Merit of organocatalysis Product is free from the contamination of metal. Exclusion of water and air is not necessary. Most of the ligands are non-toxic. Organocatalyst in Total Synthesis O TBDPSO Tohoku University Yujiro Hayashi 8 O O O N H N H OH O N H OH O O Ph N H CO2Et N F Ph OTMS AcHN N F NH2 F NH2 F3 C N N Background: Enamine intermediate + H N H OH CF3 Background: Iminium ion intermediate CO2H N H O OH O 10 mol % O N DMSO, rt 97%, 96% ee O B. List, R. A. Lerner, C. F. Barbas, J. Am. Chem. Soc., 2000, 122, 2395. O OTMS Diels-Alder reaction 30 mol% O CF3 Ph N H ABT-341 (Abbott laboratory) (-)-oseltamivir CF3 Ph CF3 OH O H Ph + O N H ·HCl Ph CHO MeOH - H2O Ph R 1.3 OH N H N O LUMO-lowering activation O OH OH N R R H O O H H R O O N O R CHO Ph 93% ee : 1 D. W. C. MacMillan, et al., J. Am. Chem. Soc., 122, 4243 (2000). H2O O + 93% ee 99% H2O OH H Ph + R R N H ·HCl N R H Ph Jorgensen-Hayashi Catalyst Effective for the both enamine and iminium ion intermediate Enamine: functionalization at the -position of aldehyde O N H OTMS TMS = Me3Si- H 10 mol% N H NO2 + Ph Ph Ph OTMS Ph N H Iminium ion: functionalization at the -position of aldehyde H Y. Hayashi, et al., Angew. Chem. Int. Ed., 44, 4112 (2005). F3C CF3 O 1) + N OTMS CF3 H BnS N H Ph O O2N Ph H Mannich Bz O O2N H 99% ee 96% ee Diels-Alder Aza [3+3] Ph O NH O H 98% ee Ph OHC H NO2 O Ph Ph OH 99% ee 92% ee Michael Carbo [3+3] O OH OHC Ar NBoc Ph Ph N H Ph 97% ee 94% ee Oxidation Michael Domino Ar OTMS Me O Ph O Epoxidation 10 mL OMe H Me N Ph O O O CHO Ph 2.64 g O O O O O H Me C7H15 Ph Ph O Me 97% ee 95% ee 5 mol% Domino Domino TESO H NO2 92% ee 95% ee 95% ee 94% ee N Ph Ns Me Ph Ph OHC 4.7 mL OMe OH Ph decantation then distillation water H NO2 95% ee Me Michael Domino Michael Nu X-ray and ab initio calculation D. Seebach, Y. Hayashi, Uchimaru, et al., Helv. Chim. Acta, 2009, 92, 1225. Reactions developed by our group Michael R Me Si Me OTMS R Me 60%, 95% ee K. A. Jorgensen, et al., Angew. Chem. Int. Ed., 44, 794 (2005). Michael O OH 2) NaBH4 H N H + R N H O Nu O CF3 N N Me hexane, 23 °C, 1 h Me 85%, 99% ee, syn : anti = 5.7 : 1 Me BnS R H R Me Si Me OTMS O O2N H E O R O O E+ N + Ph CF3 exo:endo 82:18 CF3 O NH2 Ph NO2 NO2 99% ee 99% ee Angew. Chem. Int. Ed., 44, 4212 (2005). Angew. Chem., Int. Ed., 45, 6853 (2006). Angew. Chem., Int. Ed., 46, 4922 (2007). Org. Lett., 9, 5307 (2007). Angew. Chem., Int. Ed., 47, 4012 (2008). Angew. Chem., Int. Ed., 47, 4722 (2008). Angew. Chem., Int. Ed., 47, 9053 (2008). Chem. Commun,, 3083 (2009). Chem. Asian. J., 4, 246 (2009). Org. Lett., 11, 45 (2009). Org. Lett., 11, 4056 (2009). Tetrahedron, 66, 4894 (2010). Org.Lett., 12, 4588 (2010). Org.Lett.,12, 5434 (2010). ClO4 F3C 3.2 g, 81% 97% ee CF3 water RT, 8 h Angew. Chem. Int. Ed., 47, 6634 (2008). Synthesis of (-)--Santalol by Firmenich CF3 1.5 mol% 2 mol% TESO O H + CH3NO2 N H2 H 1) NaH2PO32H2O NaClO2 2-methyl-2-butene O OH NH2 80% 71%, 93% ee OHC H2O O H NO2 2) Pd/C, H2 MeOH, RT CF3 F3C O Ph OTMS N H CF3 ClO4 Ph Pregabalin: anticonvulsant CHO 61% exo : endo = 70 : 30 exo 95% ee, endo 78% ee 2 mol% Ph O Ph OTMS N H 4 mol% H + CH3NO2 2 steps H NO2 PhCOOH MeOH, RT p-Cl-Ph O O p-Cl-Ph p-Cl-Ph 80%, 92% ee OH OH NH2 87% Baclofen: GABAB receptor agonist ()--Santalol Org. Lett., 9, 5307 (2007). C. Fehr et al.,(Firmenich), Angew. Chem., Int. Ed., 2009, 48, 7221. Synthesis of Telcagepant by Merck Total synthesis of biologically active compounds O N H F F H CH3NO2 O OH HO O Ph O O F NO2 F O CHO H Me O H Me O H Me O Me OH HO O OH Me OH Me HO OMe Me O Me O 73%, 95% ee CF3 O N F F N N Me MeO O Me HO O OO H N Et N Me O O O NH OH MeO O Me O OH OH O OH OO H N Ph Et HO Me O O O Ph OH OMe pseurotin A OH Et H N O OO Me O O O H N OH Et Ph OMe O H O OMe H OH OH O O OH H N OO OH O Me nBu OMe O O OH NH2 Me OH O F N N O CO2Et CF3 AcHN NH2 F baclofen N N NH2 F Cl pregabalin +NH3 OH nikkomycin B OH NH2 O (+) - cytotrienin A O FD-838 O O N H N CO2- O O HO ent-convolutamydine E OH O HN N H Br CPC-1 HO OH O N H Me O Ph OMe HO NMe Me O madindoline A O Br MeO N H NH Me synerazol HO NH Me HO Me OH fostriecin O H Me O lucilactaene OH O OH MeO Me Me NaHO3PO Me O O NH Me epolactaene azaspirene F. Xu et al.,(Merck), J. Org. Chem., 75, 7829 (2010). O C14H29 O ovalicin 5-demethylovalicin panepophenanthrin (R)-Methyl Palmoxirate FR-65814 NG-391 NH Telcagepant CGRP receptors antagonist for treatment of Migraine O HO >100 kg O O O HO EI-1941-3 OH H O O fumagillol RK-805 O Me OH Me Me OH O HO EI-1941-2 Me O nPr O EI-1941-1 Me O OH O nPr O O O Me O nPr O epoxytwinol A OMe OH O O Me O Me O OMe O Me OO Me epoxyquinol C Me O OMe THF-H2O Me O Me O H Me epoxyquinol B Me O O O Me O H Me epoxyquinol A O O O Me O H Me OTMS O O OH OH OH HO O O 5 mol% tBuCO2H 50 mol% B(OH)3 O O OH HO Ph 5 mol% ABT-341 (-)-oseltamivir First retro-synthetic analysis O O O CO2Et CO2Et CO2Et tBuO AcHN oseltamivir NH2 AcHN O NO2 NH2 ·H3PO4 O (–)-oseltamivir phosphate (Tamiflu) O H tBuO CO2Et + tBuO Tamiflu: Orally administrated anti-Influenza drug developed by Gilead Sciences, Inc. and Roche Total Synthesis: Corey (2006), Shibasaki (2006),Yao (2006), Wong (2007) Fukuyama (2007), Fang (2007), Kann (2007), Trost (2008) Banwell (2008), Mandai (2009), Hudlicky (2009) et al., 53 total syntheses Synthetic Challenge: Control of three continuous chiral center Selectivity (enantio- and diastereo-) t-BuO2C NO2 + H N H NO2 O + rt O + t-BuO2C NO2 syn (desired) yield syn : anti hexane 60 26% 2.5 : 1 CH2Cl2 60 quant. 1.7 : 1 Ph OTMS H Me 85%, 99% ee syn : anti = 5.7 : 1 Y. Hayashi, et al., Angew. Chem. Int. Ed., 44, 4212 (2005). H+ Acid promote H H N H t-BuO2C NO2 anti (undesired) O Ph Ph OTMS H O H+ Acid promote NO2 HO Ph Ph OTMS N O H2O H t-BuO2C NO2 Ph NO2 + N H H Me Ph Ph OTMS N H 10 mol% O O O2N hexane, 23 °C, 1 h Me O t-BuO2C time / h N H H O O H solvent H Proposed Reaction Mechanism O O Ph Ph 10 mol% O 20 mol% O O NO2 Ph Ph OTMS O + O O Ph NO2 O Ph Ph OTMS hexane rt, 1 h O Me O H Ph 85% Me H + O Ph NO2 syn H2O NO2 anti syn : anti = 5.7 (99% ee) : 1 Y. Hayashi, et al., Angew. Chem., Int. Ed. 2005, 44, 4212. H Ph Ph OTMS N H t-BuO2C NO2 Ph Ph OTMS O NN O t-BuO NO2 O H t-BuO O O H+ Acid promote Revised reaction mechanism O Ph N H O NO2 t-BuO2C H + O OTMS O additive O R1 Ph CH2Cl2, rt O O H t-BuO2C R2 O H H R N H R2 NO2 H + O R1 H R1 NO2 H2O t-BuO2C NO2 NO2 syn (desired) anti (undesired) catalyst / mol% additive (mol%) pKa in H2O time / h yield syn : anti ee / % syn / anti 20 none – 60 quant. 1.7 : 1 nd 20 CF3CH2OH (40) 12.5 24 50% (brsm 95%) 2.3 : 1 nd 20 p-nitrophenol (40) 7.1 24 quant. 1.7 : 1 nd 20 PhCO2H (40) 4.2 14 quant. 2.0 : 1 nd 5 HCO2H (20) 3.77 2 quant. 4.8 : 1 nd 5 ClCH2CO2H (20) 2.86 1 quant. 6.3 : 1 96 / 87 5 Cl3CCO2H (20) 0.65 28 No Reaction – R N R1 R N H H H R2 R2 R N X R1 R1 NO2 NO2 HX R N R N R1 NO2 R1 NO2 H R2 R2 R2 O N O D. Seebach, Y. Hayashi, et al., Helv. Chim. Acta, 2011, 94, 719. Cf, D. Blackmond et al., J. Am. Chem. Soc., 2011, 133, 8822. Domino Michael / Intramolecular Aldol reaction O O H + CO2Et NaH, DBU, Et3N, TBAF, CsF K2CO3, Cs2CO3, DABCO, Bu3P Tandem Michael/HWE reaction CO2Et t-BuO2C t-BuO2C O EtO P EtO O O 1.5 equiv. NO2 Cs2CO3, CH2Cl2 –10 °C ~ 0 °C ~ 30% O TBAF CsF Cs2CO3 O O O O t-BuO2C CO2t-Bu CO2t-Bu NO2 O NO2 O H t-BuO2C NO2 5R : 5S = 4.6 : 1 Retro Aldol/HWE reaction Cs2CO3, EtOH 23 °C, 15 min 90% Byproducts Base O O O OEt P OEt CO2Et O Intramolecular HWE reaction O CO2Et NO2 NO2 H CO2Et O t-BuO2C O2N EtO2C OEt Base H ~30% P O OEt O P O t-BuO2C t-BuO2C NO2 5R t-BuO2C Cs2CO3, EtOH 23 °C, 15 min quant. NO2 Major byproduct detected by Mass CO2Et Retro Michael reaction t-BuO2C NO2 O O OH O Michael reaction O EtO P CO2Et EtO CO2Et H t-BuO2C NO2 NO2 O OEt OEt CO2Et t-BuO2C NO2 ~30% Tandem Michael/HWE reaction O EtO P EtO O O CO2Et O 1.5 eq Cs2CO3 H t-BuO2C t-BuO2C rt, 15 min CH2Cl2, 0 °C, 3 h NO2 CO2Et EtOH Unsuccessful isomerization from 5R to 5S 5R NO2 6 : 1 61%, 5R : 5S = 4.6 : 1 One-pot Reaction: purification economy, chemical waste economy, time econony increase yield EtO P O O + t-BuO2C O2N CH2Cl2 0 °C, 3 h t-BuO2C CO2Et O Cs2CO3 H OH O OEt P OEt + CO2Et OEt P OEt O EtO2C ~30% NO2 t-BuO2C O CO2Et 5R t-BuO2C CO2Et 5R : 5S = 1 : 1 Et3N CO2Et O EtO O O 5S t-BuO2C NO2 O NO2 CO2Et t-BuO2C NO2 NO2 ~30% ~30% CsCO3, EtOH ~90% quant. rt, 15 min HS O CO2Et Stol Me Base O 5R EtOH t-BuO2C NO2 O CO2Et 5S t-BuO2C t-BuO2C NO2 A 5R : 5S = 5 : 1 Stol CO2Et NO2 B (Other diastereomer mixture) CO2Et 5S isomer 5R isomer t-BuO2C H CO2t-Bu 4.0 Hz 4 10.0 Hz H H R H H 17.0 Hz NO2 5 4.0 Hz H NO2 6 3 O 10.0 Hz 3 6 5.6 Hz O t-BuO2C H 8.8 Hz 6.0 Hz C 10.0 Hz 5 4 R H 17.6 Hz Yield/% Base temp. / °C time / h A B C K2CO3 –5 24 85 15 – Cs2CO3 –5 13 35 – 65 Cs2CO3 –15 36 90 <5 – H H R = CO2Et 5R - isomer is stable than 5S - isomer in only 0.11 Kcal/mol by B3LYP/6-31G(d) calculation. Calculation was performed by Dr.Uchimaru. Application to one-pot reaction 5 mol% EtO Ph O N H H + O EtO P CO2Et Stol O O 20 mol% ClCH2CO2H NO2 t-BuO2C Ph OTMS O Cs2CO3 H CH2Cl2 0 °C ~ rt, 4 h t-BuO2C CH2Cl2, rt, 6 h NO2 Stol O CO2Et 5S t-BuO2C O O O H t-BuO2C NO2 OEt EtO2C CO2Et O + t-BuO2C O2N P(OEt)2 OH O OEt P OEt CO2Et CO2Et P O t-BuO2C O + t-BuO2C NO2 O Stol NaN3 CO2Et CO2Et 5R rt, 10 min –15° C, 36 h t-BuO2C O tolSH NO2 CO2Et NO2 O NO2 without purification NH2 70% single diastereomer R : S = 4.6 : 1 O CO2Et CO2Et N3 AcHN 5S t-BuO2C O O H2O Acetone 0 °C Cl O CH2Cl2, rt; evaporation HO2C Stol NO2 STol EtOH (COCl)2 cat. DMF CO2Et CO2Et NO2 OEt O CH2Cl2, rt; evaporation NO2 O TFA NO2 (–)-Oseltamivir 3 “one-pot” synthesis of (-)-oseltamivir 5 mol% O AcOH Ac2O Stol O CO2Et Stol O RT 49 h; evaporation N3 NO2 O without purification CO2Et Zn, TMSCl O EtOH, 70 °C + AcHN NO2 t-BuO2C Stol O CO2Et AcHN Cl Zn Cl NH2 Stol NH3 0 °C 10 min. Ph Ph N H OTMS 20 mol% ClCH2CO2H H O CO2Et then K2CO3 EtOH, rt AcHN NH2 82% (6 steps) O CO2Et NO2 CH2Cl2, rt O EtO P EtO O OEt tolSH CH2Cl2, 0 °C; evaporation; EtOH, rt –15 °C O t-BuO2C (COCl)2 cat. DMF NaN3 CH2Cl2, rt; eveporation CH2Cl2, rt; evaporation H2O, acetone 0°C CO2Et 5S NO2 column chromatography Stol TFA O CO2Et AcOH Ac2O rt; evaporation N3 O NO2 without purification AcHN NH2 (–)-Oseltamivir Zn, TMSCl id-base extraction Stol Cs2CO3 EtOH, 70 °C NH3 then K2CO3 EtOH, rt acid-base extraction 82% (6 steps) O CO2Et AcHN · 3 "one-pot operations" · total yield 57% from nitro alkene NH2 (–)-Oseltamivir Angew. Chem. Int. Ed., 48, 1304 (2009). 2 “one-pot” synthesis of (-)-oseltamivir Column free synthesis 1 mol% O Ph 1 mol% O Ph H Ph N H OTMS 20 mol% ClCH2CO2H O + toluene, rt NO2 t-BuO2C O EtO P EtO H O Ph N H OTMS 20 mol% ClCH2CO2H O OEt Cs2CO3 toluene, 0 °C; evaporation; EtOH, rt Stol O tolSH –15 °C CO2Et 5S t-BuO2C + toluene, rt NO2 t-BuO2C 74% TFA (COCl)2 cat. DMF toluene, rt; eveporation toluene, rt; evaporation toluene O CO2Et AcHN NH2 (–)-Oseltamivir AcOH Ac2O rt; evaporation Zn, TMSCl EtOH, 70 °C NH3 then K2CO3 EtOH, rt acid-base extraction 82% (6 steps) OEt Stol tolSH toluene, 0 °C; evaporation; EtOH, rt –15 °C O Stol TFA O toluene, rt; eveporation HO2C NO2 acid-base extraction (COCl)2 cat. DMF Me3SiN3 pyridine AcOH Ac2O toluene, rt; evaporation toluene rt; evaporation NO2 71% · 9 steps · 2 "one-pot operations" · one purification by column chromatography · total yield 60% from nitro alkene CO2Et Stol acid-base extraction Zn, TMSCl NH3 then K2CO3 EtOH, 70 °C EtOH, rt CO2Et t-BuO2C (EtO)2P(O)OH O O CO2Et N3 CO2Et O (–)-Oseltamivir AcHN Chem. Eur. J., 16, 12616 (2010). NO2 Differential Scanning Calorimetry NH2 acid-base extraction Chem. Eur. J., 16, 12616 (2010). Microreactor in the Curtius Rearrangement STol STol O O CO2Et Microtube reactor 1 Stream 1 Cl O Cs2CO3 NO2 column chromatography Me3SiN3 pyridine O EtO P EtO O NO2 in DMF TMSN3, pyridine in DMF CO2Et N3 O NO2 Micromixer 1 rt, 26 min Microtube reactor 2 Stream 2 STol O CO2Et Micromixer 2 Ac2O, AcOH in DMF 110 °C, 80 min AcHN NO2 Stream 3 10 g scale, 84% After washed with H2O; recrystallization from toluene >99% ee Eur. J. Org. Chem., 2011, 6020. Practical synthesis of (-)-oseltamivir 1 mol% O Ph Ph N H OTMS 20 mol% ClCH2COOH H O O EtO P EtO • t-BuO2C • Step economy (Wender) • Redox economy (Baran & Hoffmann) NO2 Acid-base extraction to remove (EtO)2P(O)OH Stol Stol CO2Et O TFA CO2Et O Me evaporation then EtOH NO2 Green Reaction Stol HS Cs2CO3 + t-BuO2C CO2Et HO evaporation O NO2 Acid-base extraction CO2Et O (COCl)2 Cl TMSN3 pyridine AcOH • • • • Ac2O 110 °C DMF O Operational Pot economyEconomy NO2 Flow System Stol CO2Et O Ac N H NH3 Zn NO2 After recrystallization 43% (from nitroalkene, >99% ee) then, K2CO3 Acid-base extraction 92% O CO2Et AcHN NH2 No column Total yield: 40% Gram scale synthesis Efficent and safety method One pot reaction is not a simple combination of each optimized reaction. ()-Oseltamivir One-Pot Reaction • on-insulin dependant diabetes • Restriction on the amount of the reagent (1:1 molar ratio) • Restriction on the solvent Solvent of high boiling point is not suitable) • Restriction on the reaction Dipeptidyl peptidase-4 (DPP-4) inhibitor O O A + B C +D AcHN O Ph + H O (EtO)2P base CO2Me Ph CO2Me + CO2Et NH2·H3PO4 Tamiflu (Roche) O (EtO)2P OH F F N F NH2 CF3 N N F N N CF3 ABT-341 (Abbott laboratory) N N N NH2 O F F JanuviaTM (Merck) Retro-synthetic analysis Synthesis of ABT-341 by Abott (J. Med. Chem., 2006, 49, 6439) O TMSO Br O Br F NO2 F TFA toluene, 120 oC CH2Cl2 rt, 10 min 2 days 61% F F PBr3, DMF NO2 F CH2Cl2 (racemic) 0 oC to rt, 24 h 34% F F NO2 F (racemic) CH2Cl2, rt, 12 h F F Br Zn, AcOH (Boc)2O MeOH 80 oC, 2 h THF OH OH HCO2H, nBu3N Pd(PPh3)2Cl2 F F NHBoc F 85% (2 steps) (racemic) H DMP F F ABT-341 CH2Cl2 NHBoc F 81% (racemic) NHBoc H F (racemic) O OH DMSO, 0 oC, 2 h F F quant. NHBoc F N F Asymmetric Michael Reaction F O F CF3 NH3 TFA F F time / h yield / % ee / % 10 24 74 94 2 18 92 97 EtO O NO2 O OMe 2X N H H Me 10Hequiv. bp 21 °C + F Ph Ph OTMS NO O 2 F 1 equiv. H N H P CO2tBu F F + F F NO2 CO2tBu ; EtOH H F O O H H NO2 F 1,4-dioxane rt, 18 h F Ph Me NONO 2 2 Me F F 75% yield, 95% ee byproduct Y. Hayashi et al., Angew. Chem. major Int. Ed. 2008, 47, 4722. 0 oC to rt 15 min 87% OEt P OEt F CO2tBu F NO2 F F NO2 CO2tBu i Pr EtN 2 5R F 5S EtOH, 65 °C F O OH CO2tBu F Ph OTMS H O Cs2CO3 H O Ph O Chiral cyclohexene formation CH2Cl2, 0 oC, 3 h 10 mol% Ph O2N OTMS Y. Hayashi, et al., Angew. Chem. Int. Ed., 47, 4722 (2008). EtO F Ph Ph 75%, 96% ee H X / equiv. Ph H 1,4-dioxane, 23 °C, 18 h F 1,4-dioxane 0 oC to rt, time Previous Results Me F H O Ph OTMS N H F + 13 Steps Total Yield : <8% including HPLC separation 10 mol% Ph NO2 N H (chiral) + Me H X equiv. N N F Yield (no data ) NO2 Ph N then TFA, CH2Cl2 NHBoc F (chiral) + 10 mol% O O CF3 TBTU, TEA, DMF F F Yield (no data ) O NO2 NO2 NHBoc F (chiral) F Yield (no data ) N N rt, 5 h F N O 2N NaOH aq. NHBoc (racemic) Yield (no data ) HN F CO2tBu P F F OH F OMe chiral prep. F MeOH, CH2Cl2 (racemic) O OMe TMSCHN2 EtO O F O F EtO + F NaClO2 isoprene NaH2PO4, buffer NO2 F O F 70% F CF3 NH2 5S O F DMF, 80 oC 12 h F F CF3 N N 78% CO2tBu N N F NaBH(OAc)3 NO2 F (racemic) F N N H F N HN O OH F NO2 quant. F F NO2 Synthesis of ABT-341 Trial one-pot reaction CO2tBu F CF3CO2H 5S F F N CF3 F CH2Cl2, rt quant. NO2 N CO2H F F Me TBTU iPr EtN 2 THF, 0 °C to rt NO2 F O N HN 85% F N N F N F F AcOEt CF3 NO2 F 98% CO2tBu F F F CO2tBu F 5R F F NO2 10 mol% Cs2CO3 H F F F O CO2tBu CH2Cl2, 0 oC ; EtOH, 0 oC to rt 15 min NO2 Me CO2tBu F TMSCl F 0 oC , 5 min F N H H + NO2 F F 2EtN F 0 oC to rt ; rt,o48 h rt 40 C to ; rt, 48 h F 5S CO2tBu CO2tBu F + 92% yield 2EtN EtOH, 65 oC, quant. Ph F NO2 CO2tBu F 5S F F NO2 CsO N O desired isomer 1.2 equiv. O EtO P EtO Ph OTMS CO2tBu Cs2CO3 CH2Cl2, 0 oC ; EtOH, 0 oC to rt 15 min TMSCl 40 oC, 5 min; iPr EtN, 15 min; 2 rt, 48 h evaporation F CO2H CF3COOH F CH2Cl2 rt; evaporation NO2 F NO2 F 35% yield iPr F F iPr F oC -40 , 5 min >> Convert Cs2CO3 to CsCl for Isomerization CO2tBu 5S F 1,4-dioxane 0 oC to rt 5R NO2 NO2 Cs2CO3 EtOH, rt quant. undesired isomer O F 5R F CF3 NH2 ABT-341 O EtO P EtO CO2tBu iPr EtN 2 N N F NO2 F N N Zn, AcOH N F CO2tBu CH2Cl2, 0 oC ; EtOH, 0 oC to rt O H F 1,4-dioxane 0 oC to rt F Cs2CO3 O O Ph OTMS N H NO2 Ph + H O EtO P EtO 10 mol% O + F F NO2 EtO P OH EtO from HWE reaction 71% (4 steps) O F 52% yield >5% yield N HN N CsCl ; insoluble material TBTU iPr O N CF3 2EtN, THF 0 oC to rt O N N F F N F NO2 N CF3 + EtO P EtO N N N Which is the major product ? N CF3 One-Pot Total Synthesis of ABT-341 N HN N CO2H F F CF3 (1.1 equiv.) TBTU (2.0 equiv.) O EtO P OH EtO + NO2 F 1.0 equiv. O iPr 2EtN, THF oC to rt, 12 h N N N F NO2 + O EtO P EtO O N N N iPr N F N NO2 O 87% 2EtN + EtO P EtO N N N EtOH 40 oC to rt ; evaporation N CF3 N CF3 <5% TBTU : N F F CO2tBu F CH2Cl2, 0 oC ; EtOH, 0 oC to rt F ; TMSCl, 40 oC F CO2tBu NO2 N Me BF4 N N Me O N Me Me CO2H CF3CO2H 5S F N F F 1.0 equiv. 1.2 equiv. Cs2CO3 H NO2 1.4-dioxane 0 oC to rt ; evaporation CO2tBu 5R F NO2 N HN N O F F O Ph OTMS N H H Me 2.0 equiv. F O EtO P EtO 10 mol% Ph O F F 0 1.0 equiv. O N F F CH2Cl2 40 oC to rt ; evaporation NO2 Zn AcOH TBTU F F NO2 2EtN, THF 0 oC to rt N N N F iPr ; nPrNH2, rt F F 1.1 equiv. CF3 F O EtOAc, 0 oC ; NH4OH N NH2 6 steps One-Pot Operation CF3 Total yield : 63% N ABT-341 Angew. Chem. Int. Ed. 2011, 50, 2824. fumagillins, ovalicins, panepophenanthrin Hayashi Laboratory ( Tokyo University of Science, TUS) HayashiLab.Homepage:http://www.ci.kagu.tus.ac.jp/lab/orgchem1/ Total Synthesis of Bioactive Compounds O CO2H O O O O Me Me MnO2 O O Cl O O O CH2Cl2 0 °C OH CO2Me OH toluene rt oxidative dimerization HO O syn OH OH O O O Me anti O O O Me syn Me Me O endo-hetero O syn OH OH O O O O Me anti Me O OH anti OH O O O O O O O angiogenesis inhibitor HO CHO O ClCH2CO2H N R R Ar=3,5-(CF3)2-C6H3 HO Me Me O OTIPS R=H, 73%, 85% ee R=Br, 86%, 82% ee O ONHPh N R DMF OTIPS O Me O 10 mol% key intermediate O >99% ee O O O O OH OH HO O O O O H Me O Me epoxyquinol A O OH OH HO O O O O O O O H Me O Me H Me O Me epoxyquinol B epoxyquinol C OO panepophenanthrin ubiquitin-activating enzyme inhibitor O MeO O N H O Me Me O O epoxytwinol A NMe N H Me O Bu Org. Lett. 2009, 11, 3854. BuO2C Pr Pr OH OTBS O n O O TBSO Me OTBS THF-HMPA 78 oC O O H + O + TBSO TBSO OTBS t BuO OH Me O Me t BuO O O H O 1 NH O NH O NMP 20 oC Me NH2 O TBSO CO2H N H H O Me Me Me O MeO O O HO O O HO O HO HO TBSO O NH OH THF, 78 oC ICE (interleukin 1- converting enzyme) inhibitor Org. Lett. 2004, 6, 4535. J. Org. Chem. 2005, 70, 9905. N HN O O NG-391 MeO OH CO2 O O NH OH lucilactaene cell cycle inhibitor in p53-transfected cancer cells Angew. Chem. Int. Ed. 2005, 44, 3110. 1,4-asymmetric induction Me O OH nikkomycin B OMe H O H Me O formal total synthesis of fostriecin H +NH3 OH N O O Me OH Me O O NH Me HO neuronal cell-protecting molecule OH O LiAlH(OtBu)3 EI-1941-3 EI-1941-2 epolactaene Me O Pr O OH O O NH Me neurtie outgrowth in SH-SY5Y cells n Pr EI-1941-1 MeO 1 Tetrahedron, 2002, 58, 9839. n Pr HO Me O MeO TBDPSO OMe O n O O Me CN O OH syn : anti = 14 : 1, 96%ee O O Me HO Chem. Lett. 1998, 313 J. Org. Chem. 2002, 67, 9443. three-component cross-Mannich reaction 10 mol% O Me LDA CH3CHO t Me O cat. Pd(II) benzoquinone n N H Br formal total synthesis of nikkomycin B EI-1941-1, EI-1941-2, EI-1941-3 O epolactaene, NG-391, lucilactaene ent-convolutamydine E CPC-1 n Me OH O madindoline A angiogenesis inhibitor Angew. Chem., Int. Ed., 41, 3192 (2002); T etrahedron Lett., 43, 9155 (2002); Tetrahedron Lett., 44, 7205 (2003);J. Org. Chem., 69, 1548 (2004); 70, J. Org. Chem., 79 (2005) ; Org. Lett., 8, 1041 (2006). Review; Eur. J. Org. Chem., 23, 3783 (2007). Chem. Asian J., 1, 845 (2006). Br HO HO OH Me O H OH OH O OH OH O OH H O O dimerization HO O OHO O Me OH Me Me Me Me H2O O OH CO2H O Me Me OH Me exo-homo exo-homo 5-demethylovalicin ovalicin Angew. Chem., Int. Ed., 45, 789 (2006), ReView; Chem. Eur. J. 2010, 16, 3884. Ar OH N H O O OH Me H Me O O Ar + Me O OH O OTBS immunosuppressive effect OOHMe Me O OMe HO Me R O O O O O + PhN=O O OH Me OOHMe O OH FR-65814 angiogenesis inhibitor O CPC-1, ent-convolutamydine E, and half segment of madindoline A OH fumagillol RK-805 Me O OMe OH ONHPh Me OH Me Me O OMe O O Me OH Me Me O OMe >99% ee epoxyquinols Me OH Me OTBS OH -aminoxylation 10 mol% H antifungal activity (CO)3 (CO)3 Co Co OBOM H Co2(CO)8 OBOM CH2Cl2 OPMB (CO)3 (CO)3 Co Co OBOM OH NMO OBOM OPMB CH2Cl2 OPMB OH Me OH Me OH O Me OH allylSnPh3 TiCl2(Oi Pr)2 OPMB Tetrahedron, 2005, 48, 11393. Me OH 60%, syn : anti = 92 : 8 azaspirene, pseurotin A, synerazol, FD-838 Me Me O O O Et OMe OHC Ph MgBr2兟OEt2 Et TBSO Me O O OMe Ph Me Et O OMe HO O Et H H OH O 1,3-asymmetric induction NH Me Me O Ph OTIPS O OTBDPS Me Me O O O ZnBr2, nBuLi H Me O O NaHO3PO OTBDPS OH O OH Me OH fostriecin Me O PP2A inhibtor single diastereomer OH OO H N Et O Org. Lett. 2008, 10, 1405. Chem. Eur. J. 2010, 16, 10150. O OO H N Ph O Ph OH OMe Et HO Me OH OH Me O Et OO H N Me O OH O azaspirene pseurotin A synerazol neurite outgrowth in PC12 cells antifungal antibiotic Org. Lett. 2003, 5, 2287. Et Ph OMe angiogenesis inhibitor J. Am. Chem. Soc. 2002, 124, 12078. OO H N O Me O OH O R ( )- oseltamivir (Tamiflu ) Ph OMe 5 mol% FD-838 O diffrenttiation of leukamia antifungal antibiotic J. Org. Chem. 2005, 70, 5643. (+) - cytotrienin A O H H BuO2C Asymmetric cross ( ) 8 O aldol reaction 10 mol% OH O H N H CO2H neat, 4 °C, 48 h HO MeOH HO Me O Me Me Me O O O PMP ; EtOH, rt O O CO2Et BuO2C 6 steps CO2Et BuO2C NO2 NO2 O 6-reaction ''one-pot'' sequence 81% t t BuO2C t S Me HO CO2Et AcHN NH2 NH Me TESO O H N O O TESO H N O O HO Me O OMe O 10 mol% O NH Me HO 2) Amberlyst 15 OMe O ABT-341 HO Me Me neuraminidase inhibtor Angew. Chem. Int. Ed. 2009, 48, 1304. Chem. Eur. J. 2010, 16, 12616. OTr 1) Grubbs 1st cat. OH Total yield : 60% 5-reaction ''one-pot'' sequence : 74% Me TIPSO 64% (3 steps) After Recrystallization > 99% ee, > 99% de No column chromatography NH2 O HS Cs2CO3 H OTIPS TESO H N O ClCH2CO2H Me CO2Et ( )-oseltamivir NaBH4 Me O EtO P EtO O NO2 OMe TESO Ph Ph OTMS NO2 t Me N H + Bioorg. Med. Chem. Lett. 2009, 19, 3863. O O OH O O O (+) - cytotrienin A apotosis indcing activity in HL-60 cell O Angew. Chem. Int. Ed. 2008, 47, 6657. F F Ph H N H NO2 F Ph OTMS O EtO P EtO Cs2CO3 N HN CO2tBu N i Pr2EtN CF3CO2H 6-reaction "one-pot" sequence : 61% TBTU N CF3 O Zn N N F F N N F NH2 CF3 ABT-341 DPP4 selective Inhibtor Angew. Chem. Int. Ed. in press Reaction using diarylprolinol silyl ether derivatives as catalyst Mannich reaction Ar Hayashi Lab. Homepage http://www.ykbsc.chem.tohoku.ac.jp/ O NHTs Development of new reactions R1 Asymmetric reaction using amino acid or their derivatives as a catalyst, environmental conscious asymmetric reaction using water as a solvent, and research about origin of chirality O OH N H 1) ClCO2Et K2CO3, MeOH Ar 2) ArMgBr, THF N CO2Et Michael reaction TMSCl imidazole Ar KOH OH MeOH OH N H NO2 H Ar R = alkyl or aryl DMF This catalyst is synthesized in short steps from proline. Substituents on aryl and silyl moiety are easily modified. Excellent enantioselectivity is obtained Ar OTMS N H Michael reaction Ph O hexane, 0 oC MeNO2 H 85%, 99% ee Angew. Chem., Int. Ed., 44, 4212 (2005). Michael reaction Ph Ph O OTBS N 10 mol% H p-NO2C6H4OH H H H NO2 Ph Ph HO O OH N H2 H O NHBoc Ph OHC H CHO N H R2 N R2 O O O O Ph OTBS 10 mol% MeO O Ph O O OMe O Me R2 NO2 0 H H OTMS 10 mol% N H N R toluene, RT H Concerted Mechanism N R H H up to 99% ee J. Am. Chem. Soc., 133, 20175 (2011). Direct catalytic enantioselective -aminoxylation Me MeOH, RT O2N R COOH N H 30 mol% O PhN=O H OMe H CH3CN, -20 oC Me slow addition O O O COOH N H PhN=O ONHPh O ONHPh 10 mol% DMF, 0 oC Me CuSO4兟5H2O (cat) OH MeOH, 0 oC slow addition 79%, >99% ee 87% Angew. Chem., Int. Ed., 43, 1112 (2004). J. Org. Chem., 69, 1548 (2004). quant, 98% ee Tetrahedron Lett., 44, 8293 (2003). The direct and enantioselective, One-Pot, Three-Component, Cross-Mannich reaction of aldehydes OTMS N 10 mol% H PhCO2H OH OH NaHCO3 OH R OMe O H R N H H 10 mol% HN NMP, -20 oC Me NO2 OMe COOH O O O MeOH, RT NO2 CHO NH2 a b up to 99% ee, a : b = 9 : 1 Org. Lett., 11, 4056 (2009). Me Angew. Chem., Int. Ed., 42, 3677 (2003). Adv. Synth. Catal., 347, 1604 (2005). Nature Protocols, 2, 113 (2007). 90%, 98% ee anti : syn = 1 : >95 i Bu2NH p-NO2C6H4OH MeOH, RT MeOH, RT O R HOOH H N H N H N OTMS 10 mol% toluene, RT Ns Ph 1,4-dioxane ; evapo OSiMePh2 20 mol% H N O R hexane, RT O Ph O H Michael / Henry / acetal formation / additional reaction TMS TiCl4 CH2Cl2 Me N Ph R1 Ph NO2 up to 99% ee Single diastereomer Org.Lett., 12, 4588 (2010). N H O Ns NO2 H 2 R OTMS 10 mol% toluene, RT ; evapo N H O H up to 95% ee Org. Lett., 12, 5434 (2010). Ph Ph Reaction by siloxyproline catalyst Reaction by proline-derived catalyst Ph Ph OTBS N 10 mol% H p-NO2C6H4OH Ph Ph H R1 : 100 up to 95% ee ChemCatChem, 4, 959 (2012). O Ph Ph H H Michael / aza Henry / aminal formation / additional reaction Ph R2 O R O 63%, 95% ee Tetrahedron, 66, 4894 (2010). O R1 epoxidation Ph NO2 H R3 Reaction catalyzed by proline OTBS O Ph Ph H O H NO2 R3 Ph 10 mol% 78%, 92% ee Chem. Commun,, 3083 (2009). Michael / cyclization reaction O OH R up to 99% ee Chem. Eur. J., 17, 8273 (2011). O 10 mol% R1 up to 99% ee Org. Lett., 11, 45 (2009). O Ph THF, RT N Ph Ph Ph Ph Ph R2 R Michael reaction / isomerization N H MeNO2 NBoc Ph CH2Cl2, RT O R H MeOH MeOH, RT PhCO2H H 3 -Benzoyloxylation H NaBH4 H OSiPh2Me N H H R3 Ph Ph N H OMe H O 75%, 96% ee Angew. Chem., Int. Ed., 47, 4722 (2008). R O N R1 Ph O2N Ts NH O R OH Ph O 10 mol% OTMS 10 mol% 1,4-dioxane, RT H 90%, 94% ee, : = 34 : 66 Angew. Chem., Int. Ed., 47, 4012 (2008). O O up to 99% ee up to >90% de Chem. Asian. J., 4, 246 (2009). O Ts Cl 1,4-dioxane, RT H Ph O toluene, 0 oC R3 O NO2 H Ph Ph NBoc Formal carbo [3+3] cycloaddition OTBS N H Ar = 3,5-(CF3)2C6H3- Ar O OH OH Ph Ph O SO2Ph OHC Ph (CH2Cl)2, 70 oC Ph Michael reaction R1 NH O Ph NaHCO3 H H up to 95% ee Angew. Chem., Int. Ed., 50, 3920 (2011). Ph OTMS 10 mol% N H O O [6+2] cycloaddition reaction OTBS 10 mol% N H exo : endo = 80 : 20, 97% ee (exo) Org. Lett, 9, 2859 (2007). Angew. Chem., Int. Ed., 47, 6634 (2008). O Ar NHTs Ph Ph ClO45 mol% Ph + Bz Formal aza [3+3] cycloaddition OTMS Ar Ph Ph THF, 4 oC H Cl 66%, 99% ee Angew. Chem., Int. Ed., 46, 4922 (2007). Ar = 3,5-(CF3)2C6H3- Ar Ph H H NO2 H2O, RT O O 2 mol% THF, RT Ph O2N MeOH Michael reaction (1,4-Addition versus 1,6-Addition) OTMS N H 84%, 92% ee Angew. Chem., Int. Ed., 45, 6853 (2006). O O2N Ph Ph Ph Ar Bz O 90%, 95% ee Org. Lett., 9, 5307 (2007). O MeNO2 NaOAc THF H Michael reaction Tandem Michael / Henry reaction O MeOH, RT Diels-Alder reaction Ar Ar = 3,5-(CF3)2C6H3- Ar OTMS N 10 mol% H p-NO2C6H4CO2H Mannich reaction Ph MeOH, RT H Ph H DDQ 87%, 98% ee Angew. Chem., Int. Ed., 47, 9053 (2008). OTMS N H 10 mol% PhCO2H O O2N Ar H Ph R1 O up to 99% ee Chem. Eur. J., 17, 8273 (2011). Ph Ph OTMS 10 mol% N NH O R2 Mannich reaction Ar Ph Ph N H O Ph Ar 1,4-dioxane or brine, 10 C OTMS 20 mol% N H H R2 1 Reaction using diarylprolinol silyl ether derivatives as catalyst Ph Ph Ts o H SO2Ph Formal C-H insertion Ar = 3,5-(CF3)2C6H3- Ar OTMS N 10 mol% H NaHCO3 TBSO NMP, 0 oC O CO2H CHO N H CF3CO2 30 mol% 兟 -aminoxylation O O J. Org. Chem., 72, 6493 (2007). O H Reaction by cystein-derived catalyst + MeCN TMS TiCl4 CH2Cl2 S R2 O R1 R3 NO2 up to 99% ee Single diastereomer Angew. Chem., Int. Ed., 50, 3774 (2011). Ph CHO O PhHNO PhN=O Ph O 兟Mannich reaction N HN H2 10 mol% CF3CO2 CHO Ph O quant, 99% ee cis : tr ans = 8.3 : 1 J. Am. Chem. Soc., 127, 16028 (2005). acetone, 0 oC O Ph H Ph O H R3 DBU This catalyst is more reactive than proline. L-proline Siloxy proline OMe + 24 h, <5% 2 h, 50%, 99% ee MeO + O NH O H NH2 Ph L-proline 20 h, <5% Siloxy proline 20 h, 63%, 96% ee Adv. Synth. Catal., 346, 1435 (2004). 䞉Organic solvent free Dry and Wet condition asymmetric aldol reaction with proline catalyst Organic solvent free reaction 䞉aldehyde-aldehyde 䞉Organic solvent free asymmetric aldol reaction between ketone and aldehyde CO2 H O O O Aldol reaction by diarylprolinol as a catalyst O OH N H F3C O ClCO2Et K2CO3 N MeOH O F3C OMe O OH H CF3 OEt N OH H Diarylprolinol CF3 Ar Cl NaBH4 O OH MeOH Filtration (60 ml AcOEt) O R1 water (3 eq.) R2 R3 R2 anti : syn = >20 :1 up to >99% ee Chem. Commun. , 2007, 957. NaBH4 O OH MeOH NMP, 4 C OH OH Cl 10 g (70%) ant i:syn=10:1 >99%ee 56%, 82% ee Org. Lett., 10, 5581 (2008). R Br HO HO CHO O 7.9 mL (70 mmol) O N H Br OTIPS R = H, 73%, 85% ee R = Br, 86%, 82% ee ent-Convolutamydine E Hydr ophiic part Cl O NMe N H N H H Me a half fragment of CPC-1 Madindoline A and B Org. Lett., 11, 3854 (2009). Cl O N H O RT, 24 h 10 mol% O O Cl NaBH4 H + OH 2.4 g (30 mol%) CO2H Hydrophobi c par rt Cl OH O O H MeOH o EtO2C H H aq MeCN EtO2C H Me 14.6 g (94%) anti / syn = 1.4 / 1 98% ee EtO2C TBDPSO n O O MeO H + N H 10 mol% 䞉Self aldol reaction of propanal in water – reaction in water with proline-amide catalyst N N N N H OMe OMe R up to 99% ee Org. Lett., 12, 2966 (2010). + CONH2 PMP Ph3P=CHCO2Et Ar OH OMe Cl OH w ater , 0 C N H 10 mol% O O H H 40 wt% in water THF, RT R O R O OH O Cl O Me HC(OMe)3, TsOH OH Cl K2CO3 O + OH Chem. Commun., 2007, 2524. 䞉Organic solvent free asymmetric Diels-Alder reaction with proline derived catalyst O DMSO and aq DMSO OMe 10 mL <5-89%, 0-96% ee anti : syn = 0.8-13 : 1 positive water eff ect (2.64 g, 20 mmol) O OH F3C OEt In 10% EtOH N H H R Ar Ar OH 10 mol% Ph3P=CHCO2Et toluene, RT OH OH F3C CO2Et R up to 96% ee Synlett, 485, (2011). OH O R 40 wt% in water O H N H 5 mol% CF3 exo:endo 82:18 TMSO 3.2 g, 81% 97% ee CF3 Ar NH2 OH 10 mol% Ph3P=CHCO2Et THF, RT OHC (4.7 mL, 60 mmol) Ph Gly, Ala, Val, Leu, lle, Phe, Trp, Pro, Ser, Thr, Tyr, Cys, Met, His, Lys, Arg, Asp, Asn, Glu, Gln Sy nlett , 2006, 1565. Ar decantation then distillation CHO Ph O2N OMe R up to 99% ee Angew. Chem., Int. Ed., 50, 2804 (2011). CO2Et R high enantioselectivi ty water 20 proteinogenic amino acid (30 mol%) O H H R H Water 䞉Effect of water on aldol reaction with 20 proteinogenic amino acid CO2Et OMe OH O (cat.) H 93%, 95% ee syn : anti =4.6 : 1 Org. Lett., 10, 21 (2008). R N H O O MeO OMe K2CO3 NH o NH2 Ar Cl 䞉Organic solvent free asymmetric Mannich reaction with proline catalyst R OH OMe O CO2Et Distillation CO2tBu EtO2C MeOH, PPTS R R Polymer form O Angew. Chem. Int. Ed., 45, 5527 (2006). OH Ph3P=CHCO2t Bu OH O OH OH water, 0 C Ar CO2H N H organic phase O 9.3 mL (105 mmol) CO2H N H 97%, 99% ee anti : syn =19 : 1 Ar O H H2O (40 mL) water phase Y. Hayashi et al., Angew. Chem., Int. Ed., 45, 958 (2006). MeO HO OH O N R OTIPS OH N H 10 mol% O H2O (3.8 mL) RT, 72 h DMF, 4 oC H N R OH O (cat.) R3 H R1 䞉Intermolecular aldol reaction between aldehydes in the presence of water O N H + Ar OH N H 30 mol% ClCH2CO2H O H R2 anti : syn = up to 14 :1 up to 95% ee CO 2H O O Y. Hayashi et al., Chem. Eur . J., 13, 10246 (2007). R R2 Organic solvent-free aldol reaction O o Distillation Ar R1 neat OH O 82%, 98% ee Angew. Chem., Int. Ed., 47, 2082 (2008). HO OH O H H 䞉aldehyde-ketone CO2H N H 259 mg (1 mol%) H 2O Ar 3 H 13.7 g (2 eq) TBDPSO 3.8 mL (3 equiv.) 2 days OH N H 10 mol% OH 7.4 g (1 eq) This catalyst is synthesized in short steps from proline. This is effective olganocatalyst of direct, enantioselective aldol reaction. Excellent enantioselectivity is obtained. CF3 Ar DMF, 4 oC R1 (cat.) 2.5 g silica gel CF3 KOH MeOH N OEt OH N H 10 mol% H F3C CF3 THF Ar O CF3 MgBr O Cl + O H CF3 N H OH CO2Et O R up to 99% ee Chem. Commun., 48, 4570 (2012). Application of High Pressure lnduced by WaterWater-Freezing to the direct catalytic asymmetric reaction water CF3 ClO4 F3C RT, 8 h Angew. Chem. Int. Ed., 47, 6634 (2008). The novel method of high pressure by water-freezing: Proposed mechanistic cycle The high pressre (cat. 200 MaPa) is easilly is essily achieved simply by freesing water (-20 䉝) in a sealed autoclave. 10 mol% O 䞉Mannich reaction Ph O2N CO2H OMe O H MeO + N H O + R NH 1 O O R1 NH2 H MeO cat. Ph Ph Ph OTMS O O2N H o hexane, 0 C R 1 O R1 H R2 MeO N H O H R2 R N H NO2 H R NO2 1 H2 O atm, -% ee 11 atm, RTRT 0%,0%, -% ee oo 200atm, atm,-20 -20 2000 CC 99%,99%, 96% 96% ee ee J . Am. Chem. 䞉Baylis-Hillman Soc., 125, 11208 (2003). reaction 䞉Michael reaction Chem. Lett., 2002, 296. 䞉Aldol reaction Tetrahedron Lett., 45, 4353 (2004). Tetrahedron Lett., 43, 8683 (2004). Research about of chirality R R H 2 R N H H 2 R R 1 NO2 HX N H 1) 1)stirred 24 hᨩᢾ , 㻜㻌䉝 for 24 CO2H N H R X N 1 1 NO 2 CHCl3 CO2H R N R 10% ee䛻ㄪ〇 prepared 10% ee 㻔L-Proline㐣㻕 o 0 C 2) ℐ㐣 2)filtration CO2H N H Amplification of ee from initial low ee R The key to find out origin of chirality Angew. Chem., Int. Ed. 45, 4593 (2006). R N 99% ee(L) solution (L-Proline excess) R N 99% ee (L)⁐ᾮ 1 NO2 R 2 R R NO2 1 H 2 2 R O N O Helvetica Chemica Acta, 94, 719 (2011).