CORSO INTENSIVO ESTIVO DI ALBA DI CANAZEI
STATISTICA
A. A. 2013/2014
(Prof. Marco Minozzo; [email protected])
Il corso intensivo di "Statistica" (14E07) che si terrà dal 27 luglio al 9 agosto 2014 verterà sulla totalità degli argomenti
di calcolo delle probabilità e di statistica inferenziale degli insegnamenti di:
Statistica (Prof. Marco Minozzo, 9 CFU) della Laurea in Economia e Commercio (sede di Verona);
Statistica (Prof.ssa Veronica Cicogna, 9 CFU) della Laurea in Economia Aziendale (sede di Verona);
Statistica (Prof.ssa Manuela Cattelan, 9 CFU) della Laurea in Economia Aziendale (sede di Vicenza) e della Laurea in
Economia e Commercio (sede di Vicenza).
Oltre che agli studenti dei corsi sopracitati, questo corso intensivo è rivolto anche agli studenti che devono ancora
sostenere l’esame di:
Istituzioni di Statistica (Prof. Veronica Cicogna), 10 CFU, sede di Verona, vecchio ordinamento;
Istituzioni di Statistica (Prof. Marco Minozzo), 10 CFU, sede di Vicenza, vecchio ordinamento;
Statistica (Prof. Marco Minozzo), 10 CFU, sede di Verona, vecchio ordinamento;
Statistica (Prof. Veronica Cicogna), 6 CFU, sede di Verona, vecchio ordinamento;
Statistica (Prof. Marco Minozzo), 6 CFU, sede di Vicenza, vecchio ordinamento;
Statistica I, Statistica II (Prof. Veronica Cicogna), vecchio ordinamento quadriennale.
Conoscenze preliminari
Per affrontare in modo adeguato gli argomenti dell’insegnamento di Statistica è fondamentale aver già seguito e
superato l'esame di Matematica. Nel caso non si fosse già superato l'esame di Matematica (che per questo anno
accademico 2013/2014 non è propedeutico all'esame di Statistica), e si volesse ugualmente seguire il corso intensivo
estivo di Statistica, si consiglia di sottoporsi (anche con l'aiuto di appunti o libri di testo) alla prova di autovalutazione
presente sulla piattaforma e-learning di Ateneo dell’insegnamento di Statistica (Prof. Marco Minozzo, A.A. 2013/2014,
9 CFU). Se la soluzione degli esercizi di questa prova risultasse particolarmente difficile (o addirittura impossibile), si
consiglia di desistere dall'impegnarsi con il corso intensivo di Statistica fino a quando non si siano maturate le adeguate
competenze matematiche.
Gli studenti interessati al corso intensivo sono invitati a prendere visione del programma, del libro di testo (G.
Cicchitelli, Statistica: principi e metodi, Seconda edizione, Pearson Italia, Milano, 2012) e delle esercitazioni
dell’insegnamento di Statistica (Prof. Marco Minozzo, A.A. 2013/2014, 9 CFU) presenti nel portale e-learning
dell’insegnamento stesso. Si consiglia agli studenti interessati di scaricare e stampare tutte le esercitazioni (assieme alle
soluzioni ed al relativo materiale) presenti nel portale e-learning prima dell’inizio delle lezioni di Canazei. Uno studio
preliminare, anche parziale o superficiale, degli argomenti del corso è fortemente consigliato.
PROGRAMMA DEL CORSO INTENSIVO
Si sottolinea che durante il corso intensivo si affronteranno tutti gli argomenti di calcolo delle probabilità e di statistica
inferenziale dei sopracitati insegnamenti; non verranno trattati gli argomenti di statistica descrittiva. Considerato il
carattere intensivo del corso, le lezioni e le esercitazioni saranno erogate enfatizzando particolarmente gli aspetti
applicativi ed esemplificativi e verrà stimolata l’attiva partecipazione degli studenti.
Calcolo delle Probabilità
Modelli deterministici e modelli probabilistici; eventi elementari e spazio campionario; alberi degli eventi; eventi
aleatori e operazioni tra eventi.
Elementi di calcolo combinatorio: permutazioni semplici, disposizioni semplici, combinazioni semplici, disposizioni
con ripetizione, permutazioni tra elementi non tutti distinti (cenni).
Algebre e sigma-algebre; definizione assiomatica della probabilità; funzione di probabilità; spazi di probabilità; diverse
interpretazioni della probabilità; primi teoremi sulla probabilità; legge della somma.
Probabilità condizionata; proprietà della probabilità condizionata; legge del prodotto; indipendenza stocastica tra eventi;
partizioni di eventi; formula delle probabilità totali; teorema di Bayes.
Variabili aleatorie; condizione di misurabilità; funzione di ripartizione; proprietà della funzione di ripartizione; variabili
aleatorie discrete e continue; distribuzione di probabilità e funzione di densità di probabilità; trasformata di una variabile
aleatoria Y=g(X); valore atteso E(X), varianza Var(X), moda, momenti non centrati e momenti centrati; E(X) e Var(X) di
trasformate lineari e non di una variabile aleatoria; disuguaglianza di Markov e disuguaglianza di Tchebycheff.
Particolari distribuzioni discrete: uniforme (con E(X) e Var(X)), Bernoulli (con E(X) e Var(X)), binomiale (con E(X)),
Poisson (cenni), geometrica (cenni).
Particolari distribuzioni continue: rettangolare (con E(X) e Var(X)), normale (standardizzazione, tavole della normale
standard, calcolo di probabilità e quantili), esponenziale negativa (cenni); distribuzione lognormale (cenni).
Variabili aleatorie doppie discrete; funzione di ripartizione congiunta; distribuzione di probabilità congiunta;
distribuzioni di probabilità marginali e condizionate; indipendenza tra variabili aleatorie; variabili aleatorie multiple
(cenni); valore atteso di una funzione di due variabili aleatorie; covarianza Cov(X,Y); coefficiente di correlazione di
Bravais ρ(X,Y); valore atteso condizionato E(X|Y) e varianza condizionata Var(X|Y).
Valore atteso e varianza di combinazioni lineari di variabili aleatorie; valore atteso e varianza della media campionaria
di variabili aleatorie indipendenti.
Legge (debole) dei grandi numeri (con dimostrazione); legge dei grandi numeri di Bernoulli per frequenze relative.
Teorema del limite centrale per variabili aleatorie indipendenti e identicamente distribuite; approssimazione della
distribuzione binomiale alla distribuzione normale.
Statistica Inferenziale
Introduzione all’inferenza statistica; campioni casuali (probabilistici); variabilità campionaria; statistiche campionarie;
media campionaria; varianza campionaria e varianza campionaria corretta; frequenza relativa campionaria; distribuzioni
campionarie; distribuzioni chi-quadrato, t di Student, F di Fisher.
Stima puntuale; stimatori; proprietà degli stimatori: correttezza, efficienza, consistenza; errore quadratico medio; stima
della media di una popolazione normale; stima della varianza di una popolazione normale; stima di una proporzione di
una popolazione dicotomica.
Stima per intervallo; intervallo di confidenza per la media di una popolazione normale (con σ2 noto e σ2 incognito);
intervallo di confidenza per la media di una popolazione qualsiasi (grandi campioni); intervallo di confidenza per la
varianza di una popolazione normale (con media nota e media incognita); intervallo di confidenza per la proporzione di
una popolazione dicotomica (grandi campioni).
Verifica delle ipotesi; ipotesi nulla e ipotesi alternativa; ipotesi semplici e ipotesi composte; errori di I e di II tipo;
livello di significatività e potenza; test unilaterali e bilaterali; verifica di ipotesi sulla media di una popolazione normale
(con σ2 noto e σ2 incognito); verifica di ipotesi per la varianza di una popolazione normale; verifica di ipotesi per la
proporzione di una popolazione dicotomica (grandi campioni); verifica di ipotesi su due proporzioni di popolazioni
dicotomiche (grandi campioni); verifica di ipotesi su due varianze di popolazioni normali; verifica di ipotesi su due
medie di popolazioni normali (con varianze note, e con varianze incognite ma uguali).
Guida allo studio del libro di testo
G. Cicchitelli (2012), Statistica: principi e metodi, Seconda edizione, Pearson Italia, Milano.
Le seguenti parti del libro di testo sono escluse dal programma:
•
•
•
•
•
•
paragrafi 5.6, 5.7, 9.4, 10.3, 11.2.3 e 16.3.1;
capitoli 20 e 21;
appendici A.4, A.6, A.7 e B.6;
testo a pag. 446 ed esempio 19.5 alle pagg. 446-447;
combinazioni con ripetizione a pag. 522;
dimostrazione del valore atteso e della varianza della distribuzione di Poisson alle pagg. 526-527.
Le seguenti parti del libro di testo sono da considerarsi come “lettura”:
•
•
•
•
intervallo di confidenza a pag. 441;
intervallo di confidenza a pag. 444;
intervallo di confidenza a pag. 447;
intervallo di confidenza a pag. 449.
ACCERTAMENTO DEL PROFITTO E MODALITA’ DI ESAME
La verifica delle competenze acquisite dagli studenti durante il corso intensivo avverrà tramite prove scritte (esercizi e/o
domande a risposta multipla) che si terranno durante ed alla fine del corso. Si terrà una prima prova scritta sul calcolo
delle probabilità alla fine della prima settimana, ed una seconda prova scritta sulla statistica inferenziale alla fine della
seconda settimana. Dell’esito positivo di tali prove scritte si terrà conto in sede di esame finale integrativo che si
svolgerà presso la sede di Verona (Prof. Marco Minozzo e Prof. Veronica Cicogna) e presso la sede di Vicenza (Prof.
Manuela Cattelan) nella sessione autunnale di esami. Al riguardo si precisa che ogni prova scritta si intende superata se
si raggiunge un voto di almeno 15/30 e che per poter sostenere a Verona o a Vicenza, nella sessione autunnale di esami,
lo scritto solo sulla parte di programma non svolta durante il corso intensivo (ovvero sulla statistica descrittiva) bisogna
aver superato tutti e due gli scritti di Canazei. Si ricorda che le prove di accertamento del profitto in Canazei potranno
essere sostenute da tutti gli studenti che avranno frequentato il corso intensivo, mentre l’esame ufficiale (ovvero la
prova integrativa in Verona od in Vicenza) potrà essere sostenuta solo se lo studente è in regola con tutti gli
adempimenti amministrativi e curriculari. Il lunedì della prima settimana, gli studenti che lo vorranno, avranno la
possibilità di sottoporsi ad una prova scritta di accertamento dell’apprendimento sulla parte di programma che non verrà
svolta durante il corso intensivo, ovvero sulla statistica descrittiva. Dell’esito positivo di tale prova scritta se ne terrà
conto in sede di esame finale.
PROGRAMMA PER L’INTEGRAZIONE
STATISTICA (9 CFU, 10 CFU; Economia e Commercio; sede di Verona)
Prof. MARCO MINOZZO
Relativamente agli insegnamenti della sede di Verona del Prof. Marco Minozzo, si riporta di seguito il programma su
cui verterà la prova scritta integrativa riservata agli studenti che avranno superato entrambe le prove scritte di calcolo
delle probabilità e di statistica inferenziale di Canazei. Verosimilmente, il pre-appello riservato agli studenti che
devono sostenere l’integrazione si terrà a Verona alla fine di agosto 2014.
PROGRAMMA PER L’INTEGRAZIONE
Statistica Descrittiva
Concetti introduttivi; fenomeni collettivi; popolazione e unità statistiche; indagini censuarie e campionarie; il
questionario; la raccolta, lo spoglio e la classificazione dei dati; caratteri qualitativi ordinali e non ordinali; caratteri
quantitativi discreti e continui; caratteri ciclici; caratteri trasferibili; fenomeni di movimento e fenomeni di stato; fonti
statistiche.
Tipi di dati statistici; la matrice dei dati; distribuzioni unitarie semplici, doppie e multiple; distribuzioni di frequenza
(assolute) semplici, doppie e multiple; distribuzioni di frequenza relative e percentuali; distribuzioni in classi; densità di
frequenza; distribuzioni pesate; distribuzioni di quantità.
Frequenze cumulate e retrocumulate; funzione di ripartizione a gradini per distribuzioni di frequenza; funzione di
ripartizione continua per dati in classi.
Rappresentazioni grafiche; grafici a barre e a nastri; areogrammi; cartogrammi; pictogrammi; diagrammi radar;
istogramma per distribuzioni in classi.
Sommatorie semplici e doppie; produttorie; operazioni con le sommatorie.
Gli indici di localizzazione; la media aritmetica; la media geometrica; la media armonica; proprietà della media
aritmetica: media aritmetica di una trasformazione lineare, somma degli scarti, somma del quadrato degli scarti, media
aritmetica del miscuglio; la media quadratica; la media cubica; la media potenziata di quarto ordine e le altre medie
potenziate; le medie lasche; la mediana per distribuzioni unitarie, di frequenza e in classi; la mediana come centro di
grado 1; quartili, decili, percentili e quantili per distribuzioni unitarie, di frequenza e in classi; moda e classe modale.
I numeri indici a base fissa; cambiamento di base; i numeri indici a base mobile; passaggio dai numeri indici a base fissa
a quelli a base mobile; le variazioni relative e la variazione media relativa; i numeri indici complessi di Laspeyres e di
Paasche.
La variabilità e gli indici di variabilità; il campo di variazione; la differenza interquartile; gli scostamenti semplici medi
dalla media; lo scarto quadratico medio (deviazione standard); la varianza; la varianza di una trasformazione lineare e
del miscuglio; la standardizzazione; le differenze medie; gli indici relativi di variabilità: il coefficiente di variazione.
L’asimmetria e gli indici di asimmetria; la curtosi e le misure di curtosi; i momenti dall’origine e i momenti centrali.
Distribuzioni doppie e multiple, unitarie e di frequenza; media aritmetica della somma di più variabili; media aritmetica
del prodotto di due variabili; codevianza e covarianza; varianza della somma di due o più variabili; distribuzioni
condizionate; media aritmetica e varianza condizionata; indipendenza; indice di dipendenza χ2; coefficiente di
contingenza C; paradosso di Simpson (cenni).
Interpolazione statistica; il metodo dei minimi quadrati per funzioni lineari nei parametri; la retta dei minimi quadrati
(per distribuzioni doppie unitarie); il metodo dei minimi quadrati per funzioni riconducibili ad una retta tramite
trasformazione delle variabili; il coefficiente di correlazione lineare r di Bravais; la disuguaglianza di Cauchy-Schwarz;
il coefficiente di determinazione R2; decomposizione della devianza totale in devianza spiegata più devianza residua; la
retta dei minimi quadrati per distribuzioni di frequenza in tabella a doppia entrata.
PROGRAMMA PER L’INTEGRAZIONE
STATISTICA (9 CFU; Economia Aziendale; sede di Verona), ISTITUZIONI DI STATISTICA (sede di Verona),
STATISTICA (6 CFU; sede di Verona) e STATISTICA (ordinamento quadriennale)
Prof.ssa VERONICA CICOGNA
Relativamente agli insegnamenti della Prof.ssa Veronica Cicogna, gli studenti che avranno superato le prove scritte di
calcolo delle probabilità e di statistica inferenziale di Canazei dovranno sostenere nel pre-appello riservato (che si terrà
a Verona verosimilmente alla fine di agosto 2014) un accertamento scritto sulla statistica descrittiva (non svolta durante
il corso intensivo di Canazei).
PROGRAMMA PER L’INTEGRAZIONE
Statistica Descrittiva
- Introduzione alla Statistica
Statistica descrittiva e statistica inferente. Popolazione e unità statistiche. Fasi di un’indagine statistica. Caratteri
qualitativi e quantitativi. Rilevazione e organizzazione dei dati. Distribuzioni di frequenze. Rappresentazioni grafiche.
- Indici di localizzazione
Medie potenziate.
Definizione di Media aritmetica e le sue proprietà. Definizione di Media armonica. Definizione di Media geometrica.
Definizione di Media quadratica. Definizione di Media cubica.
Medie “lasche”: la mediana e le sue proprietà, percentili e quartili; moda.
- Indici di variabilità
Indici di variabilità assoluti: intervalli di variazione (Range e Differenza interquartile); Scarti da un valore medio:
Scarto quadratico medio, Varianza e i due metodi indiretti di calcolo della varianza. La procedura di
standardizzazione.
Indici di variabilità relativi: Coefficiente di variazione.
- Indici di forma
Definizione di momento. I momenti dall’origine e i momenti centrali.
Indici di asimmetria: Coefficiente di Skewness o Indice di Asimmetria di Pearson, Indice di Asimmetria di Fisher.
Indici di appiattimento: Indice di Curtosi di Pearson.
- Rapporti statistici
I rapporti o numeri indici a base fissa e a base mobile.
- Elementi di statistica descrittiva bivariata
Tabelle di contingenza. Distribuzioni marginali. Distribuzioni condizionate.
Media aritmetica e varianza della somma di caratteri. Media aritmetica del prodotto di caratteri. Covarianza.
Analisi della dipendenza. Indice “chi-quadrato”. Indice di Cramér.
Analisi della regressione. Metodo dei minimi quadrati. Coefficiente di determinazione. Rette di regressione.
Correlazione.
Testi di riferimento
G. CICCHITELLI (2012), Statistica: principi e metodi, Seconda edizione. Pearson, Milano.
V. CICOGNA, D. OLIVIERI (2012), Temi svolti di statistica (anni 2005–2012), Quarta edizione. Cedam, Padova.
PROGRAMMA PER L’INTEGRAZIONE
STATISTICA (9 CFU; Economia Aziendale, Economia e Commercio; sede di Vicenza)
Prof. MANUELA CATTELAN
Relativamente agli insegnamenti della sede di Vicenza della Prof.ssa Manuela Cattelan, si riporta di seguito il
programma su cui verterà la prova scritta integrativa riservata agli studenti che avranno superato entrambe le prove
scritte di calcolo delle probabilità e di statistica inferenziale di Canazei. Verosimilmente, il pre-appello riservato agli
studenti che devono sostenere l’integrazione si terrà a Vicenza alla fine di agosto 2014.
PROGRAMMA PER L’INTEGRAZIONE
Statistica Descrittiva
Concetti introduttivi; fenomeni collettivi; popolazione, campione, unità statistica; indagini censuarie e campionarie;
questionari; raccolta, spoglio e classificazione dei dati; caratteri qualitativi e quantitativi; fonti statistiche.
Tipi di dati statistici; matrice dei dati; distribuzioni statistiche semplici, doppie, multiple, unitarie, di frequenza assoluta
e relative, pesate, di quantità; rappresentazioni grafiche.
Frequenze cumulate; funzione di ripartizione.
Sommatorie semplici e doppie; produttorie.
Indici di posizione; medie potenziate; media aritmetica; media armonica; media geometrica; proprietà della media
aritmetica; media di una trasformazione lineare e del miscuglio; media quadratica; media cubica; medie lasche; moda;
mediana; quartili, decili, percentili e quantili.
Indici di variabilità; campo di variazione; differenza interquartile; varianza e scarto quadratico medio; varianza di una
trasformazione lineare e del miscuglio; standardizzazione; coefficiente di variazione.
Momenti dall’origine e momenti centrali; asimmetria e indici di asimmetria; curtosi e misure di curtosi.
Numeri indici a base fissa e a base mobile; variazioni relative e variazione media relativa; indici di Laspeyres e di
Paasche.
Distribuzioni doppie o multiple, unitarie e di frequenza; media aritmetica della somma di più variabili; media aritmetica
del prodotto di due variabili; covarianza; varianza della somma di più variabili; distribuzioni condizionate; media e
varianza condizionata; indipendenza; indice di dipendenza chi-quadrato; indice di connessione C.
Interpolazione statistica; metodo dei minimi quadrati; retta dei minimi quadrati per distribuzioni doppie unitarie e di
frequenza; minimi quadrati per funzioni riconducibili a una retta; coefficiente di correlazione lineare r; disuguaglianza
di Cauchy-Schwarz; coefficiente di determinazione R2; decomposizione della devianza totale.
PROGRAMMA PER L’INTEGRAZIONE
ISTITUZIONI DI STATISTICA (10 CFU; sede di Vicenza) e STATISTICA (6 CFU; sede di Vicenza)
Prof. MARCO MINOZZO
Relativamente agli insegnamenti della sede di Vicenza del Prof. Marco Minozzo, si riporta di seguito il programma su
cui verterà la prova scritta integrativa riservata agli studenti che avranno superato entrambe le prove scritte di calcolo
delle probabilità e di statistica inferenziale di Canazei. Verosimilmente, il pre-appello riservato agli studenti che
devono sostenere l’integrazione si terrà a Vicenza alla fine di agosto 2014.
PROGRAMMA PER L’INTEGRAZIONE
Statistica Descrittiva
Concetti introduttivi; fenomeni collettivi; popolazione e unità statistiche; indagini censuarie e campionarie; il
questionario; la raccolta, lo spoglio e la classificazione dei dati; caratteri qualitativi ordinali e non ordinali; caratteri
quantitativi discreti e continui; caratteri ciclici; caratteri trasferibili; fenomeni di movimento e fenomeni di stato; fonti
statistiche.
Tipi di dati statistici; la matrice dei dati; distribuzioni unitarie semplici, doppie e multiple; distribuzioni di frequenza
(assolute) semplici, doppie e multiple; distribuzioni di frequenza relative e percentuali; distribuzioni in classi; densità di
frequenza; distribuzioni pesate; distribuzioni di quantità.
Frequenze cumulate e retrocumulate; funzione di ripartizione a gradini per distribuzioni di frequenza; funzione di
ripartizione continua per dati in classi.
Rappresentazioni grafiche; grafici a barre e a nastri; areogrammi; cartogrammi; pictogrammi; diagrammi radar;
istogramma per distribuzioni in classi.
Sommatorie semplici e doppie; produttorie; operazioni con le sommatorie.
Gli indici di localizzazione; la media aritmetica; la media geometrica; la media armonica; proprietà della media
aritmetica: media aritmetica di una trasformazione lineare, somma degli scarti, somma del quadrato degli scarti, media
aritmetica del miscuglio; la media quadratica; la media cubica; la media potenziata di quarto ordine e le altre medie
potenziate; le medie lasche; la mediana per distribuzioni unitarie, di frequenza e in classi; la mediana come centro di
grado 1; quartili, decili, percentili e quantili per distribuzioni unitarie, di frequenza e in classi; moda e classe modale.
I numeri indici a base fissa; cambiamento di base; i numeri indici a base mobile; passaggio dai numeri indici a base fissa
a quelli a base mobile; le variazioni relative e la variazione media relativa; i numeri indici complessi di Laspeyres e di
Paasche.
La variabilità e gli indici di variabilità; il campo di variazione; la differenza interquartile; gli scostamenti semplici medi
dalla media; lo scarto quadratico medio (deviazione standard); la varianza; la varianza di una trasformazione lineare e
del miscuglio; la standardizzazione; le differenze medie; gli indici relativi di variabilità: il coefficiente di variazione.
L’asimmetria e gli indici di asimmetria; la curtosi e le misure di curtosi; i momenti dall’origine e i momenti centrali.
Distribuzioni doppie e multiple, unitarie e di frequenza; media aritmetica della somma di più variabili; media aritmetica
del prodotto di due variabili; codevianza e covarianza; varianza della somma di due o più variabili; distribuzioni
condizionate; media aritmetica e varianza condizionata; indipendenza; indice di dipendenza χ2; coefficiente di
contingenza C; paradosso di Simpson (cenni).
Interpolazione statistica; il metodo dei minimi quadrati per funzioni lineari nei parametri; la retta dei minimi quadrati
(per distribuzioni doppie unitarie); il metodo dei minimi quadrati per funzioni riconducibili ad una retta tramite
trasformazione delle variabili; il coefficiente di correlazione lineare r di Bravais; la disuguaglianza di Cauchy-Schwarz;
il coefficiente di determinazione R2; decomposizione della devianza totale in devianza spiegata più devianza residua; la
retta dei minimi quadrati per distribuzioni di frequenza in tabella a doppia entrata.
Scarica

Informazioni Statistica Canazei (pdf, it, 104 KB, 5/15/14)