7. Atmospheric neutrinos and Neutrino oscillations Corso “Astrofisica delle particelle” particelle” Prof. Maurizio Spurio Università di Bologna. A.a. 2011/12 Outlook Some history Neutrino Oscillations How do we search for neutrino oscillations Atmospheric neutrinos 10 years of SuperSuper-Kamiokande Upgoing muons and MACRO Interpretation in terms on neutrino oscillations Appendix: The Cherenkov light 7.1 Some history At the beginning of the ’80s, some theories (GUT) predicted the proton decay with measurable livetime The proton was thought to decay in (for instance) pe+π0νe Detector size: 103 m3, and mass 1kt (=1031 p) The main background for the detection of proton decay were atmospheric neutrinos interacting inside the experiment Water Cerenkov Experiments (IMB, Kamiokande) Tracking calorimeters (NUSEX, Frejus, KGF) Result: NO p decay ! But some anomalies on the neutrino measurement! γγ e Neutrino Interaction Proton decay 7.2 Neutrino Oscillations Idea of neutrinos being massive was first suggested by B. Pontecorvo Prediction came from proposal of neutrino oscillations Neutrinos are created or annihilated as W.I. eigenstates |ν νe> , |ν νµ> , |ν ντ> =Weak Interactions (WI) eigenstats |ν1> , |ν2> , |ν3> =Mass (Hamiltonian) eigenstats •Neutrinos propagate as a superposition of mass eigenstates Weak eigenstates (νe, νµ, ντ) are expressed as a combinations of the mass eigenstates (ν ν1, ν2,ν ν3). These propagate with different frequencies due to their different masses, and different phases develop with distance travelled. Let us assume two neutrino flavors only. The time propagation: |ν ν(t)> >= (|ν |ν1> , |ν2> ) i M = (2x2 matrix) M ii = dν dt = M ν (t ) 2 m p 2 + mi2 ≈ Eν + i 2 Eν M ij = 0 (eq.1) (eq.2) Time propagation eq.1 becames, using eq.2) dν mi2 i = Eν + dt 2 Eν whose solution is : v(t ) (eq.4) vi (t ) = vi (0) e − iϖ it (eq.5) with mi2 ϖ i = Eν + 2 Eν During propagation, the phase difference is: (m22 − m12 ) ⋅ t ∆Φ i = 2 Eν (eq.6) Time evolution of the “physical” neutrino states: • Let us assume two neutrino flavors only (i.e. the electon and the muon neutrinos). • They are linear superposition of the n1,n2 eigenstaten: |νe> = cosθ |ν1> + sinθ |ν2> θ = mixing angle |νµ> = -sinθ |ν1> + cosθ |ν2> (eq.3) • Using eq. 5 in eq. 3, we get: v e = cos θ v 1 ( 0 ) e − i ϖ 1 t + sin θ v 2 ( 0 ) e − i ϖ 2 i t vµ = − sin θ v 1 ( 0 ) e − i ϖ 1 t + cos θ v 2 ( 0 ) e − i ϖ 2 i t (eq.7) •At t=0, eq. 7 becomes: ve = cos θ v 1 ( 0 ) + sin θ v 2 ( 0 ) vµ = − sin θ v 1 ( 0 ) + cos θ v 2 ( 0 ) (eq.8) • By inversion of eq. 8: v1 (0 ) = cos θ v e ( 0 ) − sin θ v µ ( 0 ) v2 (0 ) = sin θ v e ( 0 ) + cos θ v µ ( 0 ) (eq.9) • For the experimental point of view (accelerators, reactors), a pure muon (or electron) state a t=0 can be prepared. For a pure νµ beam, eq. 9: v1 (0 ) = − sin θ v µ ( 0 ) v2 (0 ) = cos θ v µ ( 0 ) (eq.10) The time evolution of the νµ state of eq. 8: v µ = sin 2 θ v µ ( 0 ) e − iϖ 1t + cos 2 θ v µ ( 0 ) e − iϖ 2 i t By definition, the probability that the state at a given time is a νµ is: Pν µν µ (eq.11) ν ≡ 0 µ Pν µ ν µ ≡ + sin 2 ν ν µ θ cos 2 t µ 2 = sin θ (e i ( ϖ 2 µ (eq. 12) •Using eq. 11, the probability: 0 ν t 1 −ϖ 2 4 )t θ + cos + e − i (ϖ 1 4 −ϖ θ + 2 )t ) (eq. 13) i.e. using trigonometry rules: Pν µ ν µ = 1 − sin 2 (ϖ 1 − ϖ 2 ) t 2 θ ⋅ sin 2 2 (eq. 14) mi2 ϖ i = Eν + 2 Eν Finally, using eq.5: Pν µν µ = 1 − sin 2 2 θ ⋅ sin 2 ( m 22 − m 12 ) t 4 Eν (eq. 15) With the following substitutions in eq.15: - the neutrino path length L=ct (in Km) - the mass difference ∆m2 = m22 – m12 (in eV2) - the neutrino Energy Eν ν (in GeV) Pν µν µ 2 ∆m ⋅ L 2 2 = 1 − sin 2θ ⋅ sin 1.27 Eν (eq. 16) θ ≠ 0 To see “oscillations” pattern: ∆m 2 ⋅L π ≈ 1 . 27 Eν 2 7.3 How do we search for neutrino oscillations? ..with atmospheric neutrinos • ∆m2, sin22Θ from Nature; • Eν = experimental parameter (energy distribution of neutrino giving a particular configuration of events) • L = experimental parameter (neutrino path length from production to interaction) Pν µν µ ∆m 2 ⋅ L = 1 − sin 2θ ⋅ sin 1.27 Eν 2 2 Appearance/Disappearance Pν µν µ ∆m 2 ⋅ L = 1 − sin 2θ ⋅ sin 1.27 Eν 2 2 7.4- Atmospheric neutrinos The recipes for the evaluation of the atmospheric neutrino fluxfluxπ + → µ + +ν µ µ + → e+ + ν µ + ν e ∴ i) The primary spectrum E < 1015 eV Galactic 5. 1019 < E< 3. 1020 eV E-3 spectrum 1015 < E< 1018 eV galactic ? GZK cut E ≥ 5. 1019 eV Extra-Galactic? Unexpected? ii)-- CR ii) CR--air cross section It needs a model of nucleus-nucleus interactions pp Cross section versus center of mass energy. Average number of charged hadrons produced in pp (andpp) collisions versus center of mass energy iii) Model of the atmosphere ATMOSPHERIC NEUTRINO PRODUCTION: •high precision 3D calculations, •refined geomagnetic cut-off treatment (also geomagnetic field in atmosphere) •elevation models of the Earth •different atmospheric profiles •geometry of detector effects Output: the neutrino (ν νe,ν νµ) flux See for instance the FLUKA MC: http://www.mi.infn.it/~battist/ne utrino.html iv) The Detector response ν Fully Contained ν Stopping µ Partially Contained µ µ Pν µν µ ∆m 2 ⋅ L = 1 − sin 2θ ⋅ sin 1.27 Eν 2 Through going µ 2 ν µ ν Energy spectrum of ν for each event category 1000 FC ν µ FC ν e PC ν µ 750 500 up-stop µ up-thru µ 250 0 −2 −1 10 10 1 10 10 E ν (GeV) 2 10 3 10 4 10 5 Energy spectrum (from Monte Carlo) of atmospheric neutrinos seen with different event topologies (SuperKamiokande) Rough estimate: how many ‘Contained events’ in 1 kton detector νµ νe 1. Flux: Φν ~ 1 cm-2 s-1 2. Cross section (@ 1GeV): σν~0.5 10-38 cm2 3. Targets M= 6 1032 (nucleons/kton) 4. Time t= 3.1 107 s/y Nint = Φν (cm-2 s-1) x σν (cm2)x M (nuc/kton) x t (s/y) ~ ~ 100 interactions/ (kton y) 7.5 10 years of Super-Kamiokande 1996.4 Start data taking 1998 Evidence of atmospheric ν oscillation (SK) SK-I 1999.6 K2K started 2001 Evidence of solar ν oscillation (SNO+SK) 2001.7 data taking was stopped for detector upgrade 2001.11 Accident partial reconstruction 2002.10 data taking was resumed SK-II 2005 Confirm ν oscillation by accelerator ν (K2K) 2005.10 data taking stopped for full reconstruction SK-III 2006.7 data taking was resumed SK-IV 2009 data taking Measurement of contained events and SuperKamiokande (Japan) 1000 m Deep Underground 50.000 ton of UltraUltra-Pure Water 11000 +2000 PMTs Cherenkov Radiation As a charged particle travels, it disrupts the local electromagnetic field (EM) in a medium. Electrons in the atoms of the medium will be displaced and polarized by the passing EM field of a charged particle. Photons are emitted as an insulator's electrons restore themselves to equilibrium after the disruption has passed. In a conductor, the EM disruption can be restored without emitting a photon. In normal circumstances, these photons destructively interfere with each other and no radiation is detected. However, when the disruption travels faster than light is propagating through the medium, the photons constructively interfere and intensify the observed Cerenkov radiation. Cherenkov Radiation One of the 13000 PMTs of SK How to tell a νµ from a νe : Pattern recognition νµ νe Contained event in SuperKamiokande Fully Contained (FC) Partially Contained (PC) µ e or µ No hit in Outer Detector Reduction One cluster in Outer Detector Automatic ring fitter Particle ID Energy reconstruction Fiducial volume (>2m from wall, 22 ktons) Evis > 30 MeV (FC), > 3000 p.e. (~350 MeV) (PC) Fully Contained 8.2 events/day Evis<1.33 GeV : Sub-GeV Evis>1.33 GeV : Multi-GeV Partially Contained 0.58 events/day Contained events. The up/down symmetry in SK and νµ/νe ratio. Up/Down asymmetry interpreted as neutrino oscillations Eν ν=0.5GeV Expectations: events inside the detector. For Eν > a few GeV, Upward / downward = 1 Eν ν=3 GeV Eν ν=20 GeV Zenith angle distribution SK:1289 days (79.3 kty) • Electron neutrinos = DATA and MC (almost) OK! • Muon neutrinos = Large deficit of DATA w.r.t. MC ! DATA µ /e µ /e Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events in SK. The lines show the best fits with (red) and without (blue) oscillations; the best-fit is ∆m2 = 2.0 × 10−3 eV2 and sin2 2θ = 1.00. Data MC = 0.638 ± 0.017 ± 0.050 Zenith Angle Distributions (SK(SK-I + SK SK--II) νµ–ντ oscillation (best fit) SK-I + SK-II null oscillation SK-I + SK-II 400 400 Sub-GeV µ-like P < 400 MeV/c P<400MeV/c 200 300 300 150 200 200 100 100 100 50 0 -1 Number of Events Sub-GeV e-like P < 400 MeV/c P<400MeV/c 400 -0.5 0 0.5 1 Sub-GeV e-like P > 400 MeV/c P>400MeV/c 300 0 -1 600 -0.5 0 0.5 1 0 -1 300 multi-ring e-like 100 -0.5 0 0.5 1 PC stop 300 20 200 100 0 0.5 1 0 -1 200 200 150 150 100 100 50 50 0 -1 -0.5 0 cosΘ 0.5 -0.5 0 0.5 1 0 -1 Multi-GeV µ-like Multi-GeV e-like 1 0 -1 0 -1 -0.5 0 0.5 1 PC through 40 400 -0.5 multi-ring µ-like 200 Sub-GeV µ-like P > 400 MeV/c P>400MeV/c 200 0 -1 Livetime SK-I + SK-II •SK-I 1489d (FCPC) 1646d (Upmu) •SK-II 804d (FCPC) 828d(Upmu) -0.5 0 0.5 1 Upward stopping µ 200 µ-like 100 e-like 0 -1 600 150 -0.5 0 0.5 Upward through-going non-showering µ 1 150 400 100 200 50 Upward through-going showering µ 100 50 -0.5 0 cosΘ 0.5 1 0 -1 -0.8 -0.6 -0.4 -0.2 0 cosΘ 0 -1 -0.8 -0.6 -0.4 -0.2 0 0 -1 -0.8 -0.6 -0.4 -0.2 0 cosΘ NOTE: All topologies, last results (September 2007) cosΘ Atmospheric Neutrino Anomaly Summary results since the mid-1980's: R’= µ /e µ /e D a ta MC Double ratio between the number of detected and expected νµ and νe Calorimetric Water Cherenkov 7.6 Upgoing muons and MACRO (Italy) • Large acceptance (~10000 m 2 sr for an isotropic flux) • Low downgoing µ rate (~10 -6 of the surface rate ) • ~600 tons of liquid scintillator to measure (time resolution ~500psec) • ~20000 m 2 of streamer tubes (3cm cells) for tracking (angular resolution < 1° ) T.O.F. R.I.P December 2000 The Gran Sasso National Labs http://www.lngs.infn.it/ Neutrino event topologies in MACRO Up throughgoing In up Absorber Streamer Scintillator Up stop In down 1) 4) 3) 2) • Liquid scintillator counters, (3 planes) for the measurement of time and dE/dx. • Streamer tubes (14 planes), for the measurement of the track position; • Detector mass: 5.3 kton • Atmospheric muon neutrinos produce upward going muons • Downward going muons ~ 106 upward going muons • Different neutrino topologies Energy spectra of νµ events in MACRO • <E>~ 50 GeV throughgoing µ • <E>~ 5 GeV, Internal Upgoing (IU) µ; • <E>~ 4 GeV , internal downgoing (ID) µ and for upgoing stopping (UGS) µ; Neutrino induced events are upward throughgoing muons,, Identified by the timemuons time-ofof-flight method 1 T2 Streamer tube track β = (T 1 T1 µ from ν: upgoing 1 β = (T 1 − T L 2 )⋅ c = − T L 2 )⋅ c = +1 µ -1 µ Atmospheric µ: downgoing MACRO Results: event deficit and distortion of the angular distribution - - - - No oscillations ____ Best fit ∆m2= 2.2x10-3 eV2 sin22θ θ=1.00 Observed= 809 events Expected= 1122 events (Bartol) Observed/Expected = 0.721± ±0.050(stat+sys)±0.12(th) MACRO Partially contained events IU Obs. 154 events Exp. 285 events Obs./Exp. = 0.54± ±0.15 MC with oscillations ID+UGS Obs. 262 events Exp. 375 events Obs./Exp. = 0.70± ±0.19) consistent with up throughgoing muon results Effects of νµ oscillations on upgoing events • If θ is the zenith angle and D= Earth diameter ν L=Dcosθ µ underground θ detector • For throughgoing neutrino-induced muons in MACRO, Eν = 50 GeV (from Monte Carlo) Earth Pν µν µ θ 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 cos(θ ) ∆ m2=0.0002 ∆ m2=0.0001 -1,000 0,62 0,89 -0,985 0,63 0,90 -0,940 0,66 0,91 -0,866 0,71 0,92 -0,766 0,77 0,94 -0,643 0,83 0,96 -0,500 0,89 0,97 -0,342 0,95 0,99 -0,174 0,99 1,00 0,000 1,00 1,00 ∆m2 ⋅ L = 1 − sin 2θ ⋅ sin 1.27 E ν 2 2 1,00 0,90 0,80 Pν µν µ 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 -1,00 -0,80 -0,60 -0,40 -0,20 cosθ 0,00 Oscillation Parameters • The value of the “oscillation parameters” sin2θ and ∆m2 correspond to the values which provide the best fit to the data • Different experiments different values of sin2θ and ∆m2 • The experimental data have an associated error. All the values of (sin2θ, ∆m2) which are compatible with the experimental data are “allowed”. • The “allowed” values span a region in the parameter space of (sin2θ, ∆m2) Pν µν µ 2 m ∆ ⋅ L 2 2 = 1− sin 2θ ⋅ sin 1.27 Eν 1.9 x 10-3 eV2 < ∆m2 < 3.1 x 10-3 eV2 sin2 2θ θ > 0.93 (90% CL) “Allowed” parameters region 90% C. L. allowed regions for νµ → ντ oscillations of atmospheric neutrinos for Kamiokande, SuperK, Soudan-2 and MACRO. Why not νµ→νe ? Apollonio et al., CHOOZ Coll., Phys.Lett.B466,415 νµ disappearance: History Anomaly in R=(µ R=(µ/e)observed/( /(µ µ/e)predicted Kamiokande: ZenithZenith-angle distribution Super-Kamiokande: PRL 1998 SuperMACRO, PRL 1998 K2K: First acceleratoraccelerator-based long baseline experiment: 1999 – 2004 Confirmed atmospheric neutrino results Kamiokande: PLB 1994 Super-Kamiokande/MACRO: SuperDiscovery of νµ oscillation in 1998 Kamiokande: PLB 1988, 1992 Discrepancies in various experiments Final result 4.3σ 4.3σ: PRL 2005, PRD 2006 MINOS: Precision measurement: 2005 First result: PRL2006 See for review: The “Neutrino Industry” Janet Conrad web pages: http://projects.fnal.gov/nuss/ Torino web Pages: http://www.nevis.columbia.edu/~conrad/nupage.html Fermilab and KEK “Neutrino Summer School” http://www.hep.anl.gov/ndk/hypertext/ http://www.nu.to.infn.it/Neutrino_Lectures/ Progress in the physics of massive neutrinos, hepph/0308123 Appendice: La radiazione Cerenkov Effetto Cerenkov Per una trattazione classica dell’effetto Cerenkov: Jackson : Classical Electrodynamics, cap 13 e par. 13.4 e 13.5 La radiazione Cerenkov e’ emessa ogniqualvolta una particella carica attraversa un mezzo (dielettrico) con velocita’ βc=v>c/n c=v>c/n,, dove v e’ la velocita’ della particella e n l’indice di rifrazione del mezzo. Intuitivamente: la particella incidente polarizza il dielettrico gli atomi diventano dei dipoli. Se β>1/n momento di dipolo elettrico emissione di radiazione. β<1/n β>1/n β> L’ angolo di emissione θc puo’ essere interpretato qualitativamente come un’onda d’urto come succede per una barca od un aereo supersonico. llight=(c/n)∆t wav e fro nt θ lpart=βc β ∆t 1 cosθ C = nβ with n = n(λ ) ≥ 1 θC Esiste una velocita’ di soglia βs = 1/n θc ~ 0 Esiste un angolo massimo θmax= arcos(1/n) La cos(θ cos(θ) =1/β =1/βn e’ valida solo per un radiatore infinito, e’ comunque una buona approssimazione ogniqualvolta il radiatore e’ lungo L>>λ L>>λ essendo λ la lunghezza d’onda della luce emessa Numero di fotoni emessi per unita’ di percorso e intervallo unitario di lunghezza d’onda. Osserviamo che decresce al crescere della λ dN/dλ λ d N 2πz α 1 2πz α 2 = 1 − = sin θC 2 2 2 2 dxdλ λ β n λ 2 2 d 2N 1 ∝ 2 dxdλ λ 2 c hc with λ = = ν E d 2N = const. dxdE dN/dE Il numero di fotoni emessi per unita’ di percorso non dipende dalla frequenza Ε dE 1 2 h dω − = z α ∫ ω 1 − 2 2 dx c β n (ω ) L’ energia persa per radiazione Cerenkov cresce con β. Comunque anche con β 1 e’ molto piccola. Molto piu’ piccola di quella persa per collisione (Bethe Block), al massimo 1% . θmax (β=1) air 1.000283 1.36 isobutane 1.00127 2.89 water 1.33 41.2 quartz 1.46 46.7 medium n Nph (eV-1 cm-1) 0.208 0.941 160.8 196.4 1) Esiste una soglia per emissione di luce Cerenkov 2) La luce e’ emessa ad un angolo particolare Facile utilizzare l’effetto Cerenkov per identificare le particelle. particelle. Con 1) posso sfruttare la soglia Cerenkov a soglia soglia.. Con 2) misurare l’angolo DISC, RICH etc. La luce emessa e rivelabile e’ poca poca.. Consideriamo un radiatore spesso 1 cm un angolo θc = 30o ed un ∆E = 1 eV ed una particella di carica 1. ⇒ N ph dN z 2α sin 2 ϑc = dEdx hc = 370 ⋅ sin 2 ϑc ⋅ L ⋅ ∆E = 370 × 0.25 = 92.5 Considerando inoltre che l’efficienza quantica di un fotomoltiplicatore e’ ~20% Npe=18 fluttuazioni alla Poisson