Collector Energy Balance M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 19 / 95 Collector Energy Balance (I) G”u = G”a - G”disp G”inc = G”direct + G”diff G”u = G”a – K” (Tp, ave – Ta) G”a = G”inc (τα)ave (Tp, ave – Tfluid, ave) = G”u / h fluid Tp, ave = G”u / h fluid + Tfluid, ave G”inc G”u (1 + K”/ h fluid ) = G”a – K” (Tfluid, ave – Ta) G”disp G”u = F’[G”a – K” (Tfluid, ave – Ta)] Ta F’ = h fluid / (K” + h fluid ) Efficiency factor Glass cover G”abs Tp G”useful Tf Flow rate m” Thermal fluid Insulation M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 20 / 95 Collector Energy Balance (II) G”u = F’[G”a – K” (Tfluid, ave – Ta)] G”u = m”c (Tfi – Tfu)] A=WL dA = Wdx G”u,x dA = G”u,x (W dx) = (m” A) c dTf,x m”c L dTf,x / dx = G”u = F’[G”a – K” (Tf, x – Ta)] being d[G”a – K” (Tf, x – Ta)] = -K” dTf dTf = -1/K” d[G”a – K” (Tf, x – Ta)] ∫dx=L F’/(m”c L) dx = (-1/K”) d[G”a – K” (Tf, x – Ta)] / [G”a – K” (Tf, x – Ta)] (G”a – K” (Tf, u – Ta)) / (G”a – K” (Tf, i – Ta)) = exp [-F’K”/(m”c)] G”inc G”disp Ta L W Glass cover y x G”abs G”useful TFI Tp TFU TF Insulation m” [kg/(s m2)] Therm. fluid Mass flow rate m” (per unit surface) Δx M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 21 / 95 Collector Energy Balance (IIIa) (heat removal factor) Fattore di rimozione termica FR G”u = F’[G”a – K” (Tfluid, ave – Ta)] FR= G”u / [G”a – K” (Tfluid, in – Ta)] = [m”c (Tout – Tin)] / [G”a – K” (Tin – Ta)] FR= (1/K”)m”c [K”(Tout – Tin] / [G”a – K” (Tin – Ta)] = (1/K”)m”c [K”(Tout – Ta)-K”(Tin – Ta)] / [G”a – K” (Tin – Ta)] = (1/K”)m”c [ [G”a -K”(Tin – Ta)] - [G”a - K”(Tout – Ta)] ] / [G”a – K” (Tin – Ta)] = (1- [ [G”a - K”(Tout – Ta)] / [G”a -K”(Tin – Ta)] ]) (1/K”)m”c = (1(1-exp [-F’K”/(m”c)]) (1/K”)m”c FR= (1 – exp[-F’K”/(m”c)])(m”c)/K” M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 22 / 95 Collector Energy Balance (IIIb) (heat removal factor) Fattore di rimozione termica FR G”u = F’[G”a – K” (Tfluid, ave – Ta)] FR= G”u / [G”a – K” (Tfluid, in – Ta)] FR is close to unity for high flow rates, high h, low K”. It can be demonstrated that: FR= [1 – exp(-F’K”/m”c)](m”c)/K” Hence: G”u = FR[G”a – K” (Tfluid, in – Ta)] (Bliss Equation) G”inc G”disp Ta Copertura vetrata G”ass Tp TFU TFI Tf G”utile Fluido vettore Isolante Termico Portata fluido m” (per unità di superficie) M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 23 / 95 Collector Energy Balance (IV) G”u = FR[G”a – K” (Tfluid, in – Ta)] (Bliss equation) G”a = G”inc (τα) Ea = Einc, ave (τα)ave [J/m2 day] (on a daily basis, monthly ave) η Collector efficiency η is defined as: η = G”u /G”inc = FR [G”a – K” (Tfluid, in – Ta)] / G”inc ηave = FR [Ea – K” (Tfluid, in – Ta, ave)Δτ] / Einc (on a daily basis, monthly ave) Ea = Einc (τα) ave G”inc G”disp Ta Einc = ET G”ass TFI Tp Tf G”utile ET = Overall insolation on tilted surface TFU m” (per unit surface M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 24 / 95 Collector Efficiency (I) ηave = FR (τα) – FRK” [(Tfluid, in – Ta)]/G”inc 2 2 2 2 2 2 M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 25 / 95 Collector Efficiency (II) η= FR (τα) – FRK” [(Tfluid, in – Ta)] / G”inc η=a + bx Notice: 1) Sometimes FR (τα) is written as η0 2) Sometimes η= a + b1x + b2x2 η 1 Iso 98069806-1 Solar Energy – Methods of Test for the Thermal Performance of Liquid Heating Collectors FR τα Atan (K”FR ) EN 1297512975-2:2006 Thermal solar systems and components – Solar collectors – Part 2: Test methods [(Tfluid, in – Ta)] / G”inc ] M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 26 / 95 Collector Efficiency (III) EN 12975 Indoor Test The lamps capable of producing a mean irradiance over the collector aperture of at least 700 W/m2. Values in the range 300 to 1000 W/m2 can be used for special tests. The irradiance at a point on the collector aperture shall not differ from the mean irradiance over the aperture by more than ±15 % The spectral distribution of the simulated solar radiation shall be approximately equivalent to that of the solar spectrum at optical air mass 1.5 M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 27 / 95 Collector Efficiency (III) M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 28 / 95 Collector Efficiency (IV) Coeff. In efficiency expression, as measured at CSTB (France) MARQUES de CAPTEURS Avis Technique CSTB Coef. τ α CSTB Coef. K“ W/m2.°C BUDERUS - Logasol SKS 14-00/577 0,79 4,89 AT 14 + 5/03839 0,73 4,26 4-00/576 0,68 3,82 GASOKOL - Enersol GKAN et GKAQ 14/02-716 0,77 3,86 GIORDANO - C8 HI 14/02-747 0,72 4,36 14+5/02-756 0,72 4,80 SOLAHART - Solahart Ko 14/01-672 0,79 4,76 SONNENKRAFT - SK500 (Solar Connexion) 14-00/575 0,76 3,78 SUNMASTER - SK20 LM (New Point Products) 14/01 – 650 0,77 4,17 VIESSMANN - Vitosol 100 S1,7 14/00-584 0,76 4,34 WAGNER - EURO C20 AR 14/03-844 0,85 3,34 WEISHAUP - WTS-F 14+5/03-793 0,77 2,75 ZENIT - Thermic 14+5/01-609 0,77 CLIPSOL - TGD Y1200 DE DIETRICH - Sol 1 PHÖNIX - Infinity 21 3,62 M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 29 / 95 Collector Efficiency (V) Incidence angle effects on daily efficiency ηave= Cθw, ave FR (ταN) – FRK” [(Tfluid, in – Ta)] / G”inc Cθw=C(IAM(θw)) IAM(θw) w M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 30 / 95 Collector Efficiency(VI) Reference Area Very important is to know Efficiency to which Area is referred to. Agross, Aaperture, Aabsorber M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 31 / 95 Collector Efficiency(VIB) Reference Area M.Fossa, Sust. En. Solar & Geo 1, UniGe - Pag. 32 / 95