EVENTI CONDIZIONATI
Si consideri la partizione A1, A1, …, A1, N2, di .
Si consideri inoltre l’evento B .
Rappresentazione in termini di diagramma di Venn
A1
A2
A3
AN
B
A3B
A1B
A2B
A3B
ANB
A1 B
A2B
ANB
EVENTI CONDIZIONATI
Gli eventi A1B, A2B, …, ANB, costituiscono una partizione dell’evento B indotta
dalla originaria partizione A1, A2, …, AN, di .
Nella restrizione B dello spazio campionario, cioè subordinatamente
(condizionatamente) al fatto che si sia verificato (o subordinatamente a questa
assunzione) l’evento B:
la parte AiB di Ai, è ancora possibile;
la parte AiBc di Ai, non è più possibile.
Si considerino gli eventi:
Ai, i=1,2,…,N;
AiB, i=1,2,…,N;
Siano:
P(Ai) la probabilità dell’evento eventi Ai, i= 1,2,…,N, in quanto incluso in ,
scriveremo momentaneamente per evidenziare lo spazio campionario di
riferimento: P(Ai)= P(Ai|)
P(AiB) la probabilità dell’evento eventi AiB, i= 1,2,…,N, in quanto incluso in ,
scriveremo momentaneamente per evidenziare lo spazio campionario di
riferimento: P(AiB)= P(AiB|)
Ai|B l’evento AiB nella restrizione B dello spazio campionario, cioè
subordinatamente al fatto che si sia verificato (o subordinatamente a questa
assunzione) l’evento B, si avrà: Ai|B AiB|B.
PROBABILITÀ CONDIZIONALI (O SUBORDINATE)
Denoteremo con:
P(Ai|B) P(AiB|B),
la probabilità dell’evento eventi Ai|B, i= 1,2,…,N,
Le seguenti assunzioni sono equivalenti:
(1)
P(AiB|B) = P(AiB|)/P(B|), i=1,2,…,N;
(2)
P(Ai|B) è denominata probabilità condizionale o probabilità dell’evento
condizionato Ai|B essendo per definizione pari a:
(3)
P(Ai|B) = P(AiB)/P(B).
[P(AiB|B)/P(AjB|B)] = [P(AiB|)/P(AjB|)], i, j = 1,2,…,N.
La condizione (1), equivalente alla (3), evidenzia che la probabilità
condizionale consiste in una semplice rinormalizzazione della probabilità
degli eventi ancor possibili nella restrizione dello spazio campionario. I
rapporti tra le probabilità degli eventi ancor possibili nel nuovo (più
ristretto) spazio campionario B restano invariati (condizione equivalente
(2)).
L’informazione che B (B ) è ora il nuovo spazio campionario, ha l’effetto
di rendere impossibili molti eventi originariamente tali. Le probabilità degli
eventi rimasti ancora (totalmente) possibili cambiano ma per la sola
necessità di normalizzazione della probabilità. Cioè cambiano in modo
proporzionale al coefficiente di normalizzazione 1/P(B).
TEOREMI CHE COINVOLGONO LA PROBABILITÀ
CONDIZIONALE
TEOREMI DELLA PROBABILITÀ COMPOSTA
Dati due eventi qualsiasi A e B, dalla (1) segue:
P(AB) = P(B)P(A|B);
n
P(AB) = P(A)P(B|A);
B
i ) = P(B )P(B |B ) P(B | B B )•••P(B |B B
P(
1
2 1
3
1 2
n 1 2··· Bn-1).
i
TEOREMA DELLA PROBABILITÀ TOTALE
Data la partizione A1, A2, …., AN, di , considerando B (B ), e risultando:
B = BA1 BA2 …. BAN,
N
si ha:
P ( BAi ) ;
P(B)=
i 1
e quindi anche:
N
P(B) = P( A ) P( B | A ) .
i 1
i
i
TEOREMA DI BAYES
Data la partizione A1, A2, …., AN, di , si ha:
N
P(Ai|B) = [P(Ai)P(B|Ai)] / [
P( A ) P( B | A ) ].
i 1
i
i
PROBABILIZZAZIONE DIRETTA, INDIRETTA E
INVERSA
In molte applicazioni del calcolo delle probabilità (vedi gli esempi precedenti)
sono note direttamente le probabilità degli eventi:
AB e A e si desidera calcolare la probabilità dell’evento condizionato B|A.
In questo caso direttamente dalla definizione di probabilità condizionale, seguirà:
P(B|A) = P(AB)/P(A).
In altre situazioni (indirette) ad origine sono note le probabilità dell’evento
condizionato B|A e dell’evento (marginale) A e si desidera calcolare la
probabilità dell’evento congiunto AB.
In questo caso dal teorema delle probabilità composte seguirà:
P(AB) = P(A)P(B|A).
In altre situazioni (inverse) ad origine sono note le probabilità dell’evento
condizionato B|A, dell’evento (marginale) A e dell’evento B e si desidera
calcolare la probabilità dell’evento condizionato A|B, evento condizionato
inverso dell’evento condizionato B|A (probabilità dell’evento condizionato
inverso).
In questo caso prima, utilizzando il teorema delle probabilità composte, si
calcolerà la probabilità dell’evento congiunto AB risultando :
P(AB) = P(A)P(B|A),
poi, dalla definizione di probabilità condizionale, seguirà:
P(A|B) = P(AB)/P(B).
PROBABILITÀ DI EVENTI CONDIZIONATI
Con riferimento ai giochi di sorte si valutino le probabilità dei seguenti eventi:
Esperimento: lancio di un dado da gioco.
Evento: faccia sei sapendo che è uscito un numero pari (1/3).
Esperimento: lancio di due dadi da gioco.
Evento: punteggio somma maggiore di 10 sapendo che sono usciti due numeri
uguali (1/6).
Evento: punteggio somma maggiore di 10 sapendo che sono usciti due numeri
pari (1/9).
Evento: punteggio somma maggiore di 10 sapendo che sono usciti un numero
pari e uno dispari (2/18).
Evento: punteggio somma maggiore di 10 sapendo che nel primo dado è uscito
un numero pari (2/18).
Esperimento: lancio di tre dadi da gioco.
Evento: punteggio somma maggiore di 10 sapendo che sono usciti due numeri
uguali (non esclude tre numeri uguali) (1/2).
Evento: punteggio somma maggiore di 10 sapendo che sono usciti due numeri
pari (non esclude tre numeri pari) (68/108) .
EVENTI CONDIZIONATI NEL LANCIO DI DUE DADI
DA GIOCO
1
4
6
5
2
1
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
(2,6)
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
(3,6)
(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
(4,6)
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
(5,6)
(6,1)
(6,2)
(6,3)
(6,4)
(6,5)
(6,6)
PROBABILITÀ DI EVENTI CONGIUNTI:
ESTRAZIONI DA UN’URNA
CAMPIONAMENTO SENZA REINSERIMENTO
Si consideri un’urna contenente palline: 4 Bianche e 6 Verdi.
Si prefiguri la successiva estrazione di tre palline.
p(B1B2B3) = p(B1)p(B2|B1)p(B3|B1B2) = (4/10)(3/9)(2/8) = 1/30
p(B1B2V3) = p(B1) p(B2|B1)p(V3|B1B2) = (4/10)(3/9)(6/8) = 3/30
p(B1V2B3) = p(B1)p(V2|B1)p(B3|B1V2) = (4/10)(6/9)(3/8) = 3/30
p(B1V2V3) = p(B1)p(V2|B1)p(V3|B1V2) = (4/10)(6/9)(5/8) = 5/30
p(V1B2B3) = p(V1)p(B2|V1)p(B3|V1B2) = (6/10)(4/9)(3/8) = 3/30
p(V1B2V3) = p(V1)p(B2|V1)p(V3|V1B2) = (6/10)(4/9)(5/8) = 5/30
p(V1V2B3) = p(V1)p(V2|V1)p(B3|V1V2) = (6/10)(5/9)(4/8) = 5/30
p(V1V2V3) = p(V1)p(V2|V1)p(V3|V1V2) = (6/10)(5/9)(4/8) = 5/30
ESTRAZIONI DA UN’URNA
CAMPIONAMENTO CON ESTRAZIONI IN BLOCCO
Si consideri un’urna contenente:
4 palline Bianche e 6 palline Verdi.
Si prefiguri la successiva estrazione di tre palline.
PROBABILITÀ DEGLI ESITI
4 6
10
p(BBB) =
3 0 3
p(BBV) = (1/3)
2 1 3
p(BVB) = (1/3) 2 1 3
p(BVV) = (1/3)
1 2 3
4 6
10
4 6
10
4 6
10
= (4/10)(3/9)(2/8) = 1/30
= (4/10)(3/9)(6/8) = 3/30
= (4/10)(6/9)(3/8) = 3/30
= (4/10)(6/9)(5/8) = 5/30
p(VBB) = (1/3)
2 1 3
4 6
10
= (6/10)(4/9)(3/8) = 3/30
4 6
p(VBV) = (1/3) 1 2
10
3
= (6/10)(4/9)(5/8) = 5/30
p(VVB) = (1/3)
1 2 3
4 6
10
= (6/10)(5/9)(4/8) = 5/30
4 6
p(VVV) = 0 3
= (6/10)(5/9)(4/8) = 5/30
10
3
PROBABILITA’ DI EVENTI CONGIUNTI:
ESTRAZIONI DA UN’URNA
SCHEMA CONTAGIOSO DI POLYA
Si consideri un’urna contenente palline:1 Bianca e 1 Verde.
Si prefiguri la successiva estrazione di tre palline,
reinserendo, volta per volta, oltre alla pallina estratta,
un’altra pallina dello stesso colore.
p(BBB) = (1/2)(2/3)(3/4) = 3/12
p(BBV) = (1/2)(2/3)(1/4) = 1/12
p(BVB) = (1/2)(1/3)(2/4) = 1/12
p(BVV) = (1/2)(1/3)(2/4) = 1/12
p(VBB) = (1/2)(1/3)(2/4) = 1/12
p(VBV) = (1/2)(1/3)(2/4) = 1/12
p(VVB) = (1/2)(2/3)(1/4) = 1/12
p(VVV) = (1/2)(2/3)(3/4) = 3/12
PROBABILITA’ DI EVENTI CONDIZIONATI INVERSI:
INFERENZA SULLA COMPOSIZIONE DI UN’URNA
CAMPIONAMENTO CON REINSERIMENTO
Sono formulate le seguenti tre ipotesi esaustive valutate equiprobabili di
composizione di un’urna chiusa in palline Bianche e non Bianche:
H1 : 30 % Bianche, 70% non Bianche;
H2 : 50 % Bianche, 50% non Bianche;
H3 : 80 % Bianche, 20% non Bianche;
Esperimento: Si estraggono con reinserimento tre palline:
Esito: una palline delle tre estratte è Bianca e le altre due sono Non Bianche.
Valgono le probabilità iniziali: P(H1) = P(H2) = P(H3) = 1/3.
Sono determinabili le seguenti probabilità condizionali:
P(E|H1) = 3(0.3)(0.7)2 = 3(0.147);
P(E|H2) = 3(0.5)(0.5)2 = 3(0.125);
P(E|H3) = 3(0.8)(0.2)2 = 3(0.032).
E’ determinabile la probabilità marginale:
P(E) = P(H1) P(E|H1) + P(H2) P(E|H2) + P(H3) P(E|H3) = 0.304
Sono determinabili le probabilità finali (condizionali inverse):
P(H1|E) = P(H1) P(E| H1)/P(E) = 0.147/ 0.304 = 0.4835;
P(H2|E) = P(H2) P(E| H2)/P(E) = 0.125/ 0.304 = 0.4112;
P(H3|E) = P(H3) P(E| H3)/P(E) = 0.032/ 0.304 = 0.1053.
PROBABILITA’ DI EVENTI CONDIZIONATI INVERSI:
INFERENZA SULLA COMPOSIZIONE DI UN’URNA
CAMPIONAMENTO CON REINSERIMENTO
Si osservi che ciascuno dei tre esiti (BNN), (NBN) e (NNB) che implicano
l’evento E porterebbe al medesimo risultato finale.
Coerentemente con le probabilità condizionali del risultato sperimentale E
che risultano ordinate come segue:
P(E|H1) P(E|H2) P(E|H3);
data la valutazione equiprobabile delle tre ipotesi di composizione dell’urna, si
hanno:
P(H1|E) P(H2|E) P(H3|E).
Diverso ordinamento finale è ottenibile se le probabilità iniziali delle tre ipotesi
di composizione dell’urna sono in contrasto con le valutazioni condizionali del
risultato sperimentale.
Con: P(H1) = 0.1; P(H2) = 0.2; P(H3) = 0.7;
osservando che in questo caso risulta:
P(E) = P(H1) P(E|H1) + P(H2) P(E|H2) + P(H3) P(E|H3) = 3(0.0621)
si ottengono:
P(H1|E) = P(H1) P(E| H1)/P(E) = (0.1)3(0.147)/ [3( 0.0621)] = 0.0147/ 0.0621;
P(H2|E) = P(H2) P(E| H2)/P(E) = (0.2)3(0.125)/ [3( 0.0621)] = 0.0250/ 0.0621;
P(H3|E) = P(H3) P(E| H3)/P(E) = (0.7)3(0.032)/ [3( 0.0621)] = 0.0224/ 0.0621.
PROBABILITA’ DI EVENTI CONDIZIONATI INVERSI:
INFERENZA SULLA COMPOSIZIONE DI UN’URNA
CAMPIONAMENTO SENZA REINSERIMENTO
Sono formulate le seguenti tre ipotesi esaustive valutate equiprobabili di
composizione di un’urna chiusa contenente complessivamente N = 10 palline,
distinguibili per colore in palline Bianche e non Bianche:
–
–
–
Esperimento: Si estraggono senza reinserimento tre palline:
Esito: una palline delle tre estratte è Bianca e le altre due sono Non Bianche.
Valgono le probabilità iniziali: P(H1) = P(H2) = P(H3) = 1/3.
Sono determinabili le seguenti probabilità condizionali:
–
–
–
P(E|H1) = 3(3/10)(7/9)(6/8) = 3(0.1750);
P(E|H2) = 3(5/10)(5/9)(4/8) = 3(0.1389);
P(E|H3) = 3(8/10)(2/9)(1/8) = 3(0.0222).
E’ determinabile la probabilità marginale:
–
H1 : 30 % Bianche, 70% non Bianche;
H2 : 50 % Bianche, 50% non Bianche;
H3 : 80 % Bianche, 20% non Bianche;
P(E) = P(H1) P(E|H1) + P(H2) P(E|H2) + P(H3) P(E|H3) = 0.3361
Sono determinabili le probabilità finali (condizionali inverse):
–
–
–
P(H1|E) = P(H1) P(E| H1)/P(E) = 0.1750 / 0.3361 = 0.5207;
P(H2|E) = P(H2) P(E| H2)/P(E) = 0.1389 / 0.3361 = 0.4133;
P(H3|E) = P(H3) P(E| H3)/P(E) = 0.0222 / 0.3361 = 0.0660.
PROBABILITA’ DI EVENTI CONDIZIONATI INVERSI:
INFERENZA SULLA COMPOSIZIONE DI UN’URNA
CAMPIONAMENTO CON CONTAGIO
Sono formulate le seguenti tre ipotesi esaustive valutate equiprobabili di
composizione di un’urna chiusa contenente complessivamente N = 10 palline,
distinguibili per colore in palline Bianche e non Bianche:
–
–
–
Esperimento: Si estraggono con contagio tre palline Il contagio avviene
reinserendo volta per volta, oltre alla pallina estratta, un’altra dello stesso colore:
Esito: una palline delle tre estratte è Bianca e le altre due sono Non Bianche.
Valgono le probabilità iniziali: P(H1) = P(H2) = P(H3) = 1/3.
Sono determinabili le seguenti probabilità condizionali:
–
–
–
P(E|H1) = 3(3/10)(7/11)(8/12) = 3(0.127272);
P(E|H2) = 3(5/10)(5/11)(6/12) = 3(0.113636);
P(E|H3) = 3(8/10)(2/11)(3/12) = 3(0.036363).
E’ determinabile la probabilità marginale:
–
H1 : 30 % Bianche, 70% non Bianche;
H2 : 50 % Bianche, 50% non Bianche;
H3 : 80 % Bianche, 20% non Bianche;
P(E) = P(H1) P(E|H1) + P(H2) P(E|H2) + P(H3) P(E|H3) = 0.277271
Sono determinabili le probabilità finali (condizionali inverse):
–
–
–
P(H1|E) = P(H1) P(E| H1)/P(E) = 0.127272 / 0.277271 = 0.4590;
P(H2|E) = P(H2) P(E| H2)/P(E) = 0.113636 / 0.277271 = 0.4098;
P(H3|E) = P(H3) P(E| H3)/P(E) = 0.036363 / 0.277271 = 0.1312.
PROBABILITA’ DI EVENTI CONDIZIONATI INVERSI:
INFERENZA SULLA COMPOSIZIONE DI UN’URNA
DIPENDENZA DELLA PROBABILITA’ DEL RISULTATO
CAMPIONARIO DALLA COMPOSIZIONE DELL’URNA
Si noti che si hanno:
P(E|H1) P(E);
P(E|H2) P(E);
P(E|H3) P(E).
Risultando:
P(E) = P(H1)P(E|H1) + P(H2)P(E|H2) + P(H3)P(E|H3) .
PROBABILITA’ DI EVENTI CONDIZIONATI INVERSI:
INFERENZA SULLA PROVENIENZA DI UNA
CARTOLINA
Giorgia ha deciso di prendersi una vacanza di una settimana.
E’ incerta se andare a Londra a trovare degli amici o partire per le Galapagos.
Decide di lasciare la scelta al caso.
Lancia un dado da gioco e, se esce un numero maggiore-uguale a 5, parte per
le Galapagos nonostante il poco tempo a disposizione e l’alto costo,
diversamente va a Londra.
Il tempo in questo periodo è:
a Londra:
alle Galapagos:
Brutto con probabilità P(Br|L) = 0.5
Brutto con probabilità P(Br|G) = 0.2
Incerto con probabilità P(In|L) = 0.3
Incerto con probabilità P(In|G) = 0.2
Bello con probabilità P(Be|L) = 0.2
Bello con probabilità P(Be|G) = 0.6
Dopo 5 giorni dalla partenza arriva una cartolina di provenienza indecifrabile con
scritto: QUI IL TEMPO E’ BELLO. Dove sarà andata Giorgia?
Si hanno:
P(L) = 4/6; P(G) = 2/6; P(Be) = (4/6)(0.2)+(2/6)(0.6) =20/60=1/3
P(L|Be) = P(L)P(Be|L)/P(Be) = (4/6)(0.2)/ 20/60 = 8/20.
P(G|Be) = 1 - P(L|Be) = 12/20.
Se fosse stato scritto: QUI IL TEMPO NON E’ BELLO, cosa avremmo pensato?
PROBABILITA’ DI EVENTI CONDIZIONATI
INVERSI: VALE LA PENA DI ASPETTARE?
Giorgio ha una fidanzata di nome Francesca che segue il corso di Calcolo delle
probabilità a Venezia e vive a Venezia.
Nella mattina Francesca telefona a Giorgio che vive a Padova dicendogli:
LANCIO UNA MONETA E SE ESCE TESTA PRENDO UN TRENO E VENGO A
TROVARTI.
SE PARTO CI SONO SEI SUCCESSIVI TRENI CHE PARTIRANNO PER
PADOVA, UNO OGNI MEZZ’ORA . LANCIO UN DADO DA GIOCO E
PRENDERO’ IL TRENO CON ORDINE DI PARTENZA PARI AL NUMERO CHE
PRESENTERA’ LA FACCIA DEL DADO.
VIENI A PRENDERMI IN STAZIONE!
Giorgio si precipita alla stazione di Padova e aspetta l’arrivo dei treni.
Dai primi quattro treni previsti Francesca non scende.
Quanto valuta Giorgio la probabilità che Francesca arrivi con gli ultimi due treni
previsti?
1° treno
2° treno
3° treno
4° treno
5° treno
6° treno
NO
COME SI APPRENDE DALL’ESPERIENZA?
I TRE PRIGIONIERI
CAMPIONAMENTO CON RISPOSTA CENSURATA
Negli esempi visti l’esperienza si realizza con una riduzione dello spazio
campionario. E’ sempre così? Si consideri il seguente esempio:
Ci sono tre prigionieri A,B e C due di essi sono stati condannati a morte.
Il prigioniero A si rivolge alla Guardia che conosce la situazione e che è tenuta al
massimo riserbo chiedendo “chi degli altri due prigionieri è condannato a
morte”.
La Guardia può rispondere il vero dando:
1) una risposta non censurata,
2) una risposta censurata.
La distinzione e sapere qual è il comportamento della guardia è importante per
la lettura corretta delle informazioni contenute nella risposta (esperienza:
risultato sperimentale o osservazione)
I TRE PRIGIONIERI: RISPOSTA NON CENSURATA
Violando l’ordine di riservatezza la guardia potrebbe rispondere:
–
–
–
Se denotiamo con:
–
–
E1 = tutti e due sono condannati a morte;
E2 = uno dei due è condannato a morte non escludendo che possano esserlo
entrambi;
E3 = B è condannato a morte;
Ac l’evento “A è stato condannato a morte”;
A l’evento “A è stato graziato”;
e analogamente per B e C;
sono distinguibili le seguenti tre alternative giudicabili equiprobabili:
ABcCc, AcBCc, AcBcC.
L’evento E1 rende possibile solo l’alternativa ABcCc;
L’evento E2 non esclude alcuna alternativa;
L’evento E3 rende possibile solo le due alternativa: ABcCc e AcBcC.
Gli eventi A|Ei : A è stato graziato dato l’evento Ei, i=1,2,3, avranno probabilità
rispettivamente:
P(A|E1) = P(AE1)/P(E1) = P(ABcCc)/P(ABcCc) = 1;
P(A|E2) = P(AE2)/P(E2) = P(ABcCc)/[P(ABcCc)+P(AcBCc)+P(AcBcC)] = 1/3;
P(A|E3) = P(AE3)/P(E3) = P(ABcCc)/[P(ABcCc)+P(AcBcC)] = 1/2.
I TRE PRIGIONIERI: RISPOSTA CENSURATA
Alla domanda di A la Guardia distingue due alternative di risposta per ogni
possibile situazione delle tre inizialmente definite:
a ABcCc, b AcBCc, c AcBcC,
e precisamente:
data la situazione (a) può rispondere in alternativa:
–
–
data la situazione (b) può rispondere in alternativa:
–
–
(3) A è condannato a morte;
(4) C è condannato a morte;
data la situazione (c) può rispondere in alternativa:
–
–
(1) B è condannato a morte;
(2) C è condannato a morte;
(5) A è condannato a morte;
(6) B è condannato a morte.
Se le risposte (3) e (5) sono censurate per motivi caritatevoli, si valutano:
P(1|a) = 1/2;
P(2|a) = 1/2;
P(4|b) = 1;
P(6|c) = 1.
Ne seguono:
P(B è condannato a morte) = P(a)P(1|a) + P©P(6|c) = (1/3)(1/2) + (1/3)(1) =3/6;
P(a|E3) = P(a,1)/P(E3) = P(a)P(1|a) /P(E3) = (1/3)(1/2)/(3/6) = 1/3.
ESITI ED EVENTI DEFINITI DA UNA DUPLICE
PARTIZIONE DELLO SPAZIO CAMPIONARIO:
NOZIONE DI INDIPENDENZA STOCASTICA
Si consideri un’urna contenente palline:1 Bianca e 1 Verde.
Si prefiguri la successiva estrazione di due palline con contagio.
Si reinserisce, volta per volta, oltre alla pallina estratta, un’altra pallina dello
stesso colore.
Si hanno:
p(B1B2) = p(B1) p(B2|B1) =(1/2)(2/3) = 2/6
p(B1V2) = p(B1) p(V2|B1) =(1/2)(1/3) = 1/6
p(V1B2) = p(V1) p(B2|V1) =(1/2)(1/3) = 1/6
p(V1V2) = p(V1) p(V2|V1) =(1/2)(2/3) = 2/6
Con riferimento al risultato della prima estrazione lo spazio campionario viene
ripartito in due parti: = {B1, V1}, con P(B1) = P(V1) = 1/2.
Con riferimento al risultato della prima estrazione lo spazio campionario viene
ripartito in due parti: = {B2, V2}, con P(B2) = P(V2) = 1/2.
Si noti che risulta:
P(B2|B1)
P(B2).
ESITI ED EVENTI DEFINITI DA UNA DUPLICE
PARTIZIONE DELLO SPAZIO CAMPIONARIO:
NOZIONE DI INDIPENDENZA STOCASTICA
Si consideri un’urna contenente palline:1 Bianca e 1 Verde.
Si prefiguri la successiva estrazione di due palline con ripristino della
composizione iniziale dell’urna.
Si reinserisce, volta per volta, la pallina estratta.
Si hanno:
p(B1B2) = p(B1) p(B2|B1) =(1/2)(1/2) = 1/4
p(B1V2) = p(B1) p(V2|B1) =(1/2)(1/2) = 1/4
p(V1B2) = p(V1) p(B2|V1) =(1/2)(1/2) = 1/4
p(V1V2) = p(V1) p(V2|V1) =(1/2)(1/2) = 1/4
Con riferimento al risultato della prima estrazione lo spazio campionario viene
ripartito in due parti: = {B1, V1}, con P(B1) = P(V1) = 1/2.
Con riferimento al risultato della prima estrazione lo spazio campionario viene
ripartito in due parti: = {B2, V2}, con P(B2) = P(V2) = 1/2.
Si noti che risulta:
P(B2|B1) = P(B2).
ANCORA SU INFORMAZIONI CAMPIONARIE
DIFFERENTI
Si consideri un’urna contenente palline:N1 Bianche ed N-N1 Verdi.
Si prefiguri la successiva estrazione di due palline con:
reinserimento;
senza reinserimento;
contagio.
Si considerino i seguenti eventi:
E1 = una delle due palline estratte è bianca (potendo esserlo anche entrambe);
E2 = la prima pallina estratta è risultata bianca.
Si valutino le probabilità dei seguenti eventi condizionati:
E3|E1 = entrambe le palline estratte sono bianche essendo una delle due bianca
E4|E2 = la seconda pallina estratta è bianca essendo bianca la prima estratta
BB
BV
VB
VV
CAMPIONAMENTO CON RISPOSTE CASUALIZZATE:
ALLA RICERCA DELLA CARTA VINCENTE
Un primo giocatore che tiene il banco ha a disposizione tre carte (un Re e due
Cavalli) che vengono disposte coperte su un tavolo da gioco.
Un secondo giocatore che non ha nessun’altra informazione viene invitato a
scegliere una carta senza scoprirla.
Il primo giocatore scopre una delle due carte non scelte e appare un Cavallo.
A questo punto invita il secondo giocatore a scambiare, se lo valuta conveniente,
la carta inizialmente scelta con quella delle due non scelte rimasta ancora coperta.
Dei due giocatori vince chi avrà il Re.
Domanda: Conviene al secondo giocatore scambiare la carta?
Si dia una risposta motivata dalle valutazioni di probabilità di vincita nelle seguenti
situazioni:
(a) il primo giocatore sa sempre dove finisce il Re e scopre sempre il Cavallo;
(b) il primo giocatore non sa dove finisce il Re e sceglie a caso quale carta
scoprire delle due.
UNA DUPLICE PARTIZIONE DELLO SPAZIO
CAMPIONARIO: INDIPENDENZA STOCASTICA
Si considerino le seguenti due partizioni dello spazio campionario :
r
1) H1, H2, …, Hr, e dunque: Hi Hj=, ij; Hi = ;
i 1
r
2) B1, B2, …, Bs, e dunque: Bi Bj=, ij;
Bi = ;
i 1
Diremo che vale la condizione di indipendenza stocastica se si ha:
(i)
P(Bi|Hj) = P(Bi), i=1,2,…s, j=1,2,…r.
Diversamente, se si ha:
P(Bi|Hj) P(Bi), per un qualche i o un qualche j,
diremo che sussiste una situazione di dipendenza stocastica.
La (i) è equivalente alle:
(ii)
P(BiHj) = P(Bi)P(Hj), i=1,2,…s, j=1,2,…r;
(iii)
P(Hj|Bi) = P(Hj), i=1,2,…s, j=1,2,…r.
UNA DUPLICE PARTIZIONE DELLO SPAZIO
CAMPIONARIO: INDIPENDENZA STOCASTICA
Si considerino le seguenti due partizioni dello spazio campionario :
1) H, Hc, e dunque: H Hc = , H Hc = ;
2) B, Bc, e dunque: B Bc = , B Bi = .
Nel caso di indipendenza stocastica si ha:
(i)
P(B|H) = P(B) .
La (i) è equivalente alle:
(ii)
P(BH) = P(B)P(H);
(iii)
P(H|B) = P(H).
Seguono:
P(BcH) = P(Bc)P(H);
P(BHc) = P(B)P(Hc);
P(BcHc) = P(Bc)P(Hc).
VALUTAZIONE DELLA PROBABILITÀ DI EVENTI
NEL CASO DI INDIPENDENZA STOCASTICA
Esempio n. 7
Lanciando successivamente una moneta con ad ogni lancio esiti Testa e Croce,
assumendo allo i-esimo lancio: P(Ti) = p, (0<p<1) e quindi P(Ci)= (1-p), i=1,2,…,
si valuti la probabilità dell’evento:
Si presenta Testa per la prima volta all’i-esimo lancio.
Le sequenze di risultati possibili sono:
T1
i=1
C1T2
i=2
C1C2T3
i=3
C1C2C3T4
i=4
C1C2C3C4T5
i=5
…...
…
P(C1C2...Ci-1Ti) = P(C1)P(C2)••• P(Ci-1)P(Ti) = (1-p)i-1p.
Si noti che risulta:
(1-p)i-1p = lim {p[1-(1-p)n]/[1-(1-p)]} = 1.
i 1
n
STRUTTURAZIONE DEL PROCESSO DI INFERENZA
STATISTICA
Un usuale schema per condurre un processo di inferenza statistica su un fenomeno
di interesse, cioè, in generale, per apprendere con l’esperienza, circa le leggi che
regolano ciò che è rilevabile, quale risultato di uno o più esperimenti (di seguito
semplicemente esperimento) o come semplice osservazione, di seguito in entrambi
i casi denominato l’osservabile, consiste:
inizialmente nel:
(i) considerare le ipotesi teoriche alternative ed esaustive (non osservabili) : H1,
H2, …, Hr, a spiegazione dell’osservabile, definendo e misurando il proprio stato di
incertezza in termini di valutazione di probabilità iniziale di ciascuna di esse:
P(Hj), j =1,2,…r;
(ii) considerare una partizione: B1, B2, …, Bs, dello spazio campionario , connesso
all’esperimento e dunque una partizione (la più fine possibile) dell’osservabile
definendo la connessione dell’osservabile con le singole ipotesi teoriche formulate a
spiegazione dell’osservabile in termini di valutazione di probabilità condizionale
degli esiti (parti) possibili:
P(Bi|Hj), i=1,2,…,s;
e cioè per ognuna delle ipotesi teoriche assunte a spiegazione: j=1,2,…,r.
INFERENZA STATISTICA: APPRENDIMENTO CON
IL TEOREMA DI BAYES
Successivamente a risultato sperimentale ottenuto ad esempio Bi (o ad
osservazione conseguita) l’apprendimento consiste in:
(iii) aggiornare la valutazione di probabilità delle alternative ipotesi assunte a
spiegazione dell’osservabile passando dalla valutazione di probabilità iniziale:
P(Hj), j =1,2,…r;
alla valutazione di probabilità finale (successiva):
P(Hj|Bi), j =1,2,…r;
applicando il teorema di Bayes.
Si pone quale condizione di coerenza espressa dal teorema di Bayes:
P(Hj|Bi) = P(Hj)•
P( Bi | H j )
r
P( B | H
j 1
i
j
) P( H j )
, j=1,2,…,r.