Application of Genomic Analyses on Local Animal Genetic Resources Martino Cassandro Italy Outline Introduction Genomic Assisted CONSERVATION Scheme for Local AnGR Genomic Assisted CHARACTERIZATION of local AnGR Genomic Assisted TRACEABILITY for local Animal Products 2 Introduction Genetic Erosion of AnGR: • 90% of animal food derived by only 14 species (FAO, 1999) • 16% of animal domestic breeds are disappearances in the last century (Hall and Ruane, 1993). • 30% of world breeds are in risk of extinction (Hammond, 1996) and annual rate of extinction is increasing (FAO, 1995) • Hammond and Leitch (1996) showed that the genetic variance among breeds account to 30–50% of the total variance 3 Introduction In Europe: • almost 2/5 present breeds are on risk of extinction • 1/3 of breeds are extincted from the beginig of XX century. (Hammond and Leitch, 1996) 4 Introduction • Why Animal Biodiversity is so important and large in Italy: 1. Area refuge after last glaciation 2. Large variety of environments (Alps, Hills, Plains, Coasts, Islands) 3. A rich history of migrations of human and animals populations 4. Animal biodiversity as tool and to valorize animals products, local/niche markets, preserve territory and culture, and population history 5. Over 57,000 animal species (and 8,000 plant species) are the numbers that make the Italy as the European nation's richest biodiversity. 5 Introduction • Why Genomic Approach is useful for “Local” Animal Biodiversity 1. No pedigree information are available 2. Absence of studies on performances/characterization 3. No reliable information within and among breeds/populations 4. Scarce economic interest to preserve original “genome” 6 Introduction An important strategy to INCREASE Add Value for Animal Products to PRESERVE Environment and Biodiversity to ORIENTATE Tourism & Food Consumptions might be to “PROMOTE” the LINK LOCAL BREED TERRITORY PRODUCT 7 Farmer Animal Traditional Yield Chain Milk-Meat Processed Products Commercial and Marketing Modern Integrated Chain Grassland-Pastures Environment - Landscape Tourism/quality of life Local Economy 8 Farmer Animal Modern Integrated Chain Traditional Yield Chain Environmental Chain Grassland-Pastures Milk-Meat Processed Products Commercial and Marketing Environment - Landscape Tourism/quality of life Local Economy 9 Farmer Animal Modern Integrated Chain Environmental Chain Traditional Product Chain Grassland-Pastures Milk-Meat Processed Products Commercial and Marketing Local breeds – Landscape Tourism/quality of life Local Economy 10 11 Introduction Chianina-Romagnola Consortium 5R Marchigiana-Podolica Italian Meat Maremmana Reggiana Parmigiano Reggiano di razza Reggiana (37 euro/kg) Burlina Veneto Sheep Breeds Morlacco Pitina 12 Introduction BREED-PRODUCT LINK Cinta Senese Valdostana Lardo di Colonnata Fontina Rendena Padovana Chicken breed Cheese Rendena Pro Avibus Nostris 13 Conservation of Local Poultry Breeds Conservation of Local Poultry Breeds Robusta Maculata (RM) Robusta Lionata (RL) Pépoi (PP) Padovana Dorata (PD) Ermellinata di Rovigo (ER) Common chicken Padovana chicken 15 Genomic Conservation of AnGR • COVA Project, since 2000. 11 Chicken local breeds (+ other 3 avian species) • An In situ conservation scheme based on 3 breeding units/breed • Each nucleus breed, within breeding unit, is based on 20 M + 34 F • Males are divided in 2 families • Females of the same breed, within breeding unit, are reared all together • Individuals are genotyped extracting genomic DNA by whole blood • Individuals are selected in order to: – phenotypic standard breeding – family origin – individual contribution at overall Vg 16 MARKER ASSISTED CONSERVATION SCHEME BIANNUAL CHANGE OF ALL ANIMALS 10 old males 17 old females 20 males 34 females 210 eggs by first family – period 1 210 eggs by second family –period 2 420 eggs in 6 weeks 0 months 0,5 months 4 months 50% N/I 210 chicks born alive 105 males 5 males/family 10 young males 5 months 105 females 6/7 months 8/9 females/family 17 young females 8/12 months Annual Males Rotation Scheme BREEDING UNIT (BU) n. 1 (TV) Males Selected BU N.2 (BL) 1 0,9 BU N. 3 (RO) BU, n. 3 0,8 TREND OVER YEAR OF QUOTA OF MALE’S ORIGIN 0,7 0,6 0,5 33% 0,4 0,3 0,2 BU, n. 2 0,1 BU, n. 1 0 1 2 3 4 YEAR 5 6 7 18 Genomic Characterization of AnGR Breed Code Alleles/ breed HE (nb) ±SD HO ±SD FIS fij breed Brown Layer BL 3.80 0.559 0.141 0.622 0.233 -0.117*** 0.439 Ermellinata di Rovigo ER 3.14 0.420±0.175 0.384±0.248 0.089*** 0.573 Pèpoi PP 2.51 0.243±0.239 0.240±0.236 0.018* 0.769 Robusta Lionata RL 2.43 0.367±0.229 0.317±0.264 0.131*** 0.657 Robusta Maculata RM 2.17 0.293±0.225 0.292±0.226 0.003 0.721 Polverara Bianca PB 3.01 0.436±0.190 0.366±0.201 0.161*** 0.577 Polverara Nera PN 3.45 0.463±0.177 0.413±0.170 0.109*** 0.559 Padovana Camosciata PC 2.27 0.305±0.257 0.287±0.271 0.062 0.704 Padovana Dorata PD 2.66 0.340±0.199 0.329±0.230 0.034 0.689 Breed PB (36) PN (52) RL (43) RM (45) ER (45) PD (24) PC (26) PP (45) 19 Genomic Characterization of AnGR Structure analysis of six Italian local chicken breeds assuming K = 6, 7, 8, 9, 10. Only most probable solutions for each K are shown. 20 Genomic Characterization of AnGR N-J tree drawn by DR distances (1000 bootstrap repetitions) 21 Genomic Characterization of AnGR 22 N-J tree drawn by Dk distances among nuclei Genomic Characterization of AnGR 23 N-J tree drawn by Dk distances among nuclei Genomic Characterization of AnGR Alpagota Fiemmese Foza Bergamasca Brogna Suffolk 24 Genomic Characterization of AnGR Breed ALPAGOTA BERGAMASCA BROGNA FIEMMESE FOZA LAMON SUFFOLK n. individuals 75 30 50 30 35 21 33 Average TOTAL 274 Het Ho 0,673 ± 0,122 0,783 ± 0,082 0,734 ± 0,097 0,758 ± 0,115 0,677 ± 0,208 0,760 ± 0,067 0,701 ± 0,142 0,719 ± 0,137 0,750 ± 0,107 0,746 ± 0,113 0,781 ± 0,121 0,726 ± 0,231 0,818 ± 0,076 0,673 ± 0,143 N. average alleles 6,7 ± 2,3 8,1 ± 1,7 7,1 ± 1,7 8,3 ± 2,8 6,5 ± 1,6 6,3 ± 1,8 7,1 ± 1,5 0,727 ± 0,043 0,745 ± 0,046 7,2 ± 0,77 0,783 ± 0,087 0,737 ± 0,096 12,2 ± 3,2 Allelic richness 5,4 ± 1,4 7,6 ± 1,4 6,3 ± 1,6 7,6 ± 2,6 6,2 ± 1,6 6,3 ± 1,8 6,5 ± 1,3 6,6 ± 0,8 8,3 ± 1,9 25 Genomic Characterization of AnGR ■Alpagota, ▲Bergamasca, ▲Brogna, ● Fiemmese, ■ Foza, ■ Lamon, ● Suffolk 0 .2 ALP1 ALP31 Neighbour-Joining Dendrogram using “pairwise” distances 26 Genomic Characterization of AnGR AALLP P22 ALP377 FIE19 FIE ALP23 ALP 12 ALP 36 35 AALLPP26 ALP 206 AL 204 AL P205 AL P214 P2 17 AALLP AL P2405 3 P AL 20 AL P2 8 A P2 43 ALLP2 01 A P 22 BRLP 209 LA O2225 A M1 34 A LP 41 ALP23 ALP1 ALP31 ALP28 ALP2 P412 AL 6 ALP220 ■Alpagota, ▲Bergamasca, ▲Brogna, ● Fiemmese, ■ Foza, ■ Lamon, ● Suffolk 0 .2 A L 1 A LP P2 1 AL LP 22 2 2 3 A P2 24 LP 0 39 7 4 R3 BE R24 BE R16 BE R35 BE R30 BE R26 BE ER62 B R2 BE R57 BER1 9 BE ER12 B R 20 BEER 25 B ER 107 B R3 3 BEO2 23 2 BR RO O8 B R B UPGMA dendrogram using “pairwise” distances 0 P4 13 AL LP P17 8 A L P1 8 A L 3 1 A LP 21 A LP 19 A LP 41 A LP 53 A LP 210 A LP 21 A LP2 25 A LP 02 A LP2 A LP5 8 A BRBR B O2O7 BRBR RO8 41 2 O 1 O B BR 2 71 BRRO1O5 44 O2 42 9 B B R 4 BRRO2O74 2 B O2340 BRRO7 5 O 6 BRBRO 69 BR O2362 O 9 BR 238 BR O78 BROO68 BRO 67 P AL P55 AL P29 AL P30 AL P32 AL P33 AL P9 AL 21 ALP 20 ALP 6 ALP 6 ALP116 ALP2 4 ALP3 ALP51 ALP215 ALP52 ALP10 ALP42 ALP218 BRO236 ALP47 ALP54 ALP56 ALP4 ALP24 ALP213 BR 73 BR O58 BR O94 BRO O93 2 BRO 62 BRO 79 BRO895 BER335 SUF26 SUF30 SUF25 SUF4 SUF18 SUF32 SUF29 SUF7 SUF31 SUF23 SUF28 5 SUF1 1 SUF1 SUF94 SUF1F3 SU F1 SU F8 SU 17 SUFF10 S U F2 7 SU F13 SU F162 SU O9 BR 111 ER Z10 0 FBO Z26 FO Z9163 O 1 FFOZZ1101 FO 25 FOZZ250 FO Z107 FO Z254 FO 11 FOZZ1115 FO Z109 FO 120 FOZ FOZ143 FOZ108 FOZ118 FOZ259 FOZ993 FOZ10 FOZ261 FOZ105 FOZ253 FOZ 986 FO Z10 FOZ257 FOZ256 FOZ117 FOZ10 FOZ2 4 FOZ1 52 FOZ 00 FOZ1258 19 27 Genomic Conservation of AnGR 28 Genomic Conservation of AnGR A B Family #1 C D Family #2 29 Local Cattle Breed - BURLINA “Morlacco cheese of Burlina cattle breed” 31 Economic Characterization of AnGR 400 “Economic comparison Burlina vs HF” Diff. in profit, €/year per cow 200 0 €0 -200 -400 -€ 321 -600 -800 -€ 566 -€ 766 -1.000 Regional Premium no 200 €/capo 200 €/capo 200 €/capo Milk valorization no no + 0,05 €/kg + 0,05 €/kg 9079 kg 9079 kg 9079 kg 7706 kg Holstein Friesian yield 32 Genomic Characterization of AnGR Assignment of individuals at 4 clusters breeds using software STRUCTURE 2.1, Group #1 : unknown BREED? Group #2: Burlina breed Group #3: Bruna breed Group #4: Frisona breed. Unknown Breed ? BURLINA BROWN SWISS HOLSTEIN FRIESIAN 33 Outline Introduction Genomic Assisted CONSERVATION Scheme for Local AnGR Genomic Assisted CHARACTERIZATION of local AnGR Genomic Assisted TRACEABILITY for local Animal Products 34 Genomic Traceability of AnGR TRACEABILITY is an important tool in EU not only for Consumers but also for Producers No. of Certified Products PDO (DOP) e PGI (IGP) 1° ITALY 2° France 3° Portugal 4° Spain e Greece 6° Germany 145 141 92 84 67 Loss of 2,5 billion €/year for FOOD PIRACY* Example of False ITA-Products : - Asiago by Wisconsin (USA) - Parma Ham (USA) - Parmesao (Brasile) - Regianito (Argentina) * dati CIA e Legambiente 35 Genomic Traceability of AnGR The ability to trace the history and to trace the application or location might be divided in Traceability back to the origin Production systems including feeding diets Geographical origin Individual Breed Species Traceability of process Genetic Processing Conservation processes Adulteration of products 36 Genomic Traceability of AnGR Traceability not only in EU Mandatory only in the E.U. and Japan Mandatory (at least for exported beef) in Brazil, Australia, Argentina and Canada Voluntary in the U.S.A. 37 Genomic Traceability of AnGR DNA is: Inalterable Present in every cell Persistent to various treatment Widely used of molecular markers: SNP (single nucleotide polymorphism) SSR (eg. microsatellites) Whole Genome 38 Genomic Traceability of AnGR Individual Genetic Fingerprint is constant 39 Genomic Traceability of AnGR Probabilistc approach based on allelic frequencies Match Probability inferior to 1*E-6 (Weir, 1996) m = number of loci n = number of alleles at locus k pki(j) = Allelic frequency of the allele i (j) at locus k 40 Genomic Traceability of AnGR Collection of milk and blood from: Collection of muscles and blood from: Piemontese n=24 Holstein Friesian n=41 Chianina n=24 Brown Swiss n=53 Marchigiana=22 41 Genomic Traceability of AnGR N° loci 12 Dairy breeds 1.57E-10 Beef breeds 1.89E-11 All breeds 1.13E-11 8 7.02E-09 2.23E-09 1.27E-09 4 1.25E-05 1.26E-05 6.76E-06 1 5.3E-02 3.64E-02 2.74E-02 42 Genomic Traceability of AnGR Breed traceability approaches Deterministic approach: Probabilistic approach: allelic variants fixed in different breeds (MC1R,myostatin) allelic frequencies typical in different breeds High cost of analyses BUT Product-breed link can improve breed economic profitability 43 Breed Traceability in Cattle (15 microsatellite) Probabilistic Approach Breed assignement CHI CHI 98 % ROM 2% MAR ROM MAR PIE HF 2% - - 90 % 8% - 8% 88 % 2% 2% PIE - 2% 5% 93 % - HF - - - - 100% (Ciampolini e coll., 1999) 44 Breed Traceability in Sheep (10 microsatellite) % of Breed Assigment – Probabilistic Approach % ALPagota N. ALP BER BRO FIE FOZ SUF 252 1 3 3 93 75 83 BERgamasca BROgna 6 FIEmmese 3 FOZa 3 SUFfolk 3 3 7 92 2 94 3 7 3 91 3 97 30 50 30 35 32 45 Breed Traceability for Cheese Deterministic Approach using MC1R e KIT genes Brown Holstein Simmental Reggiana (Russo e Fontanesi, 2004) 46 Model of inheritance of the Extension (E) locus and Spotted (S) locus MCR1 gene KIT gene (Melanocortin receptor 1) Alleles Alleles ED E+ e S = not spotted s = spotted = Black = Brown = Red Genotypes ED ED Black Holstein ED E+ Black ED e Black E+ E+ Brown Brown Swiss E+ e Brown e e Red Simmental Reggiana Genotypes SS not spotted Brown Swiss, Reggiana Ss not spotted ss spotted Holstein Simmental 47 Breed Traceability for Cheese Distinction of the cheese yielded with milk of different breeds by Locus Extension (E) and Locus Spotted (S) MCR1 gene KIT gene (Russo e Fontanesi, 2004) 48 Breed Traceability in Pigs AFLP (E12/T14) of 3 PIGS (2 DUROC and 1 IBERIAN) Duroc Duroc Iberian 49 Relationship between the additional cost of DNA traceability and the type of existing traceability system 50 Genomic Traceability of AnGR Genome wide information is necessary for several aims for AnGR: - Conservation - Characterization - Traceability - Authenticity …....and other traditional/already known uses as - Paternity check - Re-construction of pedigree - Heterosis prediction - Other uses in animal breeding 51 Conclusioni • Altri utilizzi delle informazioni molecolari in animal breeding: – – – – Tracciabilità Controllo paternità Ricostruzione di pedigree Previsione dell’eterosi • Altri utilizzi delle tecniche statistiche utilizzate in animal breeding – 52 Thank for the attention A FUTURE PERSPECTIVE IS A MULTIFUNCTIONAL USE OF GENOME WIDE INFORMATION 53 Outline Introduction Genomic Characterization of AnGR in the Veneto Region (ITA) • Bovine local breed (BURLINA) • Sheep breeds (ALPAGOTA, FOZA, LAMON e BROGNA) • Avian species (CHICKEN, DUCK, TURKEY and GUINEA FOWL) Genomic Conservation of AnGR in the Veneto Region (ITA) • Burlina identification • Alpine sheep breeds • Co.Va. Project Genomic Traceability of AnGR in the Veneto Region (ITA) • Species/Breed/Individual level • Meat/Milk/Cheese products 54 Genomic Characterization of AnGR INDIVIDUAL IDENTIFICATION/SELECTION at the birth at about 5/6 months of age Using a threshold index based on: • family origin • breed’s standards • production performance • reproduction performance Cluster analyses for individual selection within family Family 1 Family 2 Win tag 55 CONSERVAZIONE Progetto Co.Va - 2 Le indicazioni dei marcatori molecolari (DNA microsatellite) vengono usate per determinare le distanze genetiche e per monitorare il trend di variabilità genetica nelle popolazioni Per mantenere la variabilità genetica è stato importante usare per lo schema di riproduzione i maschi che, intra gruppo, hanno mostrato le più grandi distanze genetiche. Secondariamente, i polli selezionati devono rispettare gli standard di razza. Infine vengono considerate le performance produttive e riproduttive. Questi indici soglia permettono l’identificazione degli animali migliori per sostituire la generazione precedente. 56 DIVERSITÀ E VARIABILITÀ GENETICHE La variabilità tra le popolazioni (specie, razze) può essere valutata tramite strumenti matematici, che traducono le differenze ad una misura di distanza tra una coppia di popolazioni (Eding & Laval, 1999). La diversità genetica è definita come “somma di informazione genetica contenuta nei geni” (Pearce & Moran, 1994). Le distanze genetiche più utilizzate fanno uso di differenze nelle frequenze alleliche nelle diverse popolazioni. In linea di massima si può utilizzare qualunque gene che mostri polimorfismi (Eding & Laval, 1999). 57 DIVERSITÀ E VARIABILITÀ GENETICHE Misure di diversità genetica - 2 FIS (coefficiente di inbreeding) descrive la varianza genetica tra individui in relazione alla (sotto)popolazione di appartenenza, ovvero l’eccesso di omozigoti all’interno delle sottopopolazioni. FIT: esprime il generale eccesso di omozigoti nella popolazione totale. GST (coefficiente di differenziazione genetica) (Nei 1973) è analogo al FST per un numero finito di sottopopolazioni, ma si basa solo sulle frequenze alleliche senza che siano noti i genotipi individuali (Balloux & Moulin, 2002). Esistono analoghi che forniscono stime indipendenti dalla numerosità del campione (Nei, 1987). 58 DIVERSITÀ E VARIABILITÀ GENETICHE Distanze genetiche – 1 Esistono numerosi tipi di distanze genetiche, la cui interpretazione dipende sempre dal modello di divergenza ipotizzato: D (distanza genetica standard di Nei) (1972) è basata sul modello di mutazione IAM. Assume la contemporanea azione della mutazione (stesso tasso in tutti i loci) e della deriva genetica corrispondenti a tempi di divergenza molto grandi. Il valore di D ha un andamento lineare nel tempo, tuttavia la linearità viene meno nel caso dei microsatelliti a causa del loro alto tasso di mutazione. 59 DIVERSITÀ E VARIABILITÀ GENETICHE Distanze genetiche - 2 Goldstein (1995) e Shivers (1995) idearono nuove misure di diversità genetica ((δµ)2)che si adattassero all’alto tasso di mutazione caratteristico dei microsatelliti. Takezaki e Nei (1996) hanno dimostrato che la distanza DC (CavalliSforza, 1987) e DA (Nei, 1987), sebbene non rispettino la linearità in funzione del tempo, danno risultati migliori in termini di topologia degli alberi filogenetici da esse derivati, probabilmente a causa della minore varianza ad esse associata (Ending & Laval, 1999). DC è basata sull’unica assunzione che la popolazione sia sottoposta all’influenza della deriva genetica; le popolazioni sono concettualizzate come punti in uno spazio multidimensionale e la distanza ricavata è di tipo geometrico. 60 DIVERSITÀ E VARIABILITÀ GENETICHE Distanze genetiche - 3 Nel caso di tempi di divergenza piuttosto recenti (differenziazione al livello di razza), si può ammettere che l’effetto mutazione sia trascurabile e che il fattore principale che descrive la variabilità genetica sia la deriva genetica casuale. La distanza di Reynolds DR soddisfa quest’ipotesi, sotto il modello di mutazione IAM. 61