The use of EBIC in solar cell characterization Maurizio Acciarri Mini PV Conference Trondheim No 9-10 January 2008 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Department of Material Science • The group of Physics and Chemistry of Semiconductors belong to the Department of Material Science of the University of Milano Bicocca, since 1998. • To the Department are connected courses in: – – – – Material Science Optic and Optometry Chemical Science and Technology Goldsmith Science and Technology • The Department is composed by: – 38 academic staff – 22 non academic staff – More than 76 PHD and post-doc students Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Department of Material Science 1. Materials Science and Cultural Heritage. Luminescence Dating 2. Oxide Nanostructures and Silica-based Materials for Optical Technology 3. Energy storage materials. Chemical synthesis, crystal structure, theoretical models 4. Electrochemical activities 5. Chemistry of inorganic and organometallic materials 6. Surface chemical reactions: crystal growth and sorption processes 7. Physics and applications of lasers 8. Shape Memory Alloys 9. Organic materials for applications in photonics 10. Organic molecular systems for II order non-linear materials and low energy emitters 11. Nanostructured materials and magic angle spinning NMR 12. Chemical physics of semiconductors: defects, impurities and surfaces 13. Optical spectroscopy of semiconductors and semiconductor quantum structures 14. Organic Molecular Semiconductors 15. Photophysics of molecular semiconductors 16. Simulation and Modeling of the Epitaxial Growth of Semiconductor Nanostructures and Films 17. Theoretical modeling and ab-initio simulation of material properties 18. Theory of Surface Science and Catalysis 19. Theory of surfaces, interfaces, and bulk inorganic materials Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Physics and Chemistry of Semiconductors Research Focus on: the characterization of defect centers in semiconductors through the study of radiative and nonradiative recombination of carriers at impurity centers and point and extended defects (dislocations, grain boundaries). Composition: • Dr. Maurizio Acciarri (assistant professor in Physics) • Dr. Simona Binetti (assistant professor in Physical Chemistry) • 3 PHD • 3 final year students Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Photovoltaic projects • • • • • • • • Concepts for high efficiency multy-crystalline silicon solar cells (Multi-Chess) (1990-1993) Multi-Chess II (1993-1996) Cost Effective Solar Silicon Tecnology (COSST) (1996-1999) Fast in Line characterization tools for crystalline silicon material and cell process quality control in the PV industry (FAST-IQ) (20002003) N-type Solar Grade Silicon for Efficient p+n Solar Cells (Nessi) (2002-2005) Nanocrystalline silicon film for photovoltaic and optoelectronic application (NanoPhoto) (2005-2008) Development of solar-grade silicon feedstock for wafers and cells, by purification and crystallisation (Foxy) (2006-2008) Cariplo national project (2002-2005) on SiGe thin film for optoelectronic and PV application Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Physics and Chemistry of Semiconductors Defects, impurities and their interaction Oxygen, Carbon and Nitrogen Solar energy (PV) conversion Recombination processes at extended defects Dislocations In-line characterization Precipitates Recombination processes (Si, SiC and SiGe) Optoelectronic Thin films Solar cells Facilities •SEM – EBIC (77-300 K) •LBIC e Fast-LBIC •Hall effect •SPV •Solar simulator (5x5 cm2) •FTIR (50-4000 cm-1) •Photoluminescence (IRUV-Vis) •XRD and Raman spectroscopy (dept. facility) •Optical microscope •Chemistry laboratory for etching and cleaning •Furnaces (working temperature up to 1500 °C) •Evaporator •Sputtering Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Impact of defects on solar cells efficiency Perfect crystal C.B. Radiative Radiative and emission non radiative hυ Photoluminescence emission B.V. Direct recombination lifetime: τd Indirect recombination lifetime: τi (Shockley-Read-Hall) ⎡ τ SRH = ⎛ 2 ( Ei − EF ) ⎞ ⎡ ⎛ 2 Ei − Et − EF ⎞ ⎤ ⎛ Et − E F ⎞ ⎤ ⎟ ⎥ + τ p 0 ⎢1 + h + exp ⎜ ⎟⎥ ⎟ + exp ⎜ kT kT ⎝ ⎠⎦ ⎝ kT ⎠ ⎦ ⎣ ⎝ ⎠ ⎛ 2 ( Ei − E F ) ⎞ 1 + h + exp ⎜ ⎟ kT ⎝ ⎠ τ n 0 ⎢ h + exp ⎜ ⎣ Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali 1 τ n0 ≡ σ n vth N t Impact of defects on solar cells efficiency • For PV very high C.B. lifetime values are requested hυ • In PV is more meaningful the B.V. diffusion length (L): L = Dτ kT μ D= q 1 τ = 1 τd + 1 τi + 1 τs + .. Defects may influence recombination and mobility Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Multicrystalline Si wafers: lifetime maps PhotoConductance Decay (mW-PCD) After the POCl3 process step As-grown Why? Lifetime maps carried out by ISC Konstanz (D) Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Scanning Electron Microscope • • The electron beam produced by an electron gun is focused to a point on the sample surface by two condenser lenses. The second condenser lens (sometimes also called as objective lens) focuses the beam to an extraordinarily small diameter of only 10-20 nm. Electrons, either SE or BSE, from the sample surface are detected by a detector and amplified to form images on the screen of a CRT. Tescan VEGA TS 5136XM Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Scanning Electron Microscopy – EDX - EBIC • SEM – Tescan VEGA TS 5136XM Variable Pressure (5x10-3- 500 Pa) • EDX analysis – Genesis 4000 XMS Imaging 60 SEM • EBIC T= 80-300K. – FEMTO Variable-Gain Low-Noise Current Amplifier DLPCA-200 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali SEM: image magnification Example of a series of increasing magnification: spherical lead particles Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Material – electron interaction Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC technique • Electron beam induced current (EBIC) is a semiconductor analysis technique performed in a scanning electron microscope (SEM) or scanning transmission electron microscope (STEM). It is used to identify buried junctions or defects in semiconductors, or to examine minority carrier properties. • EBIC depends on the creation of electron–hole pairs in the semiconductor sample by the microscope's electron beam. • This technique is used in semiconductor failure analysis and solid-state physics. • The spatial resolution is of the order of few µm (in SEM) – e-beam energy – Minority carrier lifetime Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC technique: how it works • • • • • EBIC employs a (SEM) on a sample with a thin electrontransparent Schottky contact or a p-n junction. The short circuit current is amplified and displayed on a monitor synchronized with the electron beam scan. The electron beam induces carriers; the minority carriers either recombine at defects or are collected at the Schottky contact as current with the resulting signal being displayed on the monitor. The picture on the monitor thus shows a current sample map. Defects that are "electronically active" reduce the currents; they appear in dark contrasts. Scanning e-beam Sample Holder Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Amplifier EBIC technique: how it works Different configuration can be used: Lateral Planar p-n junction Schottky diode H.J. Leamy J. Appl. Phys. 53 (1982) R59 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC technique: lateral configuration L=200 um L=50 um I = I oe x − L EBIC Current (normalized) 1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0 5 10 15 20 25 Università degli Studi di Milano”Bicocca” Distance from the junction (μm) Dipartimento di Scienza dei Materiali 30 EBIC technique: planar configuration Current (nA) E-beam Position (um) I/V converter amplifier Gold contact Space charge region Si wafer Defect Back contact L determination also in planar configuration changing e-beam energy (penetration depth) Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC technique: how it works Multicrystalline Si wafer 110K 150K 230K 300K -7 EBIC current (10 A) 1,0 0,8 0,6 0,4 100 150 200 Position (μm) Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali 250 300 EBIC: theoretical profile around a grain boundary Donolato’s formulation Diffusion problem in a semi-indefinite medium Boundary conditions: a) At the collecting surface s = ∞ b) At the grain boundary s = s0 ∈ ℜ where: L: diffusion length [μm] I ( x, s , L ) = I 0 − I * ( x, s , L ) s: reduced recombination velocity [cm-1] αL ⎧ I = ⎪ 0 1 + αL D: diffusion coefficient [cm2s-1] ⎪ ⎨ ∞ ∞ +∞ 2 s k ⎪ I * ( x, s , L ) = dk 2 dz sin(kz ) ∫ dx exp(− μ x )h( x − x0 , z ) ∫ ∫ ⎪⎩ π 0 μ (2μ + s) 0 −∞ (μ = k 2 + λ2 ; λ = 1 / L; s = vs / D ) Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC: useful quantities 1.2 1,1 ¾ Contrast: I 0 − I min C= I0 [u.arb] II[u. arb.] 1,0 1.0 0,9 0.8 0,8 0.6 0,7 ¾ Area: A 0.4 0,6 Exp. data σ = 0.9 μm σ = 2.5 μm 0.2 0,5 0,4 0.0 0 -80 -60 50 -40 ⎧A ⎨ ⎩σ -20 100 0 [μm] Xx[µm] 20 150 40 60 ¾ Width: σc 200 80 ⎧ 2 2 2 (σ − σ h ) ⎪L = 3 ⎨ ⎪s = 3 A(σ 2 − σ 2 ) −1 h ⎩ Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC contrast vs T theory Segregated impurities at extended defects (dislocations, grain boundaries) increase their recombination activity. The analysis of the cEBIC(T°) allows the determination of the impurity concentration at defects. Type L Increasing metal comtamination Type mixed Kveder et al. J. APPL. PHYS. 78, (1995), 4673 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Type H Multicrystalline Si wafers: lifetime maps As-grown (#162) after the POCl3 process step (# 145) Grains are free of active defects! Internal gettering Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC maps vs T: magnification 61x T=293K SEM image T=273K T=223K T=173K T=120K T=100K T=90K Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Magnification 650x T=293K SEM image T=273K T=223K T=173K T=120K T=100K T=90K Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali SE – EBIC comparison Bright spots Depleted impurity zones: less recombination Bright spots: indicative of metal segregation at defects and low lifetime Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC contrast vs T 110K 150K 2300K 300K -7 D2 EBIC current (10 A) 1,0 GB 0,8 0,6 0,4 100 150 200 250 Position (μm) D1 300 Dislocation1 Dislocation 2 GB GB Twin 50 40 Contrast (%) GB Twin 30 20 10 0 50 100 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali 150 200 Temperature (K) 250 300 EBIC vs T Dislocation1 Dislocation 2 GB GB Twin 50 Impurities cm-1 Contrast (%) 40 30 20 10 0 50 100 150 200 250 300 Temperature (K) Dislocations active near room temperature: strong contamination Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC comparison between ingots Ingot 1 50 Ingot 2 Dislocation1 Dislocation 2 GB GB Twin 15 40 14 Contrast (%) 30 20 Grain boundaries 12 11 10 9 GB1 GB2 8 10 7 60 80 100 120 140 0 50 100 150 200 250 160 180 200 220 240 260 Temperature (K) 300 Temperature (K) 12 Dislocations 10 8 Contrast (%) Contrast (%) 13 D1 D2 D3 D4 6 4 2 0 80 100 120 140 Temperature (K) Less contamination in Ingot 2 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Strong segregation at extended defects (GBs) 280 300 Impurity segregation during ingot growth Ingot bottom Impurities center ingot top C (%) increases with impurities segregation at BGs Mc Donald etdegli al. J. Appl. Phys.di 97,Milano”Bicocca” 033523 (2005) Università Studi Dipartimento di Scienza dei Materiali EBIC: contrast evolution vs cell process P diffusion step 11 10 9 8 ContrastA ContrastB ContrastC ContrastD ContrastE Contrast[%] 7 6 5 4 3 2 1 0 #162 As-grown #144 #145 #147 #Samples Contrast error ± 1% Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali #148 Contact anneal EBIC magnification Metal silicide precipitate1? [1] T. Buonassisi et al. Appl. Phys. Lett. 87 (2005) 121918 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali C~10% Iron content determination • Chen et al.[*] had demonstrated the possibility to correlate the EBIC contrast with the iron content. • Samples were contaminated at different levels (3.0x1012, 4.0 x1013, 4.0x1014, and 3.0x1015 cm−3) • [*] J. Chen et al. J. Apppl. Phys. 96 (2004) 5490 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Iron contamination • • • • • Samples: n-type Si Iron deposition from an aqueous solution of FeCl3. Heat treatment at 950 °C Cp4 etching Standard chemical cleaning procedure (RCA). • Iron solubility in Si: – S(T)=1.8 x1026e[-2.99/kbT] cm-3 – S(900°C)=9.6 x 1013 cm-3 [*] [*] A.A. Istratov et all Appl. Phys. A: Mateer. Sci. Process. 69 (1999) 13 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Iron contamination Ld= 140 μm Ld= 34 μm As-grown Fe contamined Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Iron content 3.0x1015 4.0x1014 4.0x1013 3.0x1012 cm−3 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza deietMateriali J. Chen al. J. Apppl. Phys. 96 (2004) 5490 Iron contamination J. Chen et al. J. Appl. Phys., Vol. 96, No. 10, 15 November 2004 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Relaxed SiGe buffer layers as virtual substrates (VS) for active layers Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali SiGe buffer layers growth by PECVD Common Characteristics: Doping: p(B) 1x1016 cm-3 Grading rate: 7%/um Constant composition cap: 2 um Si cap: 10nm deposited at 550°C Au 2 μm strained Si uniform SiGe 20% 3 μm graded SiGe Si substrate Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC measurements Room temperature (300 K); At different acceleration voltages. E-beam depth penetration vs E-beam acceleration voltage (Kev) Au Undoped strained Si Interac. sphere 15keV Re~0.6um Uniform SiGe ndoped Graded SiGe ndoped Interac. sphere 25keV Re~3um p-type substrate Si subst. 10n m 2 um 3 um 25KeV 15Ke V InGa ohmic contatct Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC measurements Beam energy =15KeV Temperature =300K Au X=20% Front (Au) – Back (InGa); PC = 3 (spot 711 nm). Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali InGa EBIC measurements Beam energy =25KeV Temperature =300K Au X=20% Front (Au) – Back (InGa); PC = 8 (spot 210 nm). Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali InGa EBIC measurements TD contrast = 4% Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Optical microscope: Normasky configuration 20% 40% 90% Etch pits are well defined at all Ge concentrations Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali EBIC vs chemical EPD counts Concentration of impurities below 1012 cm3 Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Edge Isolation of Solar Cells by Fiber Laser IR (1060 nm) and UV (355 nm) • The removal of parasitic emitter diffusion flowing around Solar Cells Wafer Edges is mandatory in order to get high fill factors. In industry, the plasma etching of wafer stacks is very common, but this is an off-line process, and undesired chemicals have to be used. • There is then a strong demand of other possibilities, to be performed in-line. • One of the most appealing novel Edge Isolation process is Laser Scribing. Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Isolation scheme Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali LBIC ScanLab Head: • Step response: (settling to 1/1000 full scale) • • 1% of full scale 10% of full scale 1.1 ms 2.4 ms Typical image field: (170x170) mm2 Resolution: 65536 pts on each axis Spot size 65 μm ∅ Lasers: 633 nm, 780 nm and 830 nm Variable neutral density filter (0.1, 0.2, 0.3, 1, 2, 3) • • • • • Acquisition system: • • Computer: Pentium III 550MHz I/V converter: – – • • • Transimpedance 104 ..1011 V/A Rise/fall time (10%-90%) 700ns at 104 Programming environment: LabView GPIB 488II NI-DAQ PCI MIO16E4 (250Ksample/s) via Lock-in acquisition Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali LBIC maps: edge problems Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali LBIC maps: IR vs UV laser IR UV Higher isolation for the UV laser treated sample Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali SEM images IR UV More redeposit (shunt) in IR laser treated sample Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali Thanks Maurizio Acciarri Dipartimento di Scienza dei Materiali Università Milano Bicocca Via Cozzi 53 20125 Milano Italy www.mater.unimib.it [email protected] Università degli Studi di Milano”Bicocca” Dipartimento di Scienza dei Materiali