observed functional data (right panel) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Mar Apr May Jun Jul Aug Sep Oct Nov Bologna, July 5-9, 2009 Dec 52 / 57 Further Developments Use of the optimal empirical orthonormal basis Optimal Empirical Orthonormal Basis functional data − SO2 Approximation via EOB − SO2 Figure: SO2: Plots the approximated data via Optimal EOB (left panels) and observed functional data (right panel) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Mar Apr May Jun Jul Aug Sep Oct Nov Bologna, July 5-9, 2009 Dec 53 / 57 Further Developments Use of the optimal empirical orthonormal basis Optimal Empirical Orthonormal Basis functional data − co Approximation via EOB − CO Figure: CO: Plots the approximated data via Optimal EOB (left panels) and observed functional data (right panel) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Mar Apr May Jun Jul Aug Sep Oct Nov Bologna, July 5-9, 2009 Dec 54 / 57 Further Developments Methodological Perspective Methodological Perspective 1 Definition of a new family of Indices 2 Use of alternative approaches to smoothing in the multivariate contest G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 55 / 57 Further Developments Methodological Perspective References Bruno F, Cocchi D. 2007. Recovering information from synthetic air quality indices. Environmetrics 18, 345-359. EPA (Environmental Protection Agency). 2006. Guideline for reporting of daily air quality: air quality index (AQI). United States Environmental Protection Agency, EPA-454/B-06-001. European Community. 1999. CouncilDirective 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Official Journal L 163, 29/06/1999: 41-60. European Community. 2000. Directive 2000/69/EC of the European Parliament and of the Council of 16 November 2000 relating to limit values for benzene and carbon monoxide in ambient air. Official Journal L 313, 13/12/2000: 12-21. European Community. 2002. Directive 2002/3/EC of the European Parliament and of the Council of 12 February 2002 relating to ozone in ambient air. Official Journal L 67, 9/3/2002: 14-30. Ignaccolo R, Ghigo S, Giovenali E. 2008. Analysis of air quality monitoring networks by functional clustering. Environmetrics, 19, 672686. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 56 / 57 Further Developments Methodological Perspective References Ingrassia S, Costanzo GD. 2005. Functional principal component analysis of financial time series New Developments in Classification and Data Analysis, Vichi M, Monari P, Mignani S, Montanari A. (Eds.), Springer-Verlag, Berlin, 351-358. Murena F. 2004. Measuring air quality over large urban areas: development and application of an air pollution index at the urban area of Naples. Atmospheric Environment 38, 6195-6202. Ott WR. 1978. Environmental Indices: Theory and Practice. Ann Arbor Science Publishers: Ann Arbor. Pollice A, Jona Lasinio G. 2009. Spatiotemporal analysis of the PM10 concentration over the Taranto area. Environmental Monitoring and Assessment, Published online: 11 March. Ramsay JO, Silverman BW. 2002. Applied Functional Data Analysis. Springer-Verlag. Ramsay JO, Silverman BW. 2005. Functional Data Analysis. Second Edition. Springer-Verlag. Shaddick G, Wakefield JC. 2002. Modelling multiple pollutants at multiple sites. Journal of the Royal Statistical Society, Series C (Applied Statistics), 51, 351-372. G. Agrò, F. Di Salvo, A. Plaia, M. Ruggieri (Università Air Quality di Palermo) Assessment via FPCA Bologna, July 5-9, 2009 57 / 57