I° WORKSHOP
SULL’IDROGENO E
TECNOLOGIE COLLEGATE
Il ruolo del CNR nella Regione
Maurizio PERUZZINI
F
I
R
E
N
Z
E
HYDROLAB
e-mail: [email protected]; [email protected]
1923
CNR Consiglio Nazionale delle Ricerche
The National Research Council (CNR) is the
greatest scientific public organization of our
country. It was founded on 18 November 1923
and in 1945 it was transformed into a public
body; it has mainly carried out training,
promotion, and research coordination activities in
every scientific and technological sector. In
2003, CNR became a "national public organization
committed to carry out, promote, spread,
transfer and improve research activities in the
main sectors of knowledge growth and of its
applications for the scientific, technological,
economic and social development of the Country”.
Vito Volterra
Guglielmo Marconi
Luigi Nicolais
2013
CNR
CNR Consiglio
Consiglio Nazionale
Nazionale delle
delle Ricerche
Ricerche
To this end, the activities of
the organization are divided
into 7 macro areas of
interdisciplinary scientific and
technological research,
concerning several sectors:
bio(techno)logy, medicine,
materials, environment and
land, information and
communications, energy,
physical sciences, chemistry,
judicial and socio-economic
sciences, classical studies and
arts.
106 istituti
CNR – NATIONAL RESEARCH COUNCIL
Earth & Environment
Agrofood
Biomedical Sciences
Physical Sciences and technologies of matter
Chemical Sciences
of materials
Houseand
oftechnologies
Chemists
at CNR
Materials & Devices, ICT, Energy & transports
d
d
Human Sciences & Cultural Heritage
Biella: ISMAC
ISTM: Molecular Sciences
& Tehnology
MILAN, Perugia
ICRM: Molecular Recognition
MILAN, Rome
ISMAC: Macromolecules
MILAN, Genova, Biella
ISOF: Organic and Photochemistry
BOLOGNA, Ferrara
Genova: ISMAC, IENI
Trieste: ICCOM, IC
IENI: Energy and interphases,
PADUA;Genova, Lecco, Milano
ITM, ICB
Ferrara: ISOF
ISTEC: Ceramics
FAENZA
Perugia: ISTM
PISA: ICCOM, IMCB
IC: Crystallography
BARI, Rome, Trieste;
ICCOM
ICCOM: Organometallic Chemistry & Catalysis
FIRENZE, Pisa, Bari, Trieste
Sassari: ICB
ICTP: Polymers
NAPLES, Catania
IMCB: Composites and Biomedical Materials
NAPLES, Pisa
ICB: Biomolecular Chemistry
NAPLES, Sassari, Catania, Padua, Rome
Sections (UOS)
Headquarters
IMC: Chemistry
Methodologies, ROME
ISMN: Nanomaterials
ROME, Bologna, Palermo
Palermo: ISMN
ITM: Technology
of the membranes
COSENZA, Padua
Catania: ICB, ICTP
35
32
30
25
25
20
15
6
10
5
0
1
2
3
TS
PI
FI
BA
63 Unità di
personale
>85 % dedicate
alla ricerca
Area della Ricerca del CNR di Firenze
Polo Scientifico e tecnologico di
Sesto Fiorentino
Area della Ricerca del CNR di Pisa
Via G. Moruzzi,1
Località S. Cataldo - Pisa
2000
1500
1000
500
0
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
risorse interne (FFO)
risorse esterne
totale
Improve the existing
(catalytic) processes
SUSTAINABLE
CHEMISTRY
Design and development,
of new synthetic
processes (catalytic)
ICCOM
Research
Platforms
STRATEGIC
OBJECTIVES
Sustainable
production
of energy
Energy
Hydrogen
technology
CCS & CCU
Efficiency
and selectivity
Environmental
issues
Valorization of
renewable
resources
Reuse and
Recycle of waste
materials
Process
optimization
Valorization
and abatement
of pollutants
Biorefinery
Photovoltaic
Conversion of
renewable
feedstock
World Energy consumption (1850-2000) -Science 309 (2005) 550
86%
x
x
13 GTep/year
1000 oil barrels / sec
2 l oil/day man
Riduzione emissioni ed indipendenza energetica basata su un vettore
energetico:
 di impatto ambientale (globale e locale) quasi nullo;
 ottenibile da più fonti energetiche primarie, intercambiabili
e disponibili su larga scala, anche in futuro;
 distribuibile attraverso una rete.
Idrogeno come vettore energetico ideale:
H2 + 1/2 O2 = H2O + calore
 Prodotto da fonti fossili o rinnovabili;
 Distribuito in rete con infrastrutture opportune o mediante
sviluppo di tecnologie di trasporto e di stoccaggio;
 Diverse applicazioni (produzione di energia elettrica centralizzata
o distribuita, generazione di calore, trazione)
We are eager for ENERGY!
PRODUZIONE
85%
PRODUCTION
Produzione mondiale
~ 500 milioni Nm3/anno
CONSUMPTION
4%
4%
7%
50%
37%
8%
Quasi tutta la CO2 associata
alla produzione di H2 è
rilasciata nell’atmosfera
5%
8
5
50
37
Ammonia
Refining
Methanol
Others
Hydrogen_consuming sectors
F
I
R
E
N
Z
E
HYDROLAB
PRODUCTION
The hydrogen “pipeline”
Photobiological production of
(bio)hydrogen from vegetal wastes
in collaboration with
Roberto De Philippis
Dip Scienze delle Produzioni
Agroalimentari e dell’ambiente
Università degli Studi di Firenze
ICCOM CNR Firenze
F
I
R
E
N
Z
E
Red bacteria
Solar
energy
HYDROLAB
Highlights
Organic
acids
Lacto
bacteria
Vegetal
wastes
compost
H2
H2 PHOTOBIOLOGICAL
PRODUCTION FROM NON
SULFUREUS RED BACTERIA
FROM VEGETAL WASTES
AND SOLAR ENERGY
Resp. R. De Philippis
(UNIFI Ass. ICCOM FI)
F
I
R
E
N
Z
E
over
expression
HYDROLAB
H+ +
Highlights
N2 +
H2
NH3
e-
operone
hup
Red
bacteria
nitrogenase
operone
nif
knockout
H2
Idrogenasi uptake
H ++
e-
DNA
Two Phases process from organic waste:
(Bio)electricity from (bio)hydrogen
ENOTRIA
Highest power density at RT
(fuel cell PEMFC): 60 mW cm-2
R. De Philippis UNIFI in collaboration with ICCOM-CNR
(F. Vizza, M. Peruzzini)
CNR Priority Research Areas in Hydrogen Storage
Metal Hydrides and Complex Hydrides
NaAlH4 X-ray view
NaAlD4 neutron view
X ray cross section
Degradation, thermophysical properties,
effects of surfaces, processing, dopants,
and catalysts in improving kinetics,
nanostructured composites
H
C O
Al
Si
Neutron Imaging
of Hydrogen
NaBH4 + 2 H2O

4 H2 + NaBO2
Porous materials
Nanoporous materials, zeolites, MOFs,
COFs, decorated carbon nanotubes
Chlathrates
Hydrogen hydrates
Chemical Storage
Formic acid, aminoboranes, …
Basic Energy Sciences
Serving the Present, Shaping the Future
Fe
Neutron cross section
Nanoscale/Novel Materials
Finite size, shape, and curvature effects
on electronic states, thermodynamics,
and bonding, heterogeneous compositions
and structures, catalyzed dissociation and
interior storage phase
D
Cup-Stacked
Carbon Nanofiber
H Adsorption in
Nanotube Array
• Hydrogen storage is still the challenge
No Hydrogen Economy
without Hydrogen Storage
F
I
R
E
N
Z
E
HYDROLAB
HYDRIDES AS
PHOTOSENSITIVE
MATERIALS FOR
H-STORAGE
Chemical storage of hydrogen
ENOTRIA
Catalytic
decomposition
(Ru o Fe)
Chemical
storage
of hydrogen
HCO2H
+ base
H2
use
CO2
+
base
ENOTRIA
CO2 catalytic
hydrogenation
(Ru, Rh, Ir, Au)
H2
From
renewables
CNR@ICCOM: Reversible Hydrogen Storage by Organic Compounds
Targets and ongoing activities:
EFOR
■ Catalytic Formic Acid Dehydrogenation (liquid, 4.4% wt of hydrogen content) to produce hydrogen
under mild conditions of pressure and temperature.
■ Catalytic Regeneration of formic acid by hydrogenation of carbon dioxide and derivatives under
mild conditions of pressure and temperature (catalytic cycle zero carbon emission)
■ Synthesis and screening of a library of ligands and homogeneous (soluble) , heterogeneous
(insoluble), and immobilized metal catalysts for both reactions CO2 + H2 <=> HCOOH and reverse.
■ Standardisation of testing and data production; setup of a laboratory dedicated to testing of
catalysts for hydrogenation of CO2 and dehydrogenation of Formic Acid
Instrumentation
STORAGE
Autoclave:
H2 + CO2 → HCOOH
Total pressures up to
200 bar
RELEASE
Glass reactors:
HCOOH → H2 + CO2
Continuous production
of gas from Formic Acid
dehydrogenation
Gas-volumetric burettes to measure
the volumes of gas produced
“La nostra società
è vorace e guarda
alla natura da un
lato come una
miniera e dall'altro
come a una
discarica”
Wolfgang Sachs
Grazie!
[email protected]
Scarica

Il ruolo del CNR nella Regione - Pont-Tech