I° WORKSHOP SULL’IDROGENO E TECNOLOGIE COLLEGATE Il ruolo del CNR nella Regione Maurizio PERUZZINI F I R E N Z E HYDROLAB e-mail: [email protected]; [email protected] 1923 CNR Consiglio Nazionale delle Ricerche The National Research Council (CNR) is the greatest scientific public organization of our country. It was founded on 18 November 1923 and in 1945 it was transformed into a public body; it has mainly carried out training, promotion, and research coordination activities in every scientific and technological sector. In 2003, CNR became a "national public organization committed to carry out, promote, spread, transfer and improve research activities in the main sectors of knowledge growth and of its applications for the scientific, technological, economic and social development of the Country”. Vito Volterra Guglielmo Marconi Luigi Nicolais 2013 CNR CNR Consiglio Consiglio Nazionale Nazionale delle delle Ricerche Ricerche To this end, the activities of the organization are divided into 7 macro areas of interdisciplinary scientific and technological research, concerning several sectors: bio(techno)logy, medicine, materials, environment and land, information and communications, energy, physical sciences, chemistry, judicial and socio-economic sciences, classical studies and arts. 106 istituti CNR – NATIONAL RESEARCH COUNCIL Earth & Environment Agrofood Biomedical Sciences Physical Sciences and technologies of matter Chemical Sciences of materials Houseand oftechnologies Chemists at CNR Materials & Devices, ICT, Energy & transports d d Human Sciences & Cultural Heritage Biella: ISMAC ISTM: Molecular Sciences & Tehnology MILAN, Perugia ICRM: Molecular Recognition MILAN, Rome ISMAC: Macromolecules MILAN, Genova, Biella ISOF: Organic and Photochemistry BOLOGNA, Ferrara Genova: ISMAC, IENI Trieste: ICCOM, IC IENI: Energy and interphases, PADUA;Genova, Lecco, Milano ITM, ICB Ferrara: ISOF ISTEC: Ceramics FAENZA Perugia: ISTM PISA: ICCOM, IMCB IC: Crystallography BARI, Rome, Trieste; ICCOM ICCOM: Organometallic Chemistry & Catalysis FIRENZE, Pisa, Bari, Trieste Sassari: ICB ICTP: Polymers NAPLES, Catania IMCB: Composites and Biomedical Materials NAPLES, Pisa ICB: Biomolecular Chemistry NAPLES, Sassari, Catania, Padua, Rome Sections (UOS) Headquarters IMC: Chemistry Methodologies, ROME ISMN: Nanomaterials ROME, Bologna, Palermo Palermo: ISMN ITM: Technology of the membranes COSENZA, Padua Catania: ICB, ICTP 35 32 30 25 25 20 15 6 10 5 0 1 2 3 TS PI FI BA 63 Unità di personale >85 % dedicate alla ricerca Area della Ricerca del CNR di Firenze Polo Scientifico e tecnologico di Sesto Fiorentino Area della Ricerca del CNR di Pisa Via G. Moruzzi,1 Località S. Cataldo - Pisa 2000 1500 1000 500 0 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 risorse interne (FFO) risorse esterne totale Improve the existing (catalytic) processes SUSTAINABLE CHEMISTRY Design and development, of new synthetic processes (catalytic) ICCOM Research Platforms STRATEGIC OBJECTIVES Sustainable production of energy Energy Hydrogen technology CCS & CCU Efficiency and selectivity Environmental issues Valorization of renewable resources Reuse and Recycle of waste materials Process optimization Valorization and abatement of pollutants Biorefinery Photovoltaic Conversion of renewable feedstock World Energy consumption (1850-2000) -Science 309 (2005) 550 86% x x 13 GTep/year 1000 oil barrels / sec 2 l oil/day man Riduzione emissioni ed indipendenza energetica basata su un vettore energetico: di impatto ambientale (globale e locale) quasi nullo; ottenibile da più fonti energetiche primarie, intercambiabili e disponibili su larga scala, anche in futuro; distribuibile attraverso una rete. Idrogeno come vettore energetico ideale: H2 + 1/2 O2 = H2O + calore Prodotto da fonti fossili o rinnovabili; Distribuito in rete con infrastrutture opportune o mediante sviluppo di tecnologie di trasporto e di stoccaggio; Diverse applicazioni (produzione di energia elettrica centralizzata o distribuita, generazione di calore, trazione) We are eager for ENERGY! PRODUZIONE 85% PRODUCTION Produzione mondiale ~ 500 milioni Nm3/anno CONSUMPTION 4% 4% 7% 50% 37% 8% Quasi tutta la CO2 associata alla produzione di H2 è rilasciata nell’atmosfera 5% 8 5 50 37 Ammonia Refining Methanol Others Hydrogen_consuming sectors F I R E N Z E HYDROLAB PRODUCTION The hydrogen “pipeline” Photobiological production of (bio)hydrogen from vegetal wastes in collaboration with Roberto De Philippis Dip Scienze delle Produzioni Agroalimentari e dell’ambiente Università degli Studi di Firenze ICCOM CNR Firenze F I R E N Z E Red bacteria Solar energy HYDROLAB Highlights Organic acids Lacto bacteria Vegetal wastes compost H2 H2 PHOTOBIOLOGICAL PRODUCTION FROM NON SULFUREUS RED BACTERIA FROM VEGETAL WASTES AND SOLAR ENERGY Resp. R. De Philippis (UNIFI Ass. ICCOM FI) F I R E N Z E over expression HYDROLAB H+ + Highlights N2 + H2 NH3 e- operone hup Red bacteria nitrogenase operone nif knockout H2 Idrogenasi uptake H ++ e- DNA Two Phases process from organic waste: (Bio)electricity from (bio)hydrogen ENOTRIA Highest power density at RT (fuel cell PEMFC): 60 mW cm-2 R. De Philippis UNIFI in collaboration with ICCOM-CNR (F. Vizza, M. Peruzzini) CNR Priority Research Areas in Hydrogen Storage Metal Hydrides and Complex Hydrides NaAlH4 X-ray view NaAlD4 neutron view X ray cross section Degradation, thermophysical properties, effects of surfaces, processing, dopants, and catalysts in improving kinetics, nanostructured composites H C O Al Si Neutron Imaging of Hydrogen NaBH4 + 2 H2O 4 H2 + NaBO2 Porous materials Nanoporous materials, zeolites, MOFs, COFs, decorated carbon nanotubes Chlathrates Hydrogen hydrates Chemical Storage Formic acid, aminoboranes, … Basic Energy Sciences Serving the Present, Shaping the Future Fe Neutron cross section Nanoscale/Novel Materials Finite size, shape, and curvature effects on electronic states, thermodynamics, and bonding, heterogeneous compositions and structures, catalyzed dissociation and interior storage phase D Cup-Stacked Carbon Nanofiber H Adsorption in Nanotube Array • Hydrogen storage is still the challenge No Hydrogen Economy without Hydrogen Storage F I R E N Z E HYDROLAB HYDRIDES AS PHOTOSENSITIVE MATERIALS FOR H-STORAGE Chemical storage of hydrogen ENOTRIA Catalytic decomposition (Ru o Fe) Chemical storage of hydrogen HCO2H + base H2 use CO2 + base ENOTRIA CO2 catalytic hydrogenation (Ru, Rh, Ir, Au) H2 From renewables CNR@ICCOM: Reversible Hydrogen Storage by Organic Compounds Targets and ongoing activities: EFOR ■ Catalytic Formic Acid Dehydrogenation (liquid, 4.4% wt of hydrogen content) to produce hydrogen under mild conditions of pressure and temperature. ■ Catalytic Regeneration of formic acid by hydrogenation of carbon dioxide and derivatives under mild conditions of pressure and temperature (catalytic cycle zero carbon emission) ■ Synthesis and screening of a library of ligands and homogeneous (soluble) , heterogeneous (insoluble), and immobilized metal catalysts for both reactions CO2 + H2 <=> HCOOH and reverse. ■ Standardisation of testing and data production; setup of a laboratory dedicated to testing of catalysts for hydrogenation of CO2 and dehydrogenation of Formic Acid Instrumentation STORAGE Autoclave: H2 + CO2 → HCOOH Total pressures up to 200 bar RELEASE Glass reactors: HCOOH → H2 + CO2 Continuous production of gas from Formic Acid dehydrogenation Gas-volumetric burettes to measure the volumes of gas produced “La nostra società è vorace e guarda alla natura da un lato come una miniera e dall'altro come a una discarica” Wolfgang Sachs Grazie! [email protected]