FISICA GENERALE INGEGNERIA EDILE-ARCHITETTURA Brief history of lighting (1) • • • • 400.000 years B.C Flaming torch invented (kindling) 13.000 years B.C Animal / vegetable lamps 5.000 years B.C Vegetable / fish oil lamps 400 years B.C Candle invented Brief history of lighting (2) 1790 s 1890 s • 1792 First gas lamp: William Murdoch heats coal to produce gas to light his home and office in Redruth, Cornwall • • • • 1801 Sir Humpry Davy invents electric carbon arc lamp 1814 First general use of gas street lighting in London 1874 Incandescent bulb invented by Joseph Swan and Thomas Edison 1880 First premises lit with Swan lamp in Cragside (Newcastle) Brief history of lighting (3) 1900 - 1930 • • • • • • • 1901 Mercury vapour lamp patented by Peter Cooper Hewitt, USA 1907 Tungsten filament lamp introduced by William Coolidge, USA. 1901 Red neon tubes made by George Claude in France 1925 Blue tubes (Argon + Mercury) produce and used in London 1927 Fluorescent lamp patented in Germany 1932 Low-pressure sodium lamps introduced for street lighting in London and in The Netherlands 1937 First fluorescent lamps shown in New York Brief history of lighting (4) 1950 - 2000 • • • • • • • • 1957 Quarz halogen lamp patented by General Electric 1965 Red Light-EmittingDevice (LED) developed 1968 Green LED developed 1971 Amber LED developed 1980 Compact Fluorescent lamp with integral ballast developed 1992 Blue LED developed 1992 White LED developed 200x OLED lighting demonstrated Conclusions - lighting • • • • 1st 400k years Light created by combustion of carbon based materials Last 200 years to create light Heated wires in evacuated glass bulbs Last 100 years Electricity excited gas plasmas by direct/indirect heating to emit light (neon tubes, fluorescent tubes, compact flurescent lamps) Last 50 years Development of Solid State materials that emit light when excited by electricity (LEDs) Timeline della invenzione delle sorgenti luminose toria 00 a.C. oggi 20.000 a.C. 2000 d oggi Dobbiamo lasciare perdere la candela? Free ebooks Project Gutenberg etics, and space exploration, many of which can be used to generate an interest in scien ng students. However, it is often the case that the most simple and traditional of scienc nomena are the most effective at teaching students to use science process skills and gain ntific content knowledge. Michael Faraday chose one such simple phenomenon, the che ory of a candle as the theme for a series of lectures he gave at the Royal Society in 1860 se lectures have become a classic example of how scientific principles and ideas can be uced through the use of simple practical work and reasoning. How Do Candles Work? What Does a Candle Produce When It Is Burning? What Does a Candle Need If It Is To Keep Burning? How Does the Wax Get to the Flame? Why Do Candle Flames Burn Brightly? Comparing light sources to real life Colour temperature Kelvin Blue sky Uniform overcast sky Average natural daylight High pressure mercury cool white lamp Fluorescent warm white Halogen filament lamp Tungsten filament High pressure sodium lamp 10.000 7.000 6.500 4.000 3.000 3.000 2.700 2.050 Some typical lamp efficiencies today Type of lamp Lumens per Watt Ideal white light 100 W tungsten incandescent 40 W tungsten incandescent Quartz halogen 36 W fluorescent tube T8 28 W fluorescent tube T5 Low pressure sodium lamp Xenon arc lamp White LED 250 175 126 24 up to 93 104 up to 200 50 25-70 Type of lamp Lumens per Watt Total lumens + rest of energy as hea Ideal white light 250 250 0W W tungsten incandescent 17,5 1.750 93 W W tungsten incandescent 126 504 38 W 50 W Quartz halogen 24 1.200 45 W 6 W fluorescent tube T8 up to 93 3.348 23 W 8 W fluorescent tube T5 104 2.912 16 W White LED 25-70 25-70 0.90 - 0.72 efficacy White LED (in lab) 100 100 0.60 efficacy Altri fattori da considerare • Durata nel tempo della sorgente luminosa • Costo! • Impatto ambientale della produzione/ smaltimento • Estetica Conclusions - lighting • • • • • • • 1st 40k years Light created by combustion of carbon based materials Last 200 years Heated wires in evacuated glass bulbs to create light Last 100 years Electricity excited gas plasmas by direct/indirect heating to emit light (neon tubes, fluorescent tubes, compact flurescent lamps) Last 50 years Development of Solid State materials that emit light when excited by electricity (LEDs) Last 5 years (OLED) Demonstrated printable organic light emitting materials Emerging technologies take 10-15 years from invention to first commercial exploitation For any meaningful commercial impact in the marketplace by 2020, the technology must already exist in the laboratory “scientific citizen” cittadino munito del sapere necessario per poter comprende valutare responsabilmente la grande dimensione nella qua viamo. oi viviamo in due dimensioni completamente nuove che sono obale e l'innovazione scientifica e tecnologica. e e due queste dimensioni devono essere riportate alla misura democratica, che sign acità innovativa, culturalmente. Per esempio alcuni paesi paesi si sono dotati di com , che sono interlocutori dei cittadini. Questi comitati etici si preoccupano di fornire bu rmazione, selezionare l'informazione scientifica, proporre le alternative possibili, avviare ogo all'interno dell'organizzazione sociale, perché potrebbe succedere che: "voi citta fabeti in queste materie non avete diritto di voto, anzi, dovete fare una sorta di obiezi oscienza al voto in queste materie". al'è il senso profondo di questa argomentazione? C'è il pericolo che qualcosa, nel mon sa essere sottratto a quella che si chiama la sovranità popolare. "Voi cittadini non a e in questa materia", "non andate a votare perché non siete capaci di votare".