N e w s l e t t e r
N u m e r o
1 1
m a r z o
2 0 0 9
Editoriale............................................................................................................................................. 3
ricerca & sviluppo
Nanomechanical transducers based on cantilevers for bioanalysis......................................................... 5
Innovative polymer - and lipid - based nanotechnologies for drug and nucleic acid delivery ................ 9
Interactions of engineered nanomaterials with biological systems: models and methods to assess risk
determinants..................................................................................................................................... 13
The research activities of DIMA on nanomaterials............................................................................... 21
Nanotecnologie per il tessile e abbigliamento..................................................................................... 29
Le nanotecnologie e lo sviluppo di una specifica normativa tecnica ................................................... 33
N A N O T EC N OLO G IE & SOCIE T à
Nanotechnologies: an image in the process of being defined............................................................. 36
Notizie
Investire in cervelli: Siglato un importante accordo tra Mapei e l’Università di Padova ........................ 40
Gruppo di Lavoro Nazionale per l’individuazione di misure di prevenzione protezione
connesse con l’esposizione a nanomateriali in ambito lavorativo........................................................ 41
FramingNano project publishing the first deliverables......................................................................... 41
ObservatoryNano project gears-up..................................................................................................... 42
Nanochallenge 2008 premia la nano-scrittura di ThunderNIL e il super polimero di Chimatech .......... 42
NANOMAT project: Piedmont on screen............................................................................................. 44
CNR-TASC coordina la piattaforma europea Nanoscience Foundries and Fine Analysis........................ 44
Smart textiles: the Systex project........................................................................................................ 45
The Dutch Nanotechnology Action Plan............................................................................................. 46
N&N: dalla ricerca alle applicazioni: nuovo volume ENEA.................................................................... 47
S e m i n a r i & C o n v e gn i
Italy-USA Bio Nano Business Forum 2008........................................................................................... 48
Convegno Italo-Svedese sulle nanotecnologie e nanoscienze a Stoccolma.......................................... 48
Convegno “Nanotecnologie, Ambiente e Sicurezza”.......................................................................... 49
NNC - National Nanomedicine Conference......................................................................................... 49
Missione Italiana in Giappone ........................................................................................................... 50
Nanotec2009.it Conference............................................................................................................... 50
Conference on nanostructured polymers and nanocomposites .......................................................... 51
NSTI Nanotech 2009......................................................................................................................... 51
BioInItaly 2009: The Italian Biotech Event........................................................................................... 52
Euronanoforum 2009........................................................................................................................ 52
Nanoforum 2009............................................................................................................................... 52
IEEE Nano 2009 ............................................................................................................................... 53
Prossimi eventi................................................................................................................................... 54
Periodico
di informazione
sulle nanotecnologie
marzo 2009
Supplemento a Notizie Airi
n. 165 novembre-dicembre 2008
Anno XXIII - 2008
Bimestrale
Abbonamento annuo
• Soci Euro 49,00
• Non soci Euro 70,00
Spedizione in abb. postale
comma 20 lett. B art. 2
L. 23.12.96 n. 662
Roma/Romanina
Pubblicità 45%
Autorizzazione Tribunale
di Roma n. 216
del 29 aprile 1986
Redazione AIRI:
00198 Roma
Viale Gorizia, 25/c
tel. 06.8848831, 06.8546662
fax 06.8552949
e-mail: [email protected]
www.airi.it - www.nanotec.it
nanotec2009.it
Nanotechnology > Competitiveness & innovation
for industrial growth
Rome > march 31 : april 3 > 2009
National Research Council > Piazzale Aldo Moro 7
Nanotec2009.it, an International Conference jointly organised by AIRI/Nanotec IT, the National Research
Council (CNR) and Veneto Nanotech, with the collaboration of the Italian Institute for Foreign Trade (ICE),
represents the annual National event for nanotechnology.
The Conference base on the success of Nanotec2008.it and it will maintain its focus on application, with extended goals, contents and aims. The most important Italian players in the field and renowned experts from
abroad will be present.
Themes of the Conference are:
• Nanotechnology Governance
• Health & Medical Devices (Nanomedicine)
• Sustainable Development (Energy, Transport, Environment)
• ICT, Electronics, and Security
• Made in Italy (advanced materials, agrifoodsconservation of cultural heritage, ...)
A distinctive feature of Nanotec2009.it will be the Networking Day, at which will be devoted the entire April
the 3rd 2009.
The day is organised around a number of presentations and one-to-one meetings aimed to promote research
and industrial collaborations, which will see the presence also of representatives from Industry, Research
Institutions, and Venture Capitalists coming from China, Japan, USA and Italy.
www.nanotec.it – [email protected]
Organizers
In collaboration with
Italian Institute for Foreign Trade
p r imo
piano
t
Editoriale
Sono ormai cinque anni da quando, alla fine del 2003, AIRI/
Nanotec IT ha preso avvio ed è tempo di fare un primo bilancio
della sua attività.
Come indicato nel suo atto costitutivo, la missione di AIRI/Nanotec
IT è quella di contribuire a promuovere le nanotecnologie e le loro
applicazioni in Italia proponendosi come punto di incontro tra
mondo della ricerca, l’industria e gli organismi di governo, con
l’obiettivo di favorire contatti e collaborazioni e fornire un quadro
di riferimento e indicazioni, utili per indirizzare strategie di ricerca, scelte operative e interventi di sostegno.
Seguendo questa ottica, l’attività di Nanotec IT si è sviluppata
in questi anni su molti fronti. Tra le prime iniziative intraprese,
vi è stata, nel 2004, la realizzazione del “1° Censimento delle
Nanotecnologie in Italia” al quale ha fatto seguito, nel 2006, il
“2° Censimento”, che è stato poi integrato nel 2007. I due censimenti hanno messo in evidenza un impegno in questo campo
crescente nel Paese (si è passati dalle 120 strutture censite nel
2004 alle circa 200 nel 2007), e come il settore industriale fosse il maggiore responsabile di questo incremento. La tendenza è
senz’altro continuata e nel 2009 è previsto un muovo censimento
per fornire un quadro ancora più completo ed aggiornato della
situazione.
Numerose sono state le iniziative promosse per favorire la diffusione delle informazioni ed il networking. La Newsletter ed il sito
web (www.nanotec.it) sono due strumenti di questo impegno,
ma Nanotec IT organizza ogni anno, da solo o con altri, convegni o workshops dedicati alle nanotecnologie, che affrontano
un ampio spettro di temi. Dall’applicazione di queste tecnologie
in settori specifici, quali la cura della salute o il tessile (dal 2005
Airi/Nanotec IT organizza a Milano un convegno su questo ultimo tema insieme a TexClubTec), alla nanometrologia (nel 2005
e nel 2007 sono stati organizzati due workshops a Torino, con
l’Istituto Italiano di Metrologia), alla governance delle nanotecno-
logie. Nel 2008, dal 10 al 13 marzo, insieme a Veneto Nanotech,
è stato organizzato a Venezia un Convegno Internazionale
(Nanotec2008.it), il cui programma faceva riferimento ai temi
guida del progetto del Governo Industria 2015 (Risparmio
Energetico; Mobilità Sostenibile; Nuove Tecnologie per la Vita;
Made in Italy; Salvaguardia dei Beni Culturali), con lo scopo di
mostrare come le nanotecnologie possano dare un contributo importante al raggiungimento degli obiettivi del Progetto. Forte del
successo ottenuto, il convegno, questa volta con la collaborazione
anche del CNR, sarà ripetuto nella primavera 2009 a Roma con
obiettivi e finalità analoghe (Nanotec2009.it). L’intenzione è quella fare dell’evento un appuntamento annuale fisso, di riferimento
per l’attività nelle nanotecnologie nel Paese.
Per favorire interscambi e collaborazioni in questo campo tra gli
operatori Italiani e quelli di altri paesi, AIRI/Nanotec IT ha collaborato con l’Istituto per il Commercio con l’Estero (ICE) ed il
Ministero degli Affari Esteri (MAE) per organizzare iniziative indirizzate a tale scopo in occasione di convegni o di eventi promossi
ad hoc. I Paesi nei quali queste iniziative hanno avuto luogo sono
stati USA, Israele, India, Russia. AIRI/Nanotec IT, oltre che con una
partecipazione diretta, ha dato il suo supporto alle costituzione
della delegazione Italiana, alla preparazione di materiale informativo da distribuire, alla definizione del programma e dell’agenda
degli incontri. I risultati sono stati positivi e la collaborazione è
previsto che continui in futuro.
L’impegno del Centro a livello internazionale si è esplicitato anche
in altre forme. AIRI/Nanotec IT, infatti, ha stabilito ed intrattiene
contatti e collaborazioni con organizzazioni analoghe e strutture di ricerca di altri paesi, Europei e non, ed ha partecipato e
partecipa a diversi progetti Europei di ricerca sulle nanotecnologie. Nel 6° Programma Quadro (PQ6), AIRI/Nanotec IT è stato il
coordinatore di due progetti: NanoRoadMap, il cui obiettivo era
quello di definire il percorso di sviluppo delle nanotecnologie al
2015 nei settori dei materiali, energia, e medicina, e NAoMITEC,
N e w s l e t t e r
N ano t e c
i t
3
p r imo
t
piano
volto a favorire l’impegno delle PMI nelle micro e nanotecnologie.
Nel 7° (PQ7) partecipa, come “workpackage leader”, al progetto
ObservatoryNANO ed è coordinatore del progetto FramingNano,
che si propone l’elaborazione di un “Governance Plan” per lo sviluppo responsabile delle nanotecnologie. Entrambi hanno preso
avvio nella primavera 2008 e termineranno, ObservatoryNANO
nel 2012 e FramingNano nel 2010. Lo sviluppo responsabile delle nanotecnologie è un obiettivo prioritario dell’azione di AIRI/
Nanotec IT che, in ragione di questo impegno, oltre a partecipare
ai progetti suddetti, partecipa al gruppo di lavoro sulle nanotecnologie istituito da UNI, dedicato alle problematiche di standardizzazione in questo campo, a quello sui nanomateriali di ISPESL,
impegnato sul versante della valutazione dei rischi potenziali associati a questi inoltre il centro intrattiene contatti con organismi
e istituzioni internazionali attenti a questi temi come il Woodrow
Wilson International Center for Scholars (USA) o l’ International
Risk Governance Council – irgc (CH).
AIRI/Nanotec IT è insomma ormai una realtà consolidata nel panorama delle nanotecnologie del nostro Paese, che opera in sintonia con e collega quanti, nell’ambito della ricerca pubblica ed in
quello delle imprese, sono attualmente impegnati in questo cam-
po. La gran parte di questi sono iscritti a AIRI/Nanotec IT ed i loro
rappresentanti presenti nel Consiglio Direttivo contribuiscono a
indirizzarne le scelte e le azioni. La maggior parte degli obiettivi fissati al momento della sua creazione sono stati raggiunti,
peroòquello di contribuire a far attivare in Italia una iniziativa
nazionale per sostenere e promuovere lo sviluppo delle nanotecnologie, non è stato ancora realizzato. Una iniziativa di questo
genere esiste in molti paesi, a cominciare dagli USA, ma anche
in Germania, Spagna, Cina, Russia e, perfino Iran. AIRI/Nanotec
IT è convinto che anche l’Italia debba dotarsi di uno strumento
di questo genere. Questo è anche l’auspicio di quanti operano
in questo settore ed anche per farsi portavoce di questa istanza
AIRI/Nanotec seguiterà ad impegnarsi in questa direzione. In fin
dei conti una iniziativa specifica volta a promuovere e sostenere
lo sviluppo delle nanotecnologie non sarebbe altro che la razionalizzazione di un impegno che già esiste.
L’attivarla sarebbe però anche una scelta di tipo strategico, visto il
ruolo che le nanotecnologie possono avere nella evoluzione dello sviluppo tecnologico futuro, in quanto tale iniziativa potrebbe
consentire di incrementare il sostegno economico alle attività di
R&S e, soprattutto, consentirebbe di indirizzare meglio gli sforzi e
di ottimizzare l’uso delle risorse.
Elvio Mantovani
Direttore AIRI/Nanotec IT
4
N e w s l e t t e r
N ano t e c
i t
R I C ER C A
&
S V I L U P P O
t
Nanomechanical transducers
based on cantilevers for
bioanalysis
Roberto Raiteri*, Suman Cherian*(1), Paolo Bonanno*,
Alessandro Garibbo**
* Department of Biophysical and Electronic Engineering, University of Genova, Via
dell’Opera Pia 11a, Genova, Italy
(1) Currently at ST Microelectronics, Singapore
** SelexCommunications, via Pieragostini 80, Genova, Italy
Introduction
he development and the diffusion of scanning probe microscopes (the scanning tunneling microscope (STM) and the
atomic force microscope (AFM) in particular) has boosted the
research in nanotechnology in the last twenty years, not only by
providing new imaging techniques with atomic resolution, but
also by offering the possibility to probe directly molecular interactions and to manipulate matter with nanometer precision. These
capabilities are enabled mainly by the peculiar properties of the
AFM probe: an extremely sharp tip integrated at the free end of
a highly flexible, microscopic cantilever structure.
T
A cantilever is a long, thin beam, fixed at one end and free to
move at the opposite one. Commercially available silicon microcantilevers are typically few hundreds (up to 700) of micrometers in length, tens of micrometer in width and one (or even
less) micrometer in thickness. They are characterized by a purely
elastic behaviour (i.e. they follow Hooke law) when deformed
with a very low spring constant (down to few mN/m) and a high
resonance frequency (in the order of tens of KHz in air), which
results in dramatically limiting oscillations that may get caused
by external mechanical noise. It is therefore possible to detect
changes in the deflection of few nanometers without the need
of antivibrating systems.
In the last decade, transducers based on structures similar to AFM
cantilevers have attracted an increasing interest throughout the
international research community1-6. This interest was – and is –
mainly due to the merging of different originally independent
technologies and know-hows, such as silicon microfabrication
techniques and surface functionalization biochemistry, together
with the development of multi-cantilever detection methods,
thus offering new opportunities in physical and (bio)chemical
sensing.
Indeed, microcantilevers can transduce a huge number of different kinds of signal, e.g. mass, temperature, heat, electromagnetic field and stress into a mechanical deformation that can be
noticed and measured either through measuring a bending or a
change in the resonance frequency, with a resolution which is orders of magnitude higher than that achievable with macroscopic
structures. Fig. 1 summarizes these transduction principles.
Coating the cantilever with a bioreceptor, which can range from
single molecules such as nucleic acids or proteins up to whole
cells, results into a biosensor capable to detect and quantify the
presence of a biological and/or chemical target species with high
selectivity and sensitivity.
In the remaining of this paper, we will describe the work done
developing a new sensing platform based on an array of microcantilever for bioanalytical purposes. Key characteristics will be
described: the technique implemented to measure changes in the
deflection of the microcantilevers belonging to the array and the
design of the fluidic system, necessary to convey the sample to
the sensing area, i.e. to the functionalized free end.
We then focus on just one kind of bioanalysis: DNA sequence
detection via hybridizationa of single stranded oligonucleotides
and melting of double stranded oligonucloetides. The immobilization strategy implemented to immobilize the probes onto the
cantilever surface and some experimental results should give a
glimpse of the potential of the technique, and of the issues still
open as well.
Cantilever arrays and deflection detection
The array we used in the experiments is composed of sixteen
identical rectangular silicon cantilevers and four reference mirrors
grouped into four separate wells as shown in Fig.2a. The reference mirror can be used to measure the absolute cantilever bending
by calculating the difference in the output signals between the
cantilever and the reference mirror on the position sensitive detector (PSD) as shown in Fig.2b. Cantilevers are fabricated from
single crystal silicon and are 500 µm long, 150 µm wide, and 1
µm thick (Silex Microsystems, Bruttovagen, Sweden, Fig.2c). The
upper side of each cantilever is coated with a 5 nm Ti/W adhesion
layer and a 30 nm Au layer. The cantilevers in each well have a
N e w s l e t t e r
N ano t e c
i t
5
R I C ER C A
t
&
S V I L U P P O
pitch of 250 µm, respectively. The supporting chip is 22 mm long,
5 mm wide and 500 µm thick.
Optical readout
MCS deflections are monitored using an optical beam deflection
readout which employs a linear array of vertical cavity surface
emitting lasers (VCSELs, wavelength of 760 nm) and an array of
microfocusing lenses. The laser spots focused on the cantilever
free ends are reflected by a gold surface to a linear PSD. The laser
power can be adjusted individually for each VCSEL to obtain a
desired intensity signal at the PSD. The PSD (20x20 mm2 sensing
area) position can be adjusted with two micrometer screws to
align reflected laser spots. With this design, cantilever bending
can be measured down to 0.1 nm. The interference on the PSD
from the external light can be minimized by housing the whole
setup in a closed chamber.
Flow cell and fluidic delivery system
To deliver the carrier fluid and different sample solutions to the
array, a syringe pump fluidic system was used. Each well is connected to one syringe, which can then be operated in parallel.
The system consists of four valves for the carrier fluid, four syringes, four sample loops, four injection valves for sample solution,
and one cartridge containing the fluid cell with the four wells
(Fig.3). When the cantilever array is mounted in the cell, each
well is isolated by an individual Teflon gasket. This enables the introduction of different carrier fluids and sample solutions into the
different wells, thus allowing in parallel analysis of various recognition assays. The whole cartridge containing the flow-through
cell can be heated up to 70 °C using a resistor embedded in the
metal body of the cartridge itself, together with two temperature
sensors. Syringes are driven by a single stepper motor and can
dispense carrier fluid to the four wells simultaneously and at the
same rate in the range 0.5–2000 µl /min. Between each syringe
and the corresponding well, there is a standard sample injection
loop connected to a six-port injection valve which is used to interchange the flow stream.
Results
Monitoring DNA hybridization and determination of melting temperature
The detection of specific DNA sequences from biological sample
is fundamental in different application fields, such as diagnostics,
food analysis and detection of bacteria and viruses in the environment.
Most of DNA detection techniques rely on the highly specific hybridization interaction between complementary sequences, i.e.
a known sequence (also called probe) is allowed to interact with
an unknown sequence (also called target); if hybridization takes
place, one knows that the probe and target share a complementary nucleotide sequence7 8, 9.
6
N e w s l e t t e r
N ano t e c
i t
We therefore immobilized short DNA sequences (25 bases) onto
gold coated cantilevers using thiol-on-gold chemistry. (fig.4), and
studied the cantilever deflection response when introducing the
target DNA sequence in the solution.
The diagram in fig.5 shows ten signals from the same array: the
deflection of four cantilevers coated with a certain sequence
(probe1, red curves in the diagram), the deflection of four cantilevers coated with a scrambled sequence (i.e. the same number
of oligonucleotides as probeA, but in a different, random sequence: probeB, blue curves in the diagram) and, as a reference,
the signal from two reference mirrors (green curves). After having
flowed a saline buffer solution for several hours in order to let the
system to reach equilibrium, we introduced at t = 9 min, a target
sequence complementary to probeA. All cantilever coated with
probe1 did respond by bending ≈ 25 nm from their starting position. On the other hand, the cantilevers coated with probeB bent
only few nanometers. By flowing the buffer solution back, the
cantilevers do not return to their original positions, thus showing
a non reversible adsorption, as expected.
Another parameter, which can provide information on the nucleotide content and about the sequence of double-stranded DNA
molecules is the temperature at which the two strands of DNA
separate in solution (DNA melting temperature)10-12. We therefore used cantilevers where hybridization was detected and, consequently, double strands of DNA were formed, and compared
their deflection response to temperature changes with cantilevers
coated with single-stranded oligonucleotides only. Fig. 6 shows
the deflection of these cantilevers while the temperature was increased at 1 oC steps. Since the cantilevers are coated with gold
on a side, they are sensitive to temperature (the well-known bimetallic effect), i.e. they bend away from the gold coated side
when temperature increases, as it is clearly shown in the diagram.
Ideally, without considering the transients due to thermal stabilization, the deflection varies linearly with the temperature. There
is a certain temperature value, however, where the behaviour of
the cantilever coated with the double-stranded DNA (red curves)
differs from the cantilever coated with one strand only (blue
curves), this can be clearly seen in the inset of fig.6.
At T = 313.7 Kelvin the “red curves” show a local minimum,
which correspond to a transient small bending (few nanometers)
in the opposite direction (toward the gold side) of the cantilevers. This phenomenon can be explained as a bimetallic response
to a local decrease in the temperature due to phase transition
(DNA melting) that is taking place, precisely at that specific temperature, on the cantilever surface. As a matter of fact, on the
cantilevers with only single-stranded DNA, this behaviour was not
observed.
Conclusions
In this report we described a possible sensing platform based on
the bending of an array of microcantilevers together with some
R I C ER C A
experimental results showing the capability to real-time monitoring, without the need of any label and getting high sensitivity, a
fundamental biochemical process such as DNA hybridization and
melting.
Microcantilever sensors present several unique advantages: as
shown, they can be applied to perform direct, label free detection and, at least in principle, they feature extremely high sensitivities due to their micro- nano-scopic dimensions; moreover,
because of their small size, it is possible to develop large arrays
of sensors and only very limited quantities of analyte are needed
for detection. A small volume also means fast kinetics and short
analysis time. Using batch silicon microfabrication technique to
build microcantilever-based arrays allows mass production, reproducibility, and makes it possible to integrate these arrays with
on-chip fluidics and electronics (e.g. for detection, data processing and transmission).However, the most promising feature probably resides in the flexibility of the transduction principle: in fact,
microcantilever-based arrays can work in vacuum, gaseous, and
liquid environment. The same simple mechanical structure can
transduce force, mass, viscosity, heat and stress into a bending or
a change of its resonance properties (frequency and Q factor). All
the aforementioned features make micro- and nano-cantilevers a
flexible general tool for lab-on-a-chip development.
On the other hand, cantilever based sensors are still in a premature stage for real world application: a handful of technological
challenges do remain and some fundamental issues are yet to be
solved.
&
S V I L U P P O
t
From the technological point of view, main challenges affect: the
reproducibility in the fabrication of small (nano) cantilevers; the
development of sensitive integrated detection mechanisms and
microfluidics to efficiently bring nanoliter volumes of sample onto
the sensing area; the development of techniques for the reliable
and automatic deposition of (bio)molecules on large arrays of
small cantilevers. The mail fundamental scientific issue is developing a comprehensive theory to explain the mechanism, both
at the molecular and microscopy level, of development of surface
stress upon adsorption and ligand/receptor binding. This basic
understanding is fundamental to optimize the efficiency of the
transduction, in terms of the properties of the cantilever surface
(e.g. roughness) and the bioreceptors immobilization strategy
(e.g. use of flexible crosslinkers).
Figure Captions:
Fig. 2 (a) A sketch of the optical laser beam deflection readout system of the
cantilever array. Four cantilevers and a fixed mirror are present within each of
four wells (A, B, C, and D). The lasers beams are time multiplexed. (b) Cantilever
bending is induced by the interactions of molecules with the sensing surface. z
is the value of absolute bending between the reference mirror and the cantilever
within the well. (c) Scanning electron microscope (SEM) micrograph of one well
within the array.
Fig.1 Schematic drawings (side view) of a variety of possible cantilever transducer
principles: (a) force sensor with integrated tip for AFM; (b) “bimetallic”
temperature and heat sensor; (c) mass loading sensor; (d) medium viscoelasticity
sensor; (e) thermogravimetric sensor; and (f) stress sensor
Fig.3 A schematic outline of the fluidic delivery system for the microcantilever
array.
N e w s l e t t e r
N ano t e c
i t
7
R I C ER C A
t
&
S V I L U P P O
Fig.4 Cartoon showing the lateral view of a cantilever coated with the thioled
DNA probe. Oligonucleotides (25 bases) were conjugated with a short alkane
chain ( (CH2)6, as a spacer) and a thiol group (HS-). Once introduced in solution
the HS- binds strongly to gold thus forming a uniform monolayer of HS-(CH2)6DNA. The different layers are not in scale.
Fig.6 Deflection response of the cantilever sensor to a stepwise temperature
increase. Both cantilevers coated with a double-stranded DNA (red lines) and
with single-stranded DNA (blue lines) responds to each temperature step increase
bending away from the gold coated side (bimetallic effect), while the signal from
reference mirrors is minimally affected (green lines). Inset: cantilever deflection in
the temperature range [312.7 ; 316.7] where the average response to temperature
of the cantilevers coated with the double-stranded DNA significantly differs from
that of the cantilevers coated with single-stranded DNA.
References
Fig.5 Sensor response to the introduction of the target DNA sequence: deflection
vs. time diagram of four cantilevers coated with a sequence complementary to
the target DNA (red lines), four cantilevers coated with a scrambled sequence
(blue lines), and two reference mirrors (gree lines). Before and after target DNA
injection a continuous flow of buffer solution was maintained.
Contacts
Alessandro Garibbo
Selex Communications
via Pieragostini, 80, 16151 Genova
tel +39-010-614-5543
[email protected]
8
N e w s l e t t e r
N ano t e c
i t
1. Thundat, T.; Oden, P. I.; Warmack, R. J., Microcantilever sensors. Microscale
Thermophysical Engineering 1997, 1, (3), 185.
2. Moulin, A. M.; O’Shea, S. J.; Welland, M. E., Microcantilever-based biosensors.
Ultramicroscopy 2000, 82, (1-4), 23.
3. Ziegler, C., Cantilever based Biosensors. Analytical and Bioanalytical
Chemistry 2004, 379, (7-8), 946.
4. Raiteri, R.; Grattarola, M.; Butt, H.-J.; Skládal, P., Micromechanical cantileverbased biosensors. Sensors and Actuators B-Chemical 2001, 79, 11.
5. Yan, X.; Ji, H.-F.; Thundat, T., Microcantilever (MCL) Biosensing. Current
Analytical Chemistry 2006, 2, (3), 11.
6. N. V. Lavrik, M. J. S., P. G. Datskos, Cantilever transducer as a platform for a
chemical and biological sensors. Review of scentific instruments 2004,
75, (7), 25.
7. Mukhopadhyay, R.; Lorentzen, M.; Kjems, J.; Besenbacher, F., Nanomechanical
sensing of DNA sequences using piezoresistive cantilevers. Langmuir 2005,
21, (18), 8.
8. McKendry, I.; Zhang, J.; Arntz, Y.; Strunz, T.; Hegner, M.; Lang, H. P.; Baller,
M. K.; Certa, U.; Meyer, E.; Guntherodt, H. J.; Gerber, C., Multiple label-free
biodetection and quantitative DNA-binding assays on a nanomechanical
cantilever array. Proceedings of the National Academy of Science
2002, 99, (15), 9783.
9. Wu, G.; Ji, H.; Hansen, K.; Thundat, T.; Datar, R.; Cote, R.; Hagan, M.;
Chakraborty, A.; Majumdar, A., Origin of nanomechanical cantilever motion
generated from biomolecular interactions. Proceedings of the National
Academy of Sciences of the United States of America 2001, 98, (4), 4.
10. Ririe, K. M.; Rasmussen, R. P.; Wittwer, C. T., Product Differentiation by
Analysis of DNA Melting Curves during the Polymerase Chain Reaction.
Analytical Biochemistry 1997, 245, (2), 154-160.
11. Zhou, L.; Wang, L.; Palais, R.; Pryor, R.; Wittwer, C., High-resolution DNA
melting analysis for simultaneous mutation scanning and genotyping in
solution. Clinical Chemestry 2005, 51, (10), 7.
12. Reed, G.; Kent, J.; Wittwer, C., High-resolution DNA melting analysis for simple
and efficient molecular diagnostics. Pharmacogenomics 2007, 8, (6), 11.
R I C ER C A
&
S V I L U P P O
t
Innovative polymer - and
lipid - based nanotechnologies
for drug and nucleic acid
delivery
G. Cavallaro, E. F. Craparo, G. Giammona, M. Licciardi, F. S. Palumbo,
G. Pitarresi(*)
Laboratory of Biocompatible Polymers
Dipartimento di Chimica e Tecnologie Farmaceutiche, via Archirafi 32, 90123,
Palermo, Italy
(*) authors are inserted alphabetically
Introduction
n the recent years the research in pharmaceutical field focused
its attention always less frequently on the discovery of new chemical entities, a long and expensive process, and always more often on the development of innovative technological formulations
and systems (Drug Delivery Systems, DDS). These systems help
drug delivery optimization, bioavailability and in general pharmaceutical performance of already known drug molecules.
I
DDS are able to improve drug water solubility, and to increase its
chemical stability, allowing its administration also through routes, otherwise not feasible. Moreover, targeted DDS are able to
promote drug accumulation into the target organs, decreasing
administered dose and consequently side and toxic effects.
Specific advantages are offered by colloidal delivery systems, in
other term nanotechnologies for delivery of bioactive agents [1].
Nanotechnologies used for modified and targeted drugs, including conventional organic molecules, peptides, proteins, nucleic
acid based drug molecules (NABDs), such as siRNA, antisense,
are constituted by nanostructured materials at colloidal size (1500 nm), able to release biologically active agents, chemically or
physically incorporated, into specific sites and within well defined
interval times, also in consequence of answer to specific stimuli:
pH variation values, electric field, presence of enzymes.
These systems are characterized by:
• nanoscaled dimensions, able to allow their direct interaction
with cell components of the ill tissue at molecular level;
• ability to incorporate high amount of active molecules (high
drug loading amounts) with subsequent increase of the efficiency of the drug delivery systems;
• well defined and narrow size distribution, that allows to obtain
standardized drug release amount and rate;
• ability to delivery an intact form of chemically or physically unstable drugs, by increasing their bioavailability and decreasing
administered doses, or making possible their administration,
such as for nucleic acid based drugs (NABDs);
• ability to obtain an efficient localization of the drug in the target site, through the use of targeting portions, properly anchored on the surface of the nanosystems and characterized by
high cell specificity.
The preparation of efficient nanotechnologies for drug delivery
needs [2]:
- the proper choice of innovative materials (often based on natural or synthetic polymeric structure), depending on their compatibility, chemical and structural versatility;
- biophysical and technological characterization of obtained
nanosystems, particularly concerning size distribution, surface
properties, porosity, changeability, ability of drug loading, physical stability, ability to constitute stable composite medicines
(in the presence of proper excipients);
- the proper choice of drug molecules to use particularly concerning NABDs and peptides.
The great interest toward these nanostructured systems, as driving strategy in drug delivery, derives from the wide versatility of
this kind of approach, that can be successfully used for the treatment of pathologies characterized by a strong impact on public
health, such as tumoral pathologies, exploiting the physiopatological properties of nanosystems, of accumulating into the tumor
mass by enhanced permeability and retention (EPR) and neurodegenerative pathologies (Alzhaimer, Parkinson), for the ability
of some of these systems, if properly targeted, to reach CNS and
here release drug molecules.
The improvement of the drug delivery and targeting, by above
cited pharmaceutical technologies, received excellent impetus by
the use of synthetic polymeric materials, for synthetic polymers
have some striking advantages as materials for DDS. In fact polymeric materials are characterized by an excellent chemical versatility allowing the production of systems with different chemical
and physicochemical properties, able to satisfy different pharmaceutical requests; in other terms, synthetic polymers can be proN e w s l e t t e r
N ano t e c
i t
9
R I C ER C A
t
&
S V I L U P P O
perly tailored for specific aims for what they are designed.
Among polymeric materials, polyaminoacids are a very interesting class because of their protein-like nature and the possibility of preparation by synthesis. They can be considered as
a compromise between natural and synthetic macromolecules
being biocompatible and with the advantage to possess a more
regular arrangement and a smaller diversity of amino acid residues than natural proteins. Two very interesting synthetic polyaminoacids employed for the preparation of oral DDS are α,βpoly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) [3,4] and
α,β-polyaspartylhydrazide (PAHy)[5-6], both derivated from a polysuccinimide (PSI) with a high molecular weight, by reaction with
ethanolamine or hydrazine, respectively. These polymers, initially
proposed as plasma expanders, are water-soluble, non-toxic and
non antigenic. Moveover they are produced by simple and reproducible reactions, with high yield and low cost.
Among natural macromolecules useful for preparation of colloidal
DDS, polysaccharides, such as dextran, hyaluronic acid and
inulin, play an important role, because they are easily found, at
low cost and, if necessary, susceptible to chemical derivatization
to modify their physicochemical properties.
In many cases, in order to modulate various intrinsic properties of
oral drug delivery systems, such as for example water affinity and
enzymatic biodegradability in the gastrointestinal tract, it is possible to prepare easily and at low cost, composite materials based on combination between polysaccarides and polyaminoacids,
bearing or not polyethers, like PEG or polyesters like polylactic
acid (PLA) and polylactic-co-glycolic acid (PLGA). These composite materials generally show different degradation and release
profiles, respect to polysaccharides or polyaminoacids alone, that
allow the formulator to modulate, as he needs, these parameters
thus obtaining optimized performances of dosage form.
Nanotechnologies in the Laboratory of Biocompatible
Polymers (Palermo University)
Since many years, researchers of the Laboratory of
Biocompatible Polymers of the University of Palermo work on
the design, preparation and chemical and pharmaceutical characterization of new polymer – and lipid – based technological
systems for the modified and targeted drug release.
Nanostructured systems investigated in this laboratory include
main nanomedicine systems, such as:
• macromolecular prodrugs (drug-polymer conjugates)
• polymeric micelles
• interaction complexes (polymer/protein complex)
• polyplexes (polymer-DNA complexes)
• nanoparticles.
10
N e w s l e t t e r
N ano t e c
i t
Figure 1: Nanostructured systems for drug and gene delivery
Macromolecular prodrugs
In macromolecular conjugates, active agents are covalently
linked to hydrophilic polymeric carrier by hydrolizable bonds, so
that the hydrolysis of active agent/polymer linkage is necessary
to its release and to obtain the effect. The main advantage of
these systems is constituted by their ability to efficiently protect
linked drug molecules, whereas one drawback is represented by
the limited capacity to carrier drug, without undesirable changes of physic-chemical properties of drug-polymer conjugates.
Different drug-polymer conjugates using PHEA as starting carrier
were synthesized and characterized [7-10]; the ability of these systems to increase water-solubility and chemical stability of
drugs as well as to increase bioavailabity and target accumulation was shown. [7-10].
Polymeric micelles are colloidal systems obtained by self-assembling of amphiphilic copolymers above critical aggregation concentration (CAC) through the occurring of physical interactions
and in that the drug can be incorporated by physical or chemical
linking to polymeric surfactant.
The ability of micelle constituting polymeric surfactants to promote drug absorption increases drug membrane crossing, thus
strongly improving drug bioavailability. Moreover, also polymeric
micelles, for their small size can be absorbed giving circulating
nanodevices able to slowly release drug molecules. PHEA based
polymeric micelles were proposed to carrier antitumoral drugs as
well proteins with strong improvement in drug bioavailability in
vivo [12-14].
Physical polymeric complexes are nanosystems in that synthetic copolymers are properly designed and realized in order to
complex by physical interactions small molecules or macromolecules. Colloidal resulting systems are able to strongly stabilize
R I C ER C A
and protect peptide and protein molecules, allowing their administration for different administration routes. Application fields
include successful oral delivery of peptides, proteins and vaccines.
Therefore these polymeric materials are able to reversibly complex peptide or protein molecules (hugging like) and to release
them in the intact form after absorption in blood circulation. The
ability of polyaminoacidic systems to oral administer proteins was
demonstrated by in vivo studies [15].
Polyplexes
Polyplexes (InterPolyElectrolyte Complexes, IPECs) are physical interaction complexes obtained by electrostatic interaction between cationic polymers (positively charged) and genetic material
(such as plasmids or nucleic acid based drugs, negatively charged); these systems are able to condense genetic material (until
to colloidal size) and to neutralize its negative charges, in order to
make possible its introduction into cells and besides they protect
DNA from nuclease degradation improving transfection efficiency. PHEA and PAHy cationic copolymers have been showed to be
non toxic and able to transfect plasmid to cells in vitro[16-18]
Polymeric and lipid nanoparticles
Polymeric nanoparticles are drug loaded nanomatrices obtained
by chemical or physical crosslinking of properly derivarized macromolecules. Drug release from nanoparticles (especially from
oral route) can occur by response to external stimuli such as pH or
biological events, such as the activity of specific enzymes. Stealth
nanoparticles based on PHEA copolymers allowed successfully to
escape reticulo-endotelial system [19].
Nanoparticle can be characterized by swellable nature and in this
case the constituting nanomatrice has hydrogel properties.
Hydrogels are polymeric three-dimensional networks, obtained by physical or chemical crosslinking, that in contact with an
aqueous medium (e.g. in a physiological/biological environment),
are able to swell by taking up from 10-20% up to thousands of
times their dry weight in water. As a consequence of their water
affinity, hydrogels do not cause irritant effects on tissues or organs. For this reason, hydrogels are very attractive systems especially for oral drug release because they combine a good tissue
biocompatibility with the possibility to modulate in appropriate
way the release rate of therapeutic agents [20, 21].
&
S V I L U P P O
t
• “stimuli-responsive” hydrogels, that exhibit large volume
changes in response to small changes in external environment
conditions, such as pH, temperature, electric field, light, etc.
Stimuli-responsive hydrogels are also indicated as ”intelligent”
or “smart” materials because they have both sensor and effector functions (Figure 2).
In particular, pH-responsive hydrogels are frequently used to
develop drug delivery systems for oral administration; in fact, the
difference of pH between the stomach and the intestine is large enough to generate a pH-dependent swelling that promotes
drug delivery (Figure 3).
If necessary, biodegradable hydrogels can be prepared that
undergo a selective hydrolysis in the intestinal tract, e.g. by colonic enzymes (Figure 3).
PHEA and PAHy based hydrogels showed good biodegradability
and the possibility to obtain particulate systems with well defined
and narrow size distribution [22, 23].
Figure 2 – Schematic representation of “Smart Hydrogels”
Chemical hydrogels can be obtained by easy, fast, safe and at low
cost methods, such as the use of chemical crosslinking agents or
by UV, gamma or microwave irradiation. Taking into consideration the dependence of swelling behaviour on the environmental
conditions, these systems can be produced as:
• “conventional” hydrogels, which are usually uncharged and
exhibit no significant change in swelling as a function of the
external environment;
Figure 3 – Nanosystems for colon targeted drug delivery
N e w s l e t t e r
N ano t e c
i t
11
R I C ER C A
t
&
S V I L U P P O
Lipid nanoparticles
Besides polymeric materials, also natural lipids can be used as
nanoparticles to prepare colloidal drug delivery systems. These
systems, due to their nature and size, can be absorbed in the intestinal tract (by enterocytes and M cells of Peyer’s patches), then
they arrive to the blood circulation. It is also possible to prolong
their blood circulation time by producing stealth lipid nanoparticles. This allows to prolong blood time residence of drug and its
efficacy. Lipid nanoparticles are particularly useful for I.v. administration of drugs for the treatment of nervous central system
diseases, since they are able to cross the blood brain barrier [24].
Conclusions
Nanotechnologies represent today a very promising approach to
design and obtain drug and gene delivery systems able to reduce drug dose, improve drug stability and water solubility and in
general optimize pharmaceutics and cell targeting and uptake of
drug delivery systems.
In the Laboratory of Biocompatible Polymers of the University
of Palermo different nanotechnologies have been produced for
drug and gene delivery; in particular: macromolecular prodrugs,
able to strongly increase bioavailability of drugs and to target
them toward specific cells (7, 11); polymeric micelles able to significantly increase water solubility and again bioavailability also
of protein drugs (12-14); physical polymeric complexes that are
able to make possible the oral administration of protein (15);
polyplexes with very high transfection efficiency for gene and oligonucleotide therapy (18) and nanoparticles based on lipid or/
polymer with excellent biocompatibility and good release profile
(19, 23, 24). These nanotechnologies have been successfully proposed in nanomedicine, but also their application in diagnostics
and cosmetics is attractive.
References
1) Tumour-targeted nanomedicines: principles and practice, T. Lammers, W. E.
Hennink and G. Storm, Br J Cancer 99 (3), (2008) 392-397.
2) Polymer conjugates as anticancer nanomedicines, R. Duncan, Nature
Reviews cancer 6 (9), 2006 688-701.
3) Water-soluble copolymers of an antiviral agent: synthesis and their interaction
with a biomembrane model, G. Giammona, B. Carlisi, G. Pitarresi, G. Cavallaro
and V. Turco Liveri J. Control. Release 22 (1992) 197-204.
4) Viscosimetric investigation of the interaction between sodium dodecylsulfate
micelles and a polymer drug carrier, G. Cavallaro, G. Giammona, G. La Manna,
S. Palazzo, G. Pitarresi and V. Turco Liveri, Int. J. Pharm. 90 (1993) 195-201.
5) A new water-soluble synthetic polymer, α,β-Polyasparthy hydrazide, as
potential plasma expander and drug carrier, M G. Giammona, B. Carlisi, G.
Cavallaro, G. Pitarresi and S. Spampinato, J. Control. Release 29 (1994) 6372.
6) Conformational analysis of α,β-poly(N-hydroxyethyl)-D,L-aspartamide
(PHEA) and α,β -Polyasparthydrazide (PAHy) polymers in aqueous solution, T.
Coviello, Y. Yuguchi, K. Kajiwara, G. Giammona, G. Cavallaro, F. Alhaique and A
Palleschi, Polymer 39 (1998) 4159–4164
7) Chemical stability and bioavailability of acyclovir coupled to α,β−poly(N12
N e w s l e t t e r
N ano t e c
i t
hydroxyethyl)-D,L-aspartamide, G. Giammona, G. Puglisi, G. Cavallaro, A.
Spadaro and G. Pitarresi, J. Control. Release 33 (1995) 261-271.
8) Coupling of the antiviral agent zidovudine to polyaspartamide and in vitro
drug release studies, G. Giammona, G. Cavallaro, G. Pitarresi, G. Fontana and
B. Carlisi, J. Control. Release 54 (1998) 321-331.
9) Synthesis, physico-chemical properties and biological characterization of a
paclitaxel macromolecular prodrug, G. Cavallaro, M Licciardi. G. Giammona, P.
Caliceti, S. Salmaso, Eur. J. Pharm. Biopharm. 58 (2004), 151-159.
10) Chemical conjugation of dexametasone to a polyaspartamide and in vitro
evaluation studies, G. Cavallaro, L Maniscalco, G. Giammona, C. Civile, M. G.
Mazzone, V. Enea, J. Drug Del. Sci. Technol. 14 (2004), 373-381
11) Folate-mediated targeting of polymeric conjugates of gemcitabine, G.
Cavallaro, M. Licciardi, S. Salmaso, P. Caliceti, G. Giammona, Int. J. Pharm.
307 (2006) 258-269
12) Poly(hydroxyethyl) derivatives as colloidal drug carrier systems, G. Cavallaro,
M. Licciardi, G. Giammona, P. Caliceti, A. Semenzato, S. Salmaso, J Controlled
Rel. 89, (2003) 285-295.
13) Tamoxifen-loaded polymeric micelles: preparation and in vitro biological
evaluation, G. Cavallaro, L. Maniscalco, M. Licciardi, G. Giammona,
Macromol. Biosc. 4 (2004), 1028-1038.
14) Supramolecular association of recombinant human growth hormone with
hydrophobized polyhydroxyethylaspartamides, S. Salmaso, R. Schrepfer, G.
Cavallaro, S. Bersani, F. Caboi, G. Giammona, G. Tonon and P. Caliceti, Eur. J.
Pharm Biopharm, 68 (2008) 656-666
15) Colloidal vectors at polyaminoacid structure for oral release of peptides and
proteins and its attendant production method, M. Licciardi, G. Giammona , G.
Cavallaro, G. Pitarresi, International Application number PCT/IT/2008/000376
16) Novel cationic copolymers of a polyasparthylhydrazide synthesis and
characterization, G. Cavallaro, F. S. Palumbo, M. Licciardi, G. Giammona, Drug
Delivery 12 (6) (2005) 377-384.
17) Synthesis and characterization of novel non toxic polyaminoacidic
polycations for gene therapy, M. Licciardi, M. Campisi, G. Cavallaro, M.
Cervello, A. Azzolina, G. Giammona, Biomaterials 27 (2006) 2066-2075
18) Polyhydroxyethylaspartamide-spermine copolymers: efficient vectors for gene
delivery, G. Cavallaro, S. Scirè, M. Licciardi, M. Ogris, E. Wagner, G. Giammona,
J. Controlled Release, 131, 54-63, 2008.
19) Pegylated nanoparticles based on a polyaspartamide. preparation,
physico-chemical characterization and their intracellular uptake, E. F.
Craparo, G. Cavallaro, M. L. Bondì, D. Mandracchia and G. Giammona,
Biomacromolecules, 7 (2006) 3083-3092.
20) Hydrogels for biomedical applications, A. S. Hoffman, Adv. Drug. Del. Rev.
54 (2002) 3-12.
21) Hydrogels: from controlled release to pH-responsive drug delivery, P. Gupta, K.
Vermani, S. Garg, Drug Discov. Today 7 (2002) 569-579.
22) Photocrosslinking of dextran and polyaspartamide derivatives: a combination
suitable for colon-specific drug delivery, G. Pitarresi, M.A. Casadei, D.
Mandracchia, P. Paolicelli, F.S. Palumbo, G. Giammona , J. Control. Release,
119 (2007)328-338.
23) Composite nanoparticles based on hyaluronic acid chemically crosslinked
with α,β-polyaspartylhydrazide, G. Pitarresi, E.F. Craparo, F.S. Palumbo, B.
Carlisi, G. Giammona, Biomacromolecules 8 (2007) 1890-1898.
24) Ferulic acid-loaded lipid nanostructures as drug delivery systems for
Alzheimer’ disease: preparation, characterization and cytotoxicity studies,
M.L. Bondì, G. Montana, E.F. Craparo, P. Picone, G. Capuano, M. Di Carlo, G.
Giammona., Current Nanoscience 5(1) (2009) 00-00.
Contacts
Prof. Gennara Cavallaro, [email protected]
Prof. Giovanna Pitarresi, [email protected]
Prof. Gaetano Giammona, [email protected]
Dipartimento di Chimica e Tecnologie Farmaceutiche, via Archirafi 32, 90123,
Palermo, ITALY.
R I C ER C A
&
S V I L U P P O
t
Interactions of engineered
nanomaterials with biological
systems: models and methods
to assess risk determinants
E. Bergamaschi (1), O. Bussolati (1), L. Migliore (2),
R. Colognato (2), A. Magrini (3), A. Pietroiusti (3), M. Bottini (3),
L. Ghibelli 3, J.M. Legramante (3), P. Boscolo (4), I. Iavicoli (5),
S. Bellucci (5), A. Bergamaschi (5), S. Bellucci (5§)
1
Dipartimento di Clinica Medica, Nefrologia e Scienze della Prevenzione e
Dipartimento di Medicina Sperimentale, Università degli Studi di Parma
2
Dipartimento di Scienze dell’Uomo e dell’Ambiente, Università di Pisa e NMI
Unit, European Commission, DG-Joint Research Centre, Institute of Health and
Consumer Protection, Ispra, (VA)
3
Dipartimento di Bio-patologia e Medicina del lavoro, Università di Tor Vergata,
Roma
4
Dipartimento di Scienze Bio-mediche, Università degli Studi “G. d’Annunzio”
Chieti-Pescara
5
Istituto di Medicina del Lavoro, Università Cattolica del “Sacro Cuore” e § INFN,
Frascati, Roma
1. Introduction
anotechnology is one of the key industries in Europe [1]. The
estimated economic impact of nanoparticles in industrial,
consumer, and medical products will be US$ 292 billion by 2010
and US $1 trillion by 2015 [2] The prosperity of our continent and
out country will also depend on the safe and sustainable development of this emerging technology. Indeed, every new technology
brings with it new risks and for nanotechnology, the potential
health risks to workers and consumers are paramount. They
can arise from exposure to nanomaterials (NM) either at work
or through consumer products. Among the stakeholders there
is an increasing awareness that these risks, if not assessed and
managed properly, can prevent economic growth and deprive us
of a much needed competitive edge, but more importantly could
have grave potential consequences for human and environmental health [3, 4].
It is acknowledged that the risks associated with NM production
and use must be considered using a precautionary approach
[5] and that further research is essential to inform the management of these new and emerging risks. The need to research
the potential hazards of ENP is evident from several EU-funded
toxicology studies underway (e.g. NANODERM - bio-kinetics of
TiO2 nanoparticles from dermal exposure-; NANOSAFE 2 - Safe
production and use of NM: Development of risk assessment and
management for secure industrial production of nanoparticles;
PARTICLE RISK - Risk Assessment of ENP).
The last call of the Sixth EU Framework Programme (FP6) funded at least two projects to study the mechanisms of interaction
between engineered nanoparticles (ENP) and the living system,
e.g. the NANOSH and NANOINTERACT [6]. In the first call of the
Seventh EU Framework (FP7), more projects on the risk asses-
N
sment of ENP have been selected. In addition, national governments - including those of the UK, Denmark, France, Germany
and Belgium - are also funding studies on the toxicology of ENP.
2. Rationale for a research project aimed at assessing nanobio-interactions
By tailoring the structure at the nanoscale it is possible to engineer novel materials that have entirely new physicochemical properties as compared to bulk materials. The unusual physicochemical
properties of NM are attributable to the higher surface to volume
ratio associated with nanoparticles (NP) and the quantum effects
that occur in the nanometre scale. However, chemical composition, surface structure (reactivity, surface groups, inorganic or
organic coatings), solubility, shape and aggregation should also
be considered. Although impressive from a physicochemical point
of view, the novel properties of NM raise concerns about adverse
effects on biological systems, since they may favour enhanced
uptake and interaction with several cell types and tissues [7, 8].
In environmental and industrial toxicology, there are established
protocols and terminology describing how to assess risk and
what standard of proof must be met. Accepted and standardized
tests and models have been set up and are in place to allow for
an evaluation of any new chemical or material against existing
benchmarks and to categorize their associated risk level. Hazard
identification is the process of determining whether exposure to
an agent can lead to adverse health and environmental outcomes, whereas hazard characterization defines the relationship
between the dose of an agent and the occurrence of adverse
effects in exposed population.
Being aware of the health issues concerning engineered nanoN e w s l e t t e r
N ano t e c
i t
13
R I C ER C A
t
&
S V I L U P P O
materials, in 2006, some Italian scientists mainly concerned with
occupational health risk issues funded a consortium to develop
an effective approach for improving the assessment and to suggest the management of potential health risks from exposure to
engineered nanoparticles.
Here we report on some findings obtained in the framework of
a collaborative research project granted by the Italian Ministry of
University and Research (PRIN-MIUR 2006069554).
The following table (table 1) summarizes the Institutions participating and their expertise.
Relying on the collaboration of researchers with different scientific backgrounds the present research project was aimed at:
a) clarifying the mechanisms underlying the toxicity of different
NM, such as carbon nanotubes or NP of metallic elements, so as
to yield a solid toxicological rationale based on structure-function
relationships and on relevant biological responses;
b) developing experimentally validated, reliable in vitro methods
to assess NP toxicity, so as to characterize a battery of tests suitable for human health risk assessment of newly synthesized NM.
3. Interactions of carbon nanotubes with airway epithelial
cells: how physical features affect the biological behaviour.
Although they are attractive because of their innovative mechanical and electrical properties, engineered CNTs raise some
concerns about the inhalatory hazard and the possible long-term
consequences, because they have three properties that are clearly
associated with particle pathogenicity: i) they are nano-sized, and
so could have more toxicity than larger-sized particles; ii) they
are fibre-shaped and so might behave like pathogenic fibres and,
hence, exhibit toxic properties referable to their needle-like shape;
iii) they are essentially graphitic, i.e. not soluble in a neutral or
mild acid pH and, therefore, potentially biopersistent, i.e. they do
not undergo chemical dissolution and breakage in tissues [9].
The pathogenicity of CNTs also depends on the mechanisms by
which they interact with resident cells. Whereas macrophagic
cells appear relatively resistant to cytotoxicity or induction of apoptosis by CNT, lung epithelial cells have been reported to undergo significant toxicity when exposed to CNTs. However, the
consequences of CNT exposure have been much less studied in
airway epithelial cells (AEC) than in macrophagic cells, although
the former represent the first body barrier for inhaled particles
and the contact between the NM and these cells may be prolonged [10].
Table 1: Institutions participating to the research project granted by the Italian Ministry of University and Research (PRINMIUR 2006069554), the people involved and the groups’ expertise.
Research Units and Institutions
People
Dipartimento di Clinica Medica, Nefrologia e Scienze
della Prevenzione e Dipartimento di Medicina Sperimentale
Università degli Studi di Parma
Istituto di Medicina del Lavoro, Università Cattolica
del “Sacro Cuore” e INFN Frascati, Roma
Dipartimento di Bio-patologia e Medicina del Lavoro,
Università di Tor Vergata, Roma e Burnham Institute
for medical research, La Jolla, CA, USA
Dipartimento di Scienze dell’Uomo e dell’Ambiente,
Università di Pisa e NMI Unit, European Commission,
DG-Joint Research Centre, Institute of Health and
Consumer Protection, Ispra, (VA)
Dipartimento di Scienze Biomediche, Università degli
Studi “G. d’Annunzio” Chieti-Pescara
14
N e w s l e t t e r
N ano t e c
i t
Enrico Bergamaschi (Project leader)
[email protected]
Ovidio Bussolati, BiancaMaria Rotoli,
Massimiliano Bianchi
Antonio Bergamaschi
[email protected]
Ivo Iavicoli, Stefano Bellucci
Andrea Magrini
[email protected]
Antonio Pietroiusti, Massimo Bottini, Jacopo
Legramante, Lina Ghibelli, Milena De Nicola
Lucia Migliore
[email protected]
Renato Colognato, Alessia Bonelli
Paolo Boscolo
[email protected]
Mario Di Gioacchino
Expertise
Identification of the structural determinants affecting the trans-epithelial permeability of NM;
characterization of dose-effects and –response
relationships of distinct types of NP on biologically relevant cell types
Exposure assessment and characterization of
micro - and nanoparticles; synthesis and functionalization of new NP; advanced microscopy
techniques
Cell internalization and intracellular distribution
on NM; CNT with different chemical functional
groups and of supramolecular nanoassemblies;
animal models to assess cardiovascular effects
Molecular and cellular effects on DNA: primary
oxidative and chromosome damage by single
cell assays (Comet and micronucleus); subcellular and molecular targets of NP and CNT
genotoxicity
Characterization of the effects of distinct types
of NP on immune cell types
R I C ER C A
One of the most important characteristics of AEC is the maintenance of tight junctional complexes that allow strictly polarized
secretory functions, prevent the entry of pathogens and chemicals, and may participate in signal transduction that regulate gene
expression [11]. This property is maintained by several airway cell
lines, such as CaLu-3, a cell line derived from a human lung adenocarcinoma. These cells have the capability, once cultured on
permeable filters, of forming very tight monolayers with transepithelial electrical resistance (TEER) values > 1000 Ohm/cm2.
Using CaLu-3 cells we carried out our experiments [12] with commercial single-walled (SWCNT) or multi-walled CNT (MWCNT),
presenting a low level of metal contamination although synthesized through the carbon vapour deposition (CVD) method, or
with a mixture of MW/SW CNT synthesized with the arc discharge
method (AD-CNT) [provided by Dr. S. Bellucci from the National
Institute of Nuclear Physics (INFN - Frascati, Rome)], totally metalfree. Carbon Black (Printex 90 14 nm diameter – Degussa, Italy)
was used as a control, amorphous probe. All the NM were used
at doses ranging from 5 to 100 microg/ml. The carbon nanomaterials, used at the highest nominal dose [100 µg/ml], had very
different effects on TEER (Panel A). Whereas laboratory-grade NT
and CB were completely ineffective, MWCNT produced a progressive decrease in TEER. SWCNT produced a late and smaller,
although significant, TEER decrease.
Figure 1. Carbon nanotubes lower the trans-epithelial electrical resistance
(TEER) of Calu-3 cell monolayers. Empty symbols, control filters maintained in
the absence of CNT. The figure shows representative experiments repeated three
times with comparable results. Data are means ± S.D. *p < 0.05, **p < 0.01 vs.
untreated cultures [from Ref. 12].
If C-nanomaterials were added during the establishment of tight
functional complexes, as assessed from the progressive increase
&
S V I L U P P O
t
of TEER during the growth of CaLu-3 monolayers, their effect
was again strictly dependent on the type of material used. For
instance, MWCNT had a profound inhibitory effect and substantially suppressed the formation of a high-resistance epithelium.
The suppression of the barrier function was associated with an
increase in the paracellular (i.e. between cells and not through
the cells) permeability of CaLu-3 monolayers to mannitol, without substantial changes in cell viability [12].
Since the maintenance of the barrier efficiency is a very important
factor for the prevention of respiratory diseases and the determination of the biological effects of exposure to xenobiotics, it
is conceivable that MWCNT-induced changes may have important functional consequences, such as the enhanced sensitivity to
pathogens and the increased likelihood of extra-pulmonary translocation from the airways to other body compartments [11, 12]
The observed changes are independent on the mass concentration of the material and could attributed to the high number of
structural irregularities, which could greatly increase their chemical reactivity. However, it is known that also fibre length plays an
important role in determining the potential toxicity of nanofibres
because it influences their persistence in the respiratory tract.
Time of incubation (days)
Figure 2: Effect of MW carbon nanotubes on the trans-epithelial electrical
resistance (TEER) of tight Calu-3 cell monolayers. Squares, control filters
maintained in the absence of nanomaterials. Triangles, filters exposed to the
nanomaterials indicated in each panel. Data are means ± SD of three independent
determinations in a representative experiment repeated twice with comparable
results. ** p < 0.01 vs. control, untreated cultures measured at the same
experimental time (7d of treatment). [From Ref. 13]
N e w s l e t t e r
N ano t e c
i t
15
R I C ER C A
t
&
S V I L U P P O
I ���������������������������������������������������������������
n separate experiments [13], we assessed the role of CNTs length on the airway barrier dysfunction. Commercial CNT used in
this study were “Long” MWCNT (Aldrich 659258), largely made
of multi-walled nanotubes (carbon content > 90%), with residual amorphous carbon and metal traces (iron < 0.1%); “Short”
MWCNT (Aldrich 636843) with a carbon content > 95%; “Long”
SWCNT (Aldrich 636797), consisting by >50% of single-walled
CNT and by 40% of other CNT; “Short” SWCNT (Aldrich 652512)
which are >90% “pure” SWCNT.
The daily measurement of the trans-epithelial electrical resistance
up to 7d of treatment indicated that only L-MWCNT (Figure 2,
panel A) and, to lesser extent, L-SWCNT, produced an appreciable and progressive decrease in TEER, while the shorter counterparts (Figure 2, panel B) were without any significant effect.
No overt alteration in the expression of the junctional proteins
occludin and ZO-1 at messenger (mRNA) level was detectable for
any nanomaterial used. These data points to a structure-activity
relationship, although the precise determinants of toxicity are still
to be identified, and underlie some peculiar similarities with the
toxic properties of asbestos fibres [13].
To study in detail the behaviour of polarized human AEC exposed
to MWCNT, the most effective nanomaterial, we used confocal laser scanning microscopy. After several days of incubation,
confocal images of the monolayer revealed CNT aggregates and
tangles. By simultaneously labeling the monolayers with vital (calcein) and non vital dyes (propidium iodide), we were able to demonstrate that even a relatively brief contact with the MWCNTs
aggregates is sufficient to induce cell death. Other morphological
studies indicated that cells migrated on the MWCNT aggregates
in the attempt to reconstitute a tight monolayer on the tangles,
which, however, was not completely successful due to an enhanced rate of apoptosis of these elements. These data indicate
that MWCNT did not cause a generalized damage of the epithelial monolayer but, rather, focal lesions corresponding to the
areas of contact with the MWCNT tangles. Structural features of
the nanomaterials seem a major determinant, since the “shorter”
counterparts of effective MWCNT (0.5-2 ����������������������
��������������������
m vs. 5-9 ���������
�����������
m, respectively) do not seem to share the same cytotoxic effects.
The overall hypothesis that emerges from these studies is that
MWCNT aggregates, persisting in close contact with the epithelial monolayer, are covered by epithelial cells and, hence, included
in the epithelium. Hence, these data support the possibility that
MWCNT induce lung-blood barrier focal dysfunctions restricted
to areas of adhesion of the epithelium to the aggregates in the
absence of generalized cytotoxic effects on the airways [14].
4. Molecular and cellular effects on DNA of metal-based nanoparticles and carbon nanotubes: primary oxidative and
chromosome damage.
One of the major hypothesis of metal toxicity deals with the production of Reactive Oxygen Species (ROS), triggering DNA da16
N e w s l e t t e r
N ano t e c
i t
mage by oxidative stress [15]. CNTs are able to bind DNA, thereby possibly affecting directly its integrity. Primary DNA damage
can be assessed by the standard Comet assay, while its modified version allows also the detection of oxidative DNA damage.
Genotoxicity can also be assessed by the micronucleus test, which
detects DNA damage at chromosome level, and abnormalities of
the mitotic spindle.
4.1. Molecular and cellular effects of Cobalt nanoparticles
on DNA
Targeted drug delivery is the uptake and the distribution of a drug
in the body which can be controlled in order to reach only targeted tissues or organs directly at cellular or subcellular level. A specific application of targeted drug delivery is the treatment of solid
tumours, by injecting metal nanoparticles (MNP) which, under a
magnetic field, increased their temperature thus activating necrotic and apoptotic mechanisms in tumour cells (hyperthermia).
One of the most promising compounds for this purpose is cobalt
ferrite magnetic nanoparticles. However, cobalt and its compounds are classified as possibly carcinogenic to humans (IARC group
2B) and, depending on the considered cobalt species, different
toxicity outcomes, including mutagenicity and carcinogenicity,
can be observed.
Preliminary studies of our group were thus aimed at assessing
the possible genotoxic and cytotoxic effects of CoFe2O4 particles (CoFe), of different sizes, by means of the micronucleus test
(MN) in human lymphocytes [16]. Nanosized CoFe (5.6 nm) have
shown a significant decrease of the cytokinesis blocked proliferation index (CBPI), a marker of citotoxicity (p<0.05) starting from a
concentration of 5 µM, in parallel to a slight, but significant increase in the frequency of micronucleated binucleated lymphocytes
(BNMN) (p<0.05). CoFe at 10 µm produced a significant increase
in BNMN at a 10-fold higher concentration if compared to nano
CoFe, but little, if any, cytotoxic effect. For CoFe particles of 120
µm no significant effect in both indices was detected. These effects were flattened, though not abolished, following the organic
grafting, thus suggesting that the organic grafting prevents the
cobalt leaching in cellular medium, which should be considered
the true responsible for the genotoxic effects and the decrease in
cell proliferation.
Molecular mechanisms that trigger the toxic capacity of magnetic
nanomaterials, are not well understood, but such NP have the
tendency to localize preferentially at mitochondrial level, thus inducing free radical production and the activation of an oxidative
stress pathway, while bigger particles can activate other molecular pathways.
In further experiments [17], we assessed whether metal cobalt
nanoparticles (CoNP 50 nm as single particles) are genotoxic
compared to cobalt ions. Genotoxicy was evaluated by incubating human peripheral leukocytes of healthy donors with subtoxic
concentrations (10-5 to 8 x 10-5 M) of cobalt chloride (as a source
R I C ER C A
of Co2+), CoNP and ‘washed’ CoNP, the latter to exclude any interference by Co2+. On a group basis, Co2+ induced an increase of
the micronucleus frequency, whereas CoNP showed only minor
changes. The comet assay, which detects the amount of damaged DNA, showed a statistically significant dose-related increase
in DNA fragmentation (% tail DNA) in leukocytes treated with
CoNP (P < 0,001), whereas Co2+ did not induce significant changes over control values (Figure 3).
Figure 3. Dose dependent modulation of Co2+, CoNP-induced DNA damage
in isolated human peripheral leukocytes of three donors after 2h of exposure.
Values refer to the different donors and are expressed as mean of % of tail DNA
of 100 cells counted. Symbols *, **, and *** represent a statistical significance
of P<0.05; P<0.01; and P<0.001 respectively (calculated by Fisher’s exact test).
[From Ref. 17]
Uptake experiments carried out at the JRC, showed that CoNP
are able to cross cell membranes and to be efficiently internalized
in blood leukocytes as compared to Co ions, leading to the observed genotoxic effects, which are, however, modulated both by
donor’s characteristics and/or by Co2+ release [17].
4.2. Genotoxicity of carbon nanotubes
On the other side, we assessed the induction of DNA and chromosome damage following in vitro exposure to (CNTs) by using
a macrophagic cell line. To detect the oxidative DNA damage,
the micronucleus assay was performed in its alkaline modified
version, which employs two enzymes involved in the excision repair (i.e. the repair of the damaged DNA by cutting the damaged
bases), i.e. endonuclease III and formamidopyrimidine-glycosylase. The experiments were carried out by using increasing mass
concentrations (from 10 ng/ml to 100 µg/ml) of two different
types of commercially available CNTs: a mixture of single-walled
(SW-) and multi-walled CNTs (MW-CNT) (S/MWCNTs 80:20), and
a MWCNT preparation ( > 90%). In cells treated with the mixture of CNT, the number of micronucleated cells was significantly
increased above that of the vehicle control at doses ≥ 0.1 µg/ml,
whereas MWCNTs determined the same effect at slightly higher
concentrations (1 µg/ml) (P < 0.05, Fisher’s exact test). Both type
&
S V I L U P P O
t
of CNTs determined a oxidative damage to DNA as revealed by
increasing amounts of oxidised purines and pyrimidines and the
dose-dependent increase of DNA single strand-breaks. However,
following SWCNTs treatment, the oxidised purines increased only
two times as compared to baseline values, whereas the pirimidines showed a dramatic ten-fold increase (P< 0.001).
In cells treated with MWCNTs, a significant increase in DNA migration was seen, but it was independent on the mass concentrations (from 1 to100 µg/ml). These findings suggest that CNTs can
induce DNA damage at chromosome and nuclear levels in cell
line representative of first defence mechanisms [18].
5. Carbon nanotubes affect the cardiac autonomic regulation
It is known that the ultrafine component (UF) of airborne pollution may impair cardiovascular autonomic control, a high-risk
condition for adverse cardiovascular outcomes [19]. Since engineered nanoparticles, such as single-walled carbon nanotubes
(SWCNT), share physico-chemical properties with carbonaceous
UF, we evaluated some cardiovascular parameters in a rat model
undergoing two intra-tracheal instillations of SWCNT (1µg/gr
body weight) at 2-weeks interval.
SWCNT (CarboLex AP-grade, 50-70%, Aldrich, SteinheimGermany) produced by the arc-discharge process, employing
CO in a continuous-flow gas phase as the carbon feedstock and
Fe2(CO)5 as the iron-containing catalyst precursor and purified by
the HNO3 acid treatment at room temperature, were used in this
study. For their morphological and structural characterization,
Raman spectroscopy and Scanning Electron Microscopy (SEM)
were routinely used. The mean diameter, length and surface area
of SWCNTs, were 1.2 - 1.6 nm, 2-5 nm and 300 m2/g, respectively. Surface area was determined by BET analysis.
Arterial baroreflex function (BRF), arterial pressure and pulse
intervals were continuously monitored by a telemeter catheter
implanted in the abdominal aorta of the rats (Figure 4). The telemetric reports of freely moving animals showed �����������������
a significant decrease in the number of baroreflex sequences (from 498 ± 27.1 at
baseline to 287 ± 40.2 at the post-four week recording; p<0.05)
in SWCNT-instilled rats.
Interestingly, the occurrence of baroreflex sequences showed an
evident and significant trend to decrease in response to SWCNT
exposure (427 ± 45.2, after 24 h, 386.0 ± 45.0, after 2 weeks,
287 ± 40.2, after 4 weeks, p<0.05 after 2 and 4 weeks). It is
noteworthy that this event was not associated to a decrease in
heart beat spontaneous fluctuations, as indicated by the lack of
significant changes in both groups in the standard deviation of
the heart rate time series (the main index of heart rate variability).
BRS did not show significant changes during the whole experimental period both in controls and in SWCNT instilled rats, but
the lack of statistical significance was probably due to the low
number of animals.
N e w s l e t t e r
N ano t e c
i t
17
R I C ER C A
t
&
S V I L U P P O
expected widespread use of this material in occupational and environmental settings in years to come.
Figure 4. Number of baroreflex sequences at baseline and at different times
following single walled carbon nanotubes instillations. Data are shown as mean
+
_ SEM. * P < 0.05 vs. baseline.
The main finding of our studies is the demonstration that engineered nanoparticles affect the cardiac autonomic regulation;
in particular, the repetitive exposure to SWCNT via intratracheal
instillation used in our model can affect the baroreflex function,
as revealed by a progressive significant decrease in the number
of baroreflex sequences in exposed animals, but not in the control group. In contrast, the gain of the baroreflex control of sinus
node (i.e., the physiological heart pace-maker), as estimated by
the BRS, did not show significant changes both in exposed and
non exposed animals [20].
Moreover, the relatively low amount of SWCNT used in our model may be considered similar, on the basis of available data on
respiratory dust levels during laboratory handling of SWCNT, to
cumulative exposures which can be reached in an occupational
setting in less than two years [21].
The observed pattern of modification of the baroreflex function
suggests a partial loss of sensitivity to arterial pressure and heart
rate spontaneous fluctuations of the carotid and aortic baroreceptors, whereas the central baroreflex integration seems unaffected. Both direct and indirect mechanisms may link pulmonary
exposure to SWCNT to the altered baroreflex function. Indeed,
SWCNTs are able to induce a peculiar inflammatory pulmonary
reaction [10] eliciting the release into the systemic circulation of
inflammatory cytokines, which, in turn, may adversely affect the
cardiac autonomic control. On the other hand, given their very
small size, SWCNT may elude pulmonary macrophage uptake,
gaining direct access into the systemic circulation. Therefore, a direct effect of SWCNT on specialized peripheral structures sending
afferent stimuli to the brain, cannot be excluded. This finding,
if confirmed by further studies, may have relevant implications
in terms of public health, given the well known predictive role
in cardiac mortality of the arterial baroreflex alterations and the
18
N e w s l e t t e r
N ano t e c
i t
6. Carbon nanotubes in nanomedicine and the role of functionalization
The extremely high aspect ratio of CNTs, makes them ideal carriers for delivering doses of therapeutic and imaging cargos per
targeting event. To overcome the major obstacles in the use of
non-functionalized CNTs as nanocarriers, such as their complete
aqueous insolubility and concerns about potential adverse effects
due to the similarity with asbestos fibres, both non-covalent and
covalent functionalization methods have been explored [22]. CNTs
functionalization increase the solubility of CNTs and dramatically
reduce their toxic effects [23] so as to allow their use, after the
loading with small molecules, proteins, peptides or nucleic acids,
as pharmaceutical, therapeutic and diagnostic tools [24-27].
The toxicity of pristine and oxidized MWCNT on human T cells,
which would be among the first exposed cell types upon intravenous administration of CNT in therapeutic and diagnostic nanodevices, has been evaluated. Previous findings suggested that
carbon nanotubes can be very toxic and induce massive loss of
cell viability through programmed cell death at sufficiently high
concentrations (>1ng/cell). Indeed, the effects of CNT on cell viability and proliferation depends on chemical status (e.g., pristine
CNT on human T cell leukaemia Jurkat line was enhanced by the
presence of carboxylic groups [28]) but also on cell types (phagocytic cells vs. non-phagocytic) [29].
Functionalization has been reported to decrease NT cytotoxicity.
Chemically functionalized, water-soluble CNTs can target cells
of the immune system and localize inside B and T lymphocytes,
as well as in macrophages, without any effect on cell viability.
However PEGylated CNTs activated macrophages and modify
their subsequent capacity to respond to a physiological stimulus.
Our group functionalized CNTs through adsorption of phospholipids terminated by PEG chains and used them to deliver antisense
oligomers (ASO) into cultured cells and to target integrin-positive
tumors in mice with a RGD peptide. Such PEGylated NTs were
stably dispersed under physiological conditions, exhibited long
blood circulation times and low uptake by the reticuloendothelial
system (RES). Single administration of high doses did not lead to
acute or chronic toxicity in nude mice [30].
Recently, our research group reported the fabrication of a multivalent, cell-type specific and cytoplasmic delivery system based
on SWCNT. The CNT were functionalized through adsorption of
phospholipids terminated by biotinylated PEG chains functionalized with fluorochrome-coupled neutravidin and, subsequently,
with antibodies (anti-CD3epsilon and anti-CD28) for T cell receptor post-signaling endocytosis and a synthetic fusogenic polymer
for the disruption of lysosomal compartments. The biomimetic
nanoassemblies were composed by PEGylated individual/very
small bundles of carbon nanotubes having an average length of
R I C ER C A
176 nm (DS 77 nm). The nanoassemblies were stably dispersed
under physiological conditions, visible by conventional optical
and confocal microscopy and specifically targeted to T cells both
in vitro and in living animals [31]. Those findings suggest that
PNTs can work as an excellent scaffold for biological applications
and the fabrication of nanocarriers.
7. Conclusions
The responsible use of NM urgently requires the assessment of
possible risks for the human health and the environment. For a
proper risk assessment, there is the need to understand what
physico-chemical properties of nanoparticles (NP) may be biologically relevant in determining potential hazard and toxicity. The
interaction of NP with biological systems are not predictable on
the basis of size and shape, and cannot be easily extrapolated
from the knowledge based on larger scale materials [3-5].
To identify the hazard posed by NM, a combination of in vitro/
in vivo toxicology models is needed. In vivo models can help to
estimate the dosimetry and effects on target organs following
the translocation of NP in the body, whereas in vitro models are
used to assess the quantitative structure-activity relation (QSAR)
between physico-chemical NM attributes and specific cellular
endpoints.
A toxicological approach to health risk assessment of novel molecules requires studies at multiple, increasing levels of complexity, i.e. from biomolecules to cells, from in vitro to in vivo, from
animal to man. Because in vivo experiments are expensive, time
consuming, and ethically questionable, there is a strong demand
for a low-cost high-throughput panel of in vitro assays without
hampering the reliability of the risk assessment.
By establishing a research consortium we assessed - and are
still assessing - the interaction of some large volume production
nano-sized materials, i.e. CNT and nanoparticles of metallic elements. The testing strategies adopted in the present project have
been implemented as relevant models representative of possible
interactions occurring in occupational and environmental exposure scenarios.
Owing to their peculiar characteristics, each class of ENP should
be individually considered for their capability of inducing specific
biological effects. For instance, the cytotoxicity of CNT does depend on many other factors than concentration, including their
physical form, diameter, length, and the nature of attached
molecules or nanomaterials: carbon black, for instance, is less
toxic than pristine CNTs (what shows the relevance of structure
and topology); oxidized CNT are more toxic than pristine CNT.
However, the toxic properties of CNT can be modulated by modifying surface characteristics making them suitable for biomedical
applications.
To date, the mechanisms of toxicity and the biological behaviour
of newly synthesised NM are under investigation to assess their
possible hazard and risks, and to establish a safe and responsible
&
S V I L U P P O
t
use of nanotechnology products. Whether this development may
lead to additional hazard and health risks, will depend not only by
the NM characteristics, but by the number of occupationally exposed people and at what levels of airborne nanomaterials they
are exposed to, i.e. by the likelihood and the nature of exposure.
Although experimental studies cannot replace the assessment of
the actual exposure, they can contribute to identify the potential
hazards posed by engineered NM and indicate the need of a precautionary approach and protective measures.
Aknowledgements:
The present Research Project was granted by the Italian Ministry
of University and Research (PRIN-MIUR 2006069554). We are grateful to Dr. Andrea Porcari and Dr. Elvio Mantovani (AIRI-NanoTec)
for the opportunity offered to disseminate some findings of our
research activity.
References
[1] European Union: Directorate-General for Research Information and
Communication Unit. 2004. Nanotechnology Innovation for tomorrow’s
world. 56 pp.
[2] Lux Research Inc. 2006. The Nanotechnology Report 4th Edition. New York,
NY.
[3] The Royal Society and the Royal Academy of Engineering. 2004. Nanoscience
and nanotechnologies: opportunities and uncertainties.
[4] Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert
MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB. 2006.
Safe handling of nanotechnology. Nature 444:267-269.
[5] Scientific committee on emerging and newly identified health risks
(SCENIHR). Opinion on the appropriateness of existing methodologies to
assess the potential risks associated with engineered and adventitious
products of nanotechnologies SCENIHR/002/05. European Commission
Health & Consumer Protection Directorate - General Directorate C - Public
health and risk assessment C7 - risk assessment. 2005.
[6] Thomas K, Aguar P, Kawasaki H, Morris J, Nakanishi J, Savage N. 2006.
Research strategies for safety evaluation of nanomaterials, part VIII:
International efforts to develop risk-based safety evaluations for
nanomaterials. Toxicol Sci 92(1):23-32.
[7] Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the
nanolevel. Science 311:622-627.
[8] Colvin VL. 2006. The potential environmental impact of engineered
nanomaterials. Nat Biotechnol 21:1166-1170.
[9] Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. 2006.
Carbon nanotubes: a review of their properties in relation to pulmonary
toxicology and workplace safety. Toxicol Sci 92:5-22.
[10] Shvedova, A. A., E. R. Kisin, R. Mercer, et al. 2005. Unusual inflammatory and
fibrogenic pulmonary responses to single-walled carbon nanotubes in mice.
Am J Physiol Lung Cell Mol.Physiol 289:L698-L708.
[11] Bergamaschi E, Bussolati O, Magrini A, et al 2006. Nanomaterials and lung
toxicity. Interactions with airways cells and relevance for occupational health
risk assessment. Int J Immunopathol Pharmacol 19 (4):3-10.
[12] Rotoli BM, Bussolati O, Bianchi MG, et al. 2008. Non-functionalized
multiwalled carbon nanotubes alter the paracellular permeabilità of human
airway epithelial cells. Toxicol Lett 178: 95-102.
[13] Rotoli BM, Bussolati O, Barilli A, et al. 2009. Airway barrier dysfunction
induced by exposure to carbon nanotubes in vitro: which role for fibre
length? Human & Exp Toxicol (in press)
[14] Bergamaschi E. Interactions of carbon nanotubes with airway epithelial cells:
N e w s l e t t e r
N ano t e c
i t
19
R I C ER C A
t
&
S V I L U P P O
mechanisms and possible implications for human health. A “G. Scansetti”
Centre – NIS joint Colloquium “Carbon nanotubes between toxicity and
biomedical applications”. Torino, June 27th, 2008.
[15] Valko M, Morris H, Cronin MTD. 2005. Metals, toxicity and oxidative stress.
Curr Med Chem 12:1161-1208.
[16] Colognato R, Bonelli A, Bonacchi D, Baldi G, Migliore L. 2007. Analysis
of cobalt ferrite nanoparticles induced genotoxicity on human peripheral
lymphocytes: comparison of size and organic grafting-dependent effects.
Nanotoxicology 1 (4), 301-308.
[17] Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore
L. 2008. Comparative genotoxicity of cobalt nanoparticles and ions on
human peripheral leukocytes in vitro. Mutagenesis, 23(5):377-382.
[18] Migliore L, Bonelli A, Colognato R, et al. 2009. Carbon nanotubes induce
oxidative damage in DNA of RAW 264.7 cells. Environ Mol Mutagenesis
(in press)
[19] Brook RD, Franklin B, Cascio W, et al. 2004. Air Pollution and Cardiovascular
Disease. A Statement for Healthcare Professionals From the Expert Panel
on Population and Prevention Science of the American Heart Association.
Circulation 109:2655-2671.
[20] Legramante JM, Valentini F, Magrini A, Palleschi G, Sacco S, et al., 2009.
Cardiac autonomic regulation after lung exposure to carbon nanotubes.
Human & Exp Toxicol (in press)
[21] Mercer RR. et al. 2008. Alteration of deposition pattern and pulmonary
response as a result of improved dispersion of aspirated single-walled carbon
nanotubes in a mouse model. American Journal of Physiology- Lung
Cellular and Molecular Physiology; 294:L87-L97.
[22] Balasubramanian K and Burghard M. 2005. Chemically functionalized carbon
nanotubes. Small 1: 180-192.
[23] Sayes CM, Liang F, Hudson JL, et al. 2006. Functionalization density
dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol.
Lett. 161:135-140
[24] Prato M, Kostarelos K, Bianco A. 2008. Functionalized carbon nanotubes in
drug design and discovery. Acc. Chem. Res. 41: 60-68.
[25] Polizu S, Savadogo O, Poulin P, Yahia L. 2006. Applications of carbon
nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci
Nanotechnol. 6(7):1883-1904
[26] Bottini M, Magrini A, Di Venere A, Bellucci S, Dawson MI, Rosato N,
Bergamaschi A, Mustelin T. 2006. Synthesis and characterization of
supramolecular nanostructures of carbon nanotubes and ruthenium-complex
luminophores. J Nanosci Nanotechnol 6:1381–1386.
[27] Bottini M, Cerignoli F, Tautz L, et al. 2006. Adsorption of streptavidin onto
single-walled carbon nanotubes: application in fluorescent supramolecular
nanoassemblies. J Nanosci Nanotechnol 6(12):3693-3698.
[28] Bottini M, Balasubramanian C, Dawson MI, Bergamaschi A, Bellucci S, Mustelin
T. 2006 Isolation and characterization of fluorescent nanoparticles from pristine
and oxidized electric arc-produced single-walled carbon nanotubes. J Phys
Chem B Condens Matter Matter Surf Interfaces Biophys. 110:831-836.
[29] Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A,
Mustelin T. 2006. Multi-walled carbon nanotubes induce T lymphocyte apoptosis.
Toxicol Lett 160:121-126.
[30] De Nicola M, Mirabile Gattia D, Bellucci S, De Bellis G, Micciulla F, Pastore R,
Tiberia AC, D’Alessio M, Vittori Antisari M, et al., 2007. Effect of different
carbon nanotubes on cell viability and proliferation. J Phys Chem B
Condens Matter Matter Surf Interfaces Biophys 19, 395013 (7 pp.).
[31] Cato MH, D’Annibale F, Mills DM, Cerignoli F, Dawson MI, Bergamaschi E,
Bottini N, Magrini A, Bergamaschi A, Rosato N, Rickert NC, Mustelin T, Bottini
M. 2008. Cell-type specific and cytoplasmic targeting of PEGylated carbon
nanotube-based nanoassemblies. J. Nanosci. Nanotechnol. 8: 2259.
20
N e w s l e t t e r
N ano t e c
i t
Contact
Prof. Enrico Bergamaschi, MD, PhD
Department of Clinical Medicine, Nephrology and Health Sciences
Unit of Occupational Medicine, University of Parma Medical School
Via A. Gramsci, 14 - I-43100 Parma – Italy
Tel. +39.0521.033096 Fax : +39.0521.033099
[email protected]
R I C ER C A
&
S V I L U P P O
t
The research activities of DIMA
on nanomaterials
A. Corradi, C. Leonelli, T. Manfredini, F. Pilati, F. Bondioli, V.
Cannillo, M. Messori, M. Romagnoli, C. Siligardi, P. Fabbri
Università di Modena e Reggio Emilia, Dipartimento di Ingegneria dei Materiali e
dell’Ambiente (DIMA)
T
he research activity carried out at the Dipartimento di
Ingegneria dei Materiali e dell’Ambiente (DIMA) of the
Università di Modena e Reggio Emilia has been traditionally devoted to materials science and technology with particular respect
to ceramics, plastics, metals and composites. In the last decade
great interest has been focused on nanomaterials and nanotechnology from both academic and industrial point of views. In
the present paper the recent results of the research carried out
by the different research groups present at DIMA are reported
subdivided in these topics:
1.synthesis and characterisation of inorganic nanoparticles;
2.functionalisation of natural clay minerals for several applications;
3.nanomaterials applied to traditional ceramic materials;
4.glass-ceramic nanocomposites;
5.nanomaterials for polymer matrix composites;
6.modelling of nanomaterials.
The research groups of DIMA have been, and are currently, coordinators of a great number of national and international research
projects, scientific collaborations and academic formation programs with a wide feed back on the national and international
industries.
1. Synthesis and characterisation of inorganic nanoparticles.
In this field the research is mainly the synthesis of nanostructurated inorganic and metallic powders by using different non conventional methods. Chemical, thermal and mechanical properties
are also faced. The aim is to optimize the production process according to the final destination of the product from both qualitative and economic point of view.
Among the different used methods, the research group concentrated its efforts on the hydrothermal and solvothermal syntheses
under microwave irradiation in a batch reactor as well as in a continuous flow reactor. When dielectric heating is applied via microwave irradiation, in fact, the homogeneity of the temperature
reached within the reaction vessel strongly favours homogenous
nucleation vs. heterogeneous nucleation mechanisms.
The powders prepared by this efficient and cost-effective technique are:
a)perovskite-like mixed oxides: La1-xSrxMnO3 submicronic particles (grain size: 300-500 nm, solvent: water, Tmax: 240°C, Pmax: 8
bar, time: 15min-1h); barium titanate nanoparticles (grain size:
15-50 nm, solvent: water and PEG, Tmax: 240°C, Pmax: 15 bar, time:
10-30 min);
b)doped and undoped zirconia nanoparticles, ZrO2 (grain size:
5-20 nm, solvent: water, Tmax: 240°C, Pmax: 20 bar, time: 30min2hrs);
c)magnetite nanoparticles, Fe3O4 (grain size: 20-25 nm, solvent:
water, Tmax: 100°C, time: 2hrs)
d)monazite nanotubes, LaPO4 (length: 0.2-1.0 mm, width: 5-10
nm, solvent: water, Tmax: 150°C, Pmax: 1.5 bar, time: 2 hrs);
e)rutile/anatase nanoparticles, TiO2 (grain size: 50-80 nm, solvent: water, Tmax: 160°C, time: 5-30 min);
f) doped and undoped ceria nanoparticles, CeO2 (grain size: 5-20
nm, solvent: water, Tmax: 240°C, Pmax: 20 bar, time: 30min-2hrs).
Figure 1: TEM images of different oxide systems synthetized at DIMA
The application proposed for the zirconia nanoparticles in the oxygen sensors fields has been sustained by funding the MATERAERANET “OxyNanoSen” Project.
N e w s l e t t e r
N ano t e c
i t
21
R I C ER C A
t
&
S V I L U P P O
2. Functionalisation of natural clay minerals for several applications
The research on understanding the interaction between clay minerals and organic compounds have been conducted from the
beginning of XX century increasing in number and in topics.
Surface modifications of clay minerals have received attention
because it allows the creation of new materials and new applications. The intercalation of organic molecules, such as cationic surfactants, into phyllosilicate minerals (to obtain “organoclays”) has
attracted great interest in terms of both applied and basic research. In the preparation of polymer-clay nanocomposites (PCNs),
surfactant species are principally used as modifiers to make the
interlayer spaces of silicates organophilic, and such modification
promotes the entrance of polymers. The organophilic properties
of the surfactants-intercalated phyllosilicates can also be used
to remove organic pollutants (such as herbicides) from water.
Furthermore, intercalation of surfactants ions is often employed
as an ideal model to explore the confinement effects induced
by nano-sized interlayer pores due to relatively simple molecular
structures of the surfactants (such as alkylammonium) species.
Recent research of this group has demonstrated the importance on the choice and design of the organic molecules used to
modify the surface (also internal) of clay minerals to obtain specific physical-chemical characteristics, useful for example in the
obtainment of PCNs. In particular, nitrogen-based organic compounds (octadecyltrimethyl ammonium bromide (A) and N2,N4dihexadecyl-1,3,5-triazine-2,4,6-triamine (B)) were studied and
XRD, TEM and elemental analysis (Figure 1) demonstrate the expansion of the interlayer and a much more organophilic and wellordered structure with respect to the pristine clay mineral used.
Currently, the group is working to develop a multidisciplinary
protocol based on computational method (molecular dynamic,
MD), an organization of the significant amount of experimental
literature that has been done so far, and on statistical method,
(Design Of Experiment, DOE) with the final aim to rationally design an optimal organoclay.
Among the different modification agents, the uses of organosilanes has attracted considerable interest, due mainly to the increasing requirements from the area of polymer-clay nanocomposites
(PCNs), treatments of heavy metal contaminants and heterogeneous catalysis. Halloysite is defined as a two-layered aluminosilicate, chemically similar to kaolin, which has a predominantly
hollow tubular structure in the submicrometer range. As for most
natural materials, the size of halloysite particles varies within 1-15
μm of length and 10-150 nm of inner diameter depending on the
deposits. Moreover, other recent applications of these hybrid materials are in the field of coatings with active anticorrosion properties through the integration of nanoscale containers (carriers) loaded with the inhibitor or any other active compound into existing
“passive” films, thus designing completely new coating systems
based on the “passive” matrix “active” container structure. The
main idea, thus, is to develop nanocontainers, which can be sensitive to the external (e.g., mechanical damage) or internal (e.g.,
pH changes) corrosion trigger.
Figure 2: TEM images and XRD patterns of organoclay (A and B) and for comparison the pristine clay mineral
22
N e w s l e t t e r
N ano t e c
i t
R I C ER C A
&
S V I L U P P O
t
Figure 3: TEM images of natural halloysite clay nanotubes
Recent research of this group has demonstrated the possibility to
functionalize the surface of halloysite by grafting alkoxysilanes
with different functional groups. This allow the introduction in polymer matrix, for example, as nanoparticles filler to obtain PCNs.
In particular, we have studied and characterized the grafting process of two alkoxysilanes: 3-aminopropyltriethoxysilane (APTES)
and 3-methacryloxypropyltrimethoxysilane (MPS). Different conditions for the surface modification were investigated and the efficiency of the grafting process was demonstrated by comparing
the physical-chemical characteristics of the clay material before
and after reaction with the organosilanes.
Herein, we have demonstrated the possibility of modify and functionalize the surface chemistry of cheap halloysite clay, enabling
applications in many fields as nanocomposites, drug releasing
agents and components of active coatings.
3.=Nanomaterials applied to traditional ceramic materials
The research activity at DIMA in the nanotechnology applied to
the traditional ceramics is mainly devoted to the surface functionalisation of industrial ceramic materials produced by the Italian
industry (Made in Italy). This aim has been pursued through the
design and preparation of nanostructured powders that, once
introduced in the materials, allow to manufacture nanostructured surfaces. The surface of unglazed and glazed materials has
been modified using pigments and oxides able to confer to the
products considerably improved mechanical (resistance to scratch
and wear), chemical-biological (photocatalitic, antibacterial) and
also aesthetical properties.
The research has been focused on the design and realization of
nanostructured systems to be applied to ceramic products based
on alumina, zirconia, silica and their solid solutions. In particu-
lar, the possibility to use nanopowders suspensions or solutions
of precursors capable to be transformed in nanoparticles during
the material sintering, has been evaluated. The above mentioned systems have been applied on reference ceramic materials
at high added value such as porcelanized stoneware tiles. The
feasibility has been evaluated either on the green material before the sintering process, or on the final product by designing
ad hoc thermal treatment, or, finally, on the polished products
with a suitable post firing and polishing treatment. Evaluation of
the most efficient treatment has been conducted by characterizing the obtained products in terms of microstructure, surface
micromechanical and technological properties based on the UNI
EN ISO technical standards. Particular attention has been paid
to preserve the aesthetical aspect of the final product and the
obtained hue variation will be evaluated by means of UV-Visible
spectroscopy and colorimetric analysis.
This thematic has reached a noticeable interest for important industries within the traditional ceramic sector and has been sustained by PRIN 2007 funding.
Figure 4: Sol-gel SiO2-TiO2 mixed films prepared and deposited onto grès substrate
to improve its cleanability keeping good mechanical performances. TiO2 rich films
exhibit photo-induced hydrophilicity and good scratch resistance.
N e w s l e t t e r
N ano t e c
i t
23
R I C ER C A
t
&
S V I L U P P O
4. Glass-ceramic nanocomposites
Carbon nanotubes (CNTs) are some of the most innovative materials developed in the recent years. Since their discovery, several studies have been performed on their production, properties
and structure characterization. Due to their molecular assembly,
made from rolled graphene sheets, CNTs possess extraordinary
electric, thermal, optical and mechanical properties. Both single(SWCNTs) and multi-wall CNTs (MWCNTs) exhibit a very large
aspect ratio, i.e. their length is 1000 to 10,000 times their diameter. Such extraordinary and unusual mechanical properties are
due to the fact that the graphene sheets are closed and despite
other important properties, like their excellent electronic conductivity, CNTs may find extensive applications in replacing carbon
fibres as the reinforcement of several materials, such as polymers,
metals or ceramics, thus forming innovative nanocomposite materials. Incorporation of CNTs into ceramics has attracted more
and more interests in recent years. Ceramics materials are already
stiff and thermally stable, however their brittleness is always a
disadvantage. Incorporation of CNTs into ceramic matrices is expected to enhance toughness and to lead to higher strength as
well as raising the possibility of electrical conductivity. However,
the study is still far from exploited due to the strong aggregation of CNTs in the matrix. Unlike carbon fibers, the as-prepared
CNTs tend to form bundles due to van der Waals forces, and it
is difficult to separate them individually. The effective utilization
of nanotubes in composite applications depends strongly on the
ability to disperse CNTs homogeneously throughout the matrix.
Furthermore, good interfacial bonding is required to achieve load
transfer across the CNT-matrix interface, a condition necessary
for improving the mechanical properties of ceramic composites.
We have investigated the possibility to obtain a carbon nanotubes reinforced glass-ceramic nanocomposite starting from a stable aqueous stable suspension of MWCNTs and the glass system
CaO-ZrO2-SiO2 (CZS).
Figure 5: SEM images of the starting green body (left), the final sintered material
(right) and a scheme of microstructure obtained.
24
N e w s l e t t e r
N ano t e c
i t
The obtainment of MWCNTs-glass nanocomposites was achieved
under selected process conditions, investigating different temperatures of sintering and also and also preliminary investigation
show the encouraging reduction from 1012 Ω*cm to 10 Ω*cm of
electrical resistivity in the nanocomposite, indicating the potential
of CNTs addition to fabricate electrical and thermal conducting
inorganic composites.
5. Nanomaterials for polymer matrix composites
Polymer–layered silicate nanocomposites (PLSNs) belong
to an emerging class of organic–inorganic hybrid materials that
exhibit improved mechanical properties at very low loading levels
compared to conventional microcomposites together to the enhancement of functional properties such as flame resistance, barrier properties, optical transparency. Among various clays, montmorillonite and bentonite are two of the most used clay. They
consists of two silicate tetrahedral sheets sandwiching an edgeshared aluminum or magnesium hydroxide octahedral sheet with
lateral dimensions of approximately 200–1000 nm and silicate
sheet thick of about 1 nm. Copoly(styrene-butadiene-styrene)
(SBS) block copolymers belong to the class of styrenic thermoplastic elastomers (TPEs) are used in multiple applications. For several of these applications a reduced flammability represents an
important properties and the use of bentonite as flame retardant
additive for SBS can be of great interest from both academic and
industrial points of view. Nowadays, it is well known that in the
preparation of PLSNs, especially by melt intercalation, the organic
modifiers commonly used, quaternary ammonium salts with long
alkylic chain, present the drawback of a poor thermal stability. On
the other hand, it is well known that nitrogen containing heterocycles show improved thermal stability and inherent fire retardancy, in particular melamine and its derivatives are effective fire
retardants for many aspects.
R I C ER C A
&
S V I L U P P O
t
of the investigated copolymer. The study of the synergistic effect
of melamine-based organic modifiers with bentonite for further
improvement of the fire retardancy properties of TPEs is still undergoing in our laboratories.
Data obtain from cone calorimeter technique.
TTI = Time To Ignition
Figure 6: XRD patterns of PLSNs with different concentration of an ammoniumbased organoclays and flammability properties of a PLSNs obtain with a melamine
based organoclay.
Our recent research has demonstrated the possibility to obtain
PLSNs based on SBS copolymer and two organoclays with nitrogen-based organic compounds and in particular one of these two
contains a synthetically modified melamine skeleton. The intercalation of SBS block copolymer into organoclays was achieved
under selected melting process conditions.
Preliminary investigation of the resulting properties of fire retardancy have been analyzed with cone calorimeter technique. The
synthetically modified melamine-based organoclay gave an improvement of ∼20% in the decrease of the peak of heat release
rate (pHRR) which is an encouraging result considering the nature
High-density polyethylene reinforced with submicron titania particles. Main aim of this project was the improvement of
the creep resistance of one of the most widely used thermoplastics matrix (high density polyethylene, HDPE) by means the incorporation titania particles. Titania particles with different mean
diameters (from 350 to 30 nm) and morphology were produced
by either sol-gel route or hydrothermal crystallization. XRD analysis confirm that all sol-gel samples (coded as TiO2 A and TiO2
B) were amorphous while the hydrothermal crystallized titania
(coded as TiO2 C) was mainly composed of rutile phase (80 wt%)
with a minor amount of anatase (5 wt%). TEM analysis revealed
that TiO2 A and TiO2 B particles were characterized by a spherical
shape and narrow grain size distribution while the primary nanocrystals of TiO2 C powders were constituted of faced crystals
(average dimension 30 nm) connected tightly to one another. In
order to improve the interface interaction between particles and
polymer matrix, titania particles were also surface modified after
chemical reaction with CH3(CH2)17SiH3 (resulting particles coded
as TiO2 A-M, TiO2 B-M and TiO2 C-M).
The above described titania particles were subsequently used to
obtain composites filled at 1 vol% by melt compounding (internal
mixer) with a HDPE matrix. The presence of submicron particles
slightly modifies the rheology with respect to the pure polymer.
The torque measured after 10 minutes of melt mixing increases
from 4.4 N·m for pure HDPE to 4.6-4.7 for polymer filled with unmodified particles and to 5.0-5.3 for polymer filled with surface
modified particles.
It is interesting to note that a higher melt viscosity was always
obtained in the case of surface modified particles with respect to
the unmodified ones suggesting an improved interaction at the
interface between polymer melt and surface modified reinforcing
particles. The mechanical properties of the prepared composites
are summarized in the following Table.
Table – Mechanical properties of the prepared HDPE/titania composites (E: elastic modulus; σy: stress at yield; εy: deformation at
yield; εb: deformation at break; D(t=2000s) isochronous creep compliance at a time t=2000s)
Composite code
HDPE
HDPE/TiO2 A
HDPE/TiO2 A-M
HDPE/TiO2 B
HDPE/TiO2 B-M
HDPE/TiO2 C-M
Average size of TiO2
(nm)
-
E (MPa)
σy (MPa)
εy (%)
εb (%)
D(t=2000s) (GPa-1)
887 ± 7
26.3 ± 0.2
13.9 ± 0.2
395 ± 59
5.434
350 ± 20
1036 ± 19
27.4 ± 0.6
12.8 ± 0.4
30 ± 11
4.743
“
1022 ± 54
27.8 ± 0.5
12.5 ± 0.2
74 ± 32
5.068
150 ± 10
927 ± 52
27.2 ± 0.9
12.5 ± 0.9
40 ± 9
4.738
“
1064 ± 47
26.4 ± 0.7
11.9 ± 0.9
17 ± 2
4.824
30 ± 5
1100 ± 42
26.4 ± 0.2
13.3 ± 0.5
45 ± 40
5.203
N e w s l e t t e r
N ano t e c
i t
25
R I C ER C A
t
&
S V I L U P P O
The presence of titania nanoparticles induces a marked improvement of the elastic modulus of the HDPE matrix. It is interesting
to observe that the modified nanoparticles are more effective
than the unmodified ones, while it is difficult to establish a clear
correlation with the size of the nanofiller. The highest modulus
is observed for the nanocomposite filled with “TiO2 C-M”, for
which an increase of 24% with respect to the unfilled matrix was
registered. Comparing the elastic modulus results with theoretical predictions of traditional models for particulate composites
(such as the Lewis-Nielsen model), it emerges that the mechanical
models proposed for microcomposites are not longer applicable,
being the experimental moduli markedly greater than the predicted ones. The introduction of titania nanoparticles leads to a little,
but significant enhancement of the stress at yield (1-2 MPa). This
improvement indicates a relatively good filler-matrix interaction.
Concurrently, the introduction of titania leads to a significant embrittlement of the material, with a strong decrease of the deformation at break (about an order of magnitude) for all the filled
samples. The introduction of such limited quantity of nanofiller in
HDPE leads to a substantial improvement of its creep resistance,
with a decrease of both the elastic and the viscoelastic components of the total compliance (about 15-20% with respect of the
unfilled material). It is worthwhile to note that the creep resistance improves as the nanoparticles dimensions decrease: in fact, the
smaller the particles the lower is the observed creep compliance.
The effect of surface functionalization is not clear, since an opposite trend is observed depending on the particle dimensions.
6. Modelling of nanomaterials
In order to gain a deeper understanding into the mechanical performance of nanocomposites and into phenomena occurring at
the nanoscale, a modelling approach closely related to the composite morphology can be adopted. In fact several scientists pointed out the need for computational models able to reproduce the
behaviour of complex and heterogeneous materials. This methodology can be very helpful for a complete investigation of nanocomposites: numerical simulations which can predict the overall
mechanical behaviour of the system are an effective tool for a reliable design of such materials. Indeed there are several examples
of analytical and numerical modelling for traditional micro-sized
composites; however, in the field of nanocomposites several issues still need to be developed and addressed. Some recent papers proved the applicability of the Finite Element Method (FEM)
for modelling composites with a nanometric secondary phase.
Despite the FEM-based models are often applied to the so called
RVE (Representative Volume Element), thus assuming that the microstructure of the composite can be reproduced by assembling
a large number of such RVEs, an approach able to consider the
actual microstructure morphology of the nanocomposite can be
adopted in order to accurately predict the overall properties, thus
accounting for the complex and highly heterogeneous composi26
N e w s l e t t e r
N ano t e c
i t
tes microstructures of randomly dispersed particulate systems.
Figure 7: Modelling approach used to estimate global properties of the
nanocomposite, starting from the constituent characteristics and the morphology
as obtained by SEM analysis.
Thus, ceramic particles-polymer matrix nanocomposites were
accurately modelled, by using a tool able to map a composite
microstructure onto a finite element mesh, thus constructing models which accurately reproduce the composite morphology and
characteristics. Since it is well known that the shape, the spatial
arrangement, the volume fraction and above all the size of the
nanoparticles play a major role in the resulting performance, such
approach enables to have a deeper insight into the mechanical
behaviour. The so obtained computational models can be used to
interpret the available experimental results, focussing on the fundamental mechanisms arising in such systems. In such a way, the
microstructural features having a significant impact on the overall properties can be identified. In particular, the computational
approach pointed out that a third phase, namely the interphase,
has to be taken into account in the model in order to accurately
reproduce the experimental results.
Permanent staff involved in nanotechnology:
• Anna Corradi – Professore Ordinario
([email protected])
• Cristina Leonelli – Professore Ordinario
([email protected])
• Tiziano Manfredini – Professore Ordinario
([email protected])
• Francesco Pilati – Professore Ordinario
([email protected])
• Federica Bondioli – Professore Associato
([email protected])
• Valeria Cannillo - Professore Associato
([email protected])
• Massimo Messori – Professore Associato
([email protected])
• Marcello Romagnoli - Professore Associato
([email protected])
• Cristina Siligardi - Professore Associato
([email protected])
• Paola Fabbri – Ricercatore Universitario
([email protected])
R I C ER C A
References
1. F. Bondioli, A. Bonamartini Corradi, A.M. Ferrari, C. Leonelli, C. Siligardi, T.
Manfredini and N.G. Evans, “Microwave Synthesis of Al2O3/Cr2O3 (ss) Ceramic
Pigments”, J. Microwave Power Electromagnetic Energy, 33[1] 18-23
(1998)
2. F. Bondioli, A. Bonamartini Corradi, C. Leonelli and T. Manfredini, “Nanosized
CeO2 Powders Obtained by Flux Method”, Mat. Res. Bull., 34 [14-15] 215966 (1999)
3. F. Bondioli, A.B. Corradi, T. Manfredini, C. Leonelli, R. Bertoncello, “NonConventional Synthesis of Praseodymium-Doped Ceria by Flux Method”,
Chem Mater, 12[2] 324-330 (2000)
4. F. Bondioli, A.M. Ferrari, C. Leonelli, T. Manfredini, L. Linati and P. Mustarelli,
“Reaction Mechanism in Alumina/Chromia (Al2O3-Cr2O3) Solid Solutions
Obtained by Co-precipitation”, J.Am.Ceram.Soc. 83[8] 2036-40 (2000)
5. F. Bondioli, A.M. Ferrari, C. Leonelli, C. Siligardi, N.G. Evans, N.A. Hart, “The
Application of Microwave in the Synthesis of Ce0.9Pr0.1O2 Nanostructured
Powders”, J.Mat.Chem., 11[10], 2620-24 (2001)
6. F. Bondioli, A.M. Ferrari, C. Leonelli, C. Siligardi and G.C. Pellacani,
“Microwave-Hydrothermal Synthesis of Nanocrystalline Zirconia Powders”
J.Am.Ceram.Soc. 84[11], 2728-30, (2001)
7. F. Bondioli, A.M. Ferrari, A. Bonamartini Corradi, “Role of Praseodymium on
Zirconia Phases Stabilization”, Chem. Mater., 13[12] 4550-54 (2001)
8. Barbieri, L.; Cannillo, V.; Leonelli. C.; Montorsi, M.; Mustarelli P.; Siligardi C.,
“Experimental and MD Simulations Study of CaO−ZrO2−SiO2 Glasses”, J.
Phys. Chem. B, 2003, 107 (27), 6519–6525.
8. F. Bondioli, V. Cannillo, B. Focher, T. Manfredini, M. Montorsi, A.M. Ferrari,
M. Avella, M.E. Errico, M. Malinconico, “Preparation, characterisation and
computational study of poly(α-caprolactone) based nanocomposites”,
Materials Science and Technology, 20[10], 1340-1344, 2004
9. M.C. Caracoche, J.A. Martìnez, P.C. Rivas, A.M. Rodriguez, F. Bondioli,
T. Manfredini, A.M. Ferrari, S. Conconi, “Hyperfine characterisation of
metastable tetragonal configurations in Pr-doped zirconias”, Chem. Mater.
16[22], 4319-23 (2004)
10. M. Avella, F. Bondioli, V. Cannillo, S. Cosco, M. E. Errico, A. M. Ferrari, B.
Focher, M. Malinconico, “Properties/Structure Relationships in Innovative
PCL-SiO2 Nanocomposites”, Macromolecular Symposia, 218, 201-210,
2004
11. F. Bondioli. A.M. Ferrari, L. Lusvarghi, T. Manfredini, S. Nannarone, L. Pasquali,
G. Selvaggi, “Synthesis and characterisation of praseodymium-doped ceria
powders by a microwave-assisted hydrothermal (MH) route”, J. Mat.
Chem., 15(10), 1061-66, 2005
12. F. Bondioli, A. M. Ferrari, C. Leonelli, T. Manfredini, M.C. Caracoche, P.C.
Rivas, A.M. Rodrìguez, “Microwave-Hydrothermal Synthesis and Hyperfine
Characterization of Praseodymium-doped Nanometric Zirconia Powders”, J.
Am. Ceram. Soc., 88[3], 633-638, 2005
13. A. Bonamartini Corradi, F. Bondioli, B. Focher, A.M. Ferrari, C. Grippo, E.
Mariani, C. Villa, “Conventional and microwave-hydrothermal synthesis of
TiO2 nanopowders”, J. Am. Ceram. Soc., 88[9], 2639-41 (2005)
14. F. Bondioli, V. Cannillo, E. Fabbri, M. Messori, “Epoxy-Silica Nanocomposites:
Preparation, Experimental Characterisation and Modelling”, J. Appl.
Polymer Sci., 97, 2382-86 (2005).
15. A. Bonamartini Corradi, F. Bondioli, A.M. Ferrari, T. Manfredini, “Synthesis and
Characterisation of Nanosized Ceria Powders by Microwave-Hydrothermal
Method”, Mat. Res. Bull., Vol 41/1 pp 38-44 (2006)
16. V. Cannillo, F. Bondioli, L. Lusvarghi, M. Montorsi, M. Avella, M.E. Errico,
M. Malinconico, “Modeling of ceramic particles filled polymer-matrix
nanocomposites”, Comp. Sci. Tech., 66[7-8], 1030-37 (2006)
17. M. Avella, F. Bondioli, V. Cannillo, E. Di Pace, M.E. Errico, A.M. Ferrari,
B. Focher, M. Malinconico, “PCL-based Nanocomposites: Influence of
Compatibilization on Properties of PCL-Silica Nanocomposites”, Comp. Sci.
Tech., 66[7-8], 886-94 (2006)
&
S V I L U P P O
t
18. F. Bondioli, V. Cannillo, E. Fabbri, M. Messori, “Preparation and
characterisation of epoxy resin filled with submicron spherical zirconia
particles”, Polimery, 51[11-12], 794-98 (2006)
19. E. Bonometti, M. Castiglioni, P. Michelin Lausarot, C. Leonelli, F. Bondioli,
G.C. Pellacani, A.A. Barba, “Amorphous germanium(II) sulfide particles
obtained by microwave assisted decomposition of germanium(IV) sulphide”,
Materials Research Innovations, 10(2) (2006) 148-168.
20. Siligardi, C.; Wu, J. P.;, Boccaccini, A. R.; “Sintering and Crystallization of
Vanadium doped CaO-ZrO2-SiO2 glass-ceramics”, Materials Letters, 2006,
60, 1607–1612.
21. A. Bonamartini Corradi, F. Bondioli, A.M. Ferrari, B. Focher, C. Leonelli,
“Synthesis of silica nanoparticles in a continuous-flow microwave reactor”,
Powder Technology, 167(1) (2006) 45-48.
22. A. Opalinska, C. Leonelli, W. Lojkowski, R. Pielaszek, E. Grzanka, T. Chudoba,
H. Matysiak, T. Wejrzanowski, K. J. Kurzydlowski, “Effect of pressure on
synthesis of Pr-doped zirconia powders produced by microwave-driven
hydrothermal reaction”, Journal of Nanomaterials - An open access
journal, Volume 2006 (2006), Article ID 98769, 8 pages.
23. E. Caponetti; D. Chillura Martino; M.L. Saladino; C. Leonelli, “Preparation of
Nd:YAG Nanopowder in a Confined Environment”, Langmuir 23[7] (2007)
3947-3952.
24. C. Leonelli; W. Lojkowski, “Main development directions in the application of
microwave irradiation to the synthesis of nanopowders”, Chemistry Today
25[3] (2007) 34,36-38.
25. A. Rizzuti, M. Viviani, A. Corradi, P. Nanni, C. Leonelli, “Microwave-assisted
hydrothermal synthesis as a rapid route towards manganite preparation”,
Solid State Phenomena 128(Doped Nanopowders) (2007) 21-24.
26. Boccaccini, A. R.; Thomas, B. J. C.; Brusatin, G.; Colombo, P. “Mechanical and
Electrical Properties of Hot-pressed Borosilicate Glass Matrix Composites
containing Multi-wall Carbon Nanotubes”, Journal of Materials Science,
2007, 42, 2030 – 2036.
27. F. Bondioli, A. Dorigato, P. Fabbri, M. Messori, A. Pegoretti, “High-density
polyethylene reinforced with titania nanoparticles”, Polymer Engineering
& Science, 48[3] (2008) 448-457
28. F. Bondioli, T. Manfredini, “Le nanopolveri nella funzionalizzazione delle
superfici ceramiche”, Ceramica Informazione, 468 Aprile, 231-237 (2008)
29. M.C. Caracoche, J.A. Martinez, P.C. Rivas, F. Andreola, F. Bondioli, A.M. Ferrari,
T. Manfredini, “RT degradation of t-Zr(Pr)O2 in acqueous suspension revealed
by PAC”, J. Am. Ceram. Soc., 91 [7], 2357-2359 (2008)
30. S. Baldassari, A. Bonamartini Corradi, F. Bondioli, A.M. Ferrari,M. Romagnoli,
C. Villa, “DOE analyses on aqueous suspensions of TiO2 nanoparticles”, J
Euro Ceram Soc, 28, 2665-2671 (2008)
31. F. Bondioli, A. Bonamartini Corradi, A.M. Ferrari, C. Leonelli, “Synthesis of
zirconia nanoparticles in a continuous-flow microwave reactor”, J. Am.
Ceram. Soc., 91 [11] 3746-48 (2008)
32. Comes Franchini, M.; Fabbri, P.; Frache, A.; Ori, G.; Messori, M.; Siligardi,
C.; Ricci, A., “Bentonite-Based Organoclays as Innovative Flame
Retardants Agents for SBS Copolymer”, Journal of Nanoscience and
Nanotechnology, 2008, 8, 6316-6324.
33. F. Bondioli, A. Dorigato, M. Messori, A. Pegoretti, “Creep mitigation in high
density polyethylene by acicular titania nanoparticles”, J. App. Polymer
Sci., in press
34. F. Bondioli, V. Cannillo, A. Corradi, A.M. Ferrari, A. Tewari, “Synthesis and
Characterization of Hydroxyapatite Coated Zirconia Nanopowders”, Mat
Chem Phys, in press
35. F. Bondioli, R. Taurino, A.M. Ferrari, “Functionalization of ceramic tile surface
by sol-gel technique”, Journal of Colloid and Interface Science, in press
36. Manfredini, T.; Montorsi, M.; Ori, G.; Siligardi, G. “Surface Functionalization
Halloysite Clay Nanotubes”, submitted to Research Letters in Materials
Science.
N e w s l e t t e r
N ano t e c
i t
27
R I C ER C A
t
&
S V I L U P P O
37. Brigatti, M. F.; Manfredini, T.; Montorsi, M.; Ori, G.; Siligardi, C. “CationExchanged Montmorillonites: Preparation and Characterization”, in
preparation
38. Boccaccini, A. R.; Cho, J.; Giovanardi, R.; Manfredini, T.; Montorsi, M.; Ori, G.;
Siligardi, C., “Preparation and Electrical Properties of Carbon Nanotubes/
Glass-Ceramic Nanocomposites”, in preparation.
Contacts
Federica Bondioli
Università di Modena e Reggio Emilia
Dipartimento di Ingegneria dei Materiali e dell’Ambiente
Via Vignolese 905 - 41100 Modena, Italia
28
N e w s l e t t e r
N ano t e c
i t
R I C ER C A
&
S V I L U P P O
t
Nanotecnologie per il tessile
e abbigliamento
Piergiorgio Zappelli
AIRI/Nanotec IT - Centro Italiano per le nanotecnologie
L
e nanotecnologie rappresentano una tecnologia con sempre
maggiore spazio di applicazione nell’ambito del settore del
tessile e abbigliamento, come chiaramente messo in evidenza dal
Convegno NanoItalTex 2008, dedicato allo sviluppo delle nanotecnologie per questi settori.
L’evento, giunto alla sua quarta edizione, si è confermato come
l’appuntamento annuale del settore tessile e abbigliamento per
presentare le più recenti innovazioni tecnologiche e gli ultimi sviluppi nelle attività di R&S.
Il Convegno è stato organizzato da TexClubTec in collaborazione
con AIRI/Nanotec IT, ed ha avuto la partecipazione attiva di esperti
sia italiani che internazionali provenienti dal mondo accademico
e dall’industria, con lo scopo di delineare un quadro attendibile
sullo stato dell’arte della ricerca e delle sue applicazioni, sia di
quelle in fase di sviluppo che di quelle già disponibili sul mercato,
nonché sulle prospettive future del mercato in una fase delicata
di crisi economica.
Oltre al tema focale dell’uso delle nanotecnologie nel settore tessile, che si è dimostrato capace di incidere in modo rivoluzionario
in diversi settori dell’industria del tessile/abbigliamento, è stato
dato spazio anche ad altre tecnologie innovative che possono
consentire di rispondere in modo adeguato alle esigenze emergenti dal mercato e di ampliare la gamma delle applicazioni e dei
prodotti. A fianco delle tematiche di carattere tecnico/scientifico
sono stati affrontati i temi delle strategie di crescita del comparto,
e dell’importanza per le aziende della conoscenza degli aspetti sia
normativi che brevettuali.
Viene ora riportata una breve descrizione delle comunicazioni
orali delle diverse sessioni.
Strategie di crescita per le aziende
Massimiliano Serati (Università Cattaneo di Castellanza - LIUC),
ha delineato un quadro sostanzialmente positivo del comparto
tessile italiano ed ha anche evidenziato la capacità propulsiva del
tessile/abbigliamento verso l’intero settore manifatturiero. I dati
più rilevanti presentati dal relatore a supporto della tesi sono i se-
guenti: L’Italia è il primo esportatore a livello dell’EU 27 nel tessile,
è al primo posto per saldo commerciale (al secondo posto dopo
la Cina). L’incidenza dell’export sul fatturato è del 58%, con un
miglioramento rispetto al 2002 (48.4%), ed il saldo commerciale
con l’estero è di +10.2 MLD €. Rispetto al 2002 le aziende sono
diminuite da 71.000 a 58.000 e gli addetti nello stesso periodo
sono scesi da 596.000 a 513.000, in ogni caso la dinamica del
fatturato è migliore di quella della produzione. Da dati WTO risulta che l’Italia è la prima per competitività nel settore tessile/
abbigliamento.
Tra i principali punti di forza del comparto l’autore indica: l’integrazione e la completezza della filiera; la frequente innovazione
di processo e di prodotto favorita da fertilizzazione trasversale
e da un ciclo triennale di investimenti (2005-2007); la forza del
brand Made in Italy; la velocità di reazione alle istanze dei mercati; la elevata competitività internazionale. Per contro, le insidie più
evidenti per il tessile italiano risultano essere: il costo delle materie prime e la forza dell’Euro; la stagnazione dei consumi interni
(consumi nel tessile del 2007 sono inferiori a quelli del 2002); la
concorrenza internazionale predatoria; il nanismo delle imprese.
Utilizzando un modello econometrico dinamico multivariato,
l’autore ha dimostrato come una stimolazione dei consumi interni (incentivi fiscali, politiche di sostegno) nel settore tessile
dell’1% su base annua avrebbe significativi effetti sulla produzione, sull’export, e sull’intero comparto manifatturiero.
Eugenio Corti (European Centre for Space Application - ECSA),
partendo dall’osservazione che la grande maggioranza delle imprese in Europa sono di dimensioni piccole o micro, ha illustrato una metodologia per sostenerne lo sviluppo. Esaminando la
realtà consolidata dei Distretti Industriali è possibile individuarne
i vincoli e le contraddizioni, per consentirne il superamento mediante strumenti innovativi. Tra questi vi sono le Reti di Piccole
Imprese. Una piccola impresa per svilupparsi deve decidere di individuare, progettare e poi realizzare un specifico progetto innovativo di prodotto o di processo. Dato che una piccola impresa
difficilmente possiede tutte le competenze necessarie allo scopo,
queste possono essere trovate in altre piccole imprese socie della
N e w s l e t t e r
N ano t e c
i t
29
R I C ER C A
t
&
S V I L U P P O
Rete. L’auspicata collaborazione tra imprese sarà tanto maggiore
per quanto più è articolata l’offerta di servizi che alcune imprese
socie possono offrire ad altre imprese socie, ottenendo così Reti
di Coordinamento di Competenze.
E’ seguita una tavola rotonda a cui hanno partecipato i due relatori della sessione ed il Presidente di TexClucTec, Andrea Parodi.
Smart Textiles
Nel settore tessuti intelligenti sono state presentate tre comunicazioni.
Guido Chiappa (D’Appolonia), ha discusso circa il potenziale innovativo dell’integrazione tra tessile ed elettronica, illustrandone
molti aspetti. Detta integrazione si articola su tre livelli. Si passa
dal più basso livello, che è l’applicazione di un dispositivo elettronico su un tessuto/abbigliamento tradizionale, al livello intermedio di integrazione, dove microcircuiti sono inseriti nel tessuto,
al più elevato livello di combinazione, in cui tessuti sensorizzati
svolgono una molteplicità di funzioni.
Danilo De Rossi (Università Pisa), ha parlato della realizzazione
di dispositivi indossabili basati su tessuti elettronici, utili nel campo della “motion capture”. Il monitoraggio dei parametri legati
ai movimenti umani trova molteplici applicazioni sia in campo
medico (nella diagnostica e nella riabilitazione), che nelle applicazioni di computer animation e nei videogames. Gli strumenti
attualmente in uso per l’analisi del movimento, di tipo stereofotogrammetrico, magnetico o elettromeccanico, forniscono risultati
accurati, ma devono essere usati in locali speciali e vincolanti per
il soggetto in esame. Per superare questi problemi sono stati progettati dei “sensing garments” mediante l’integrazione di sensori
di un elastomero conduttore con un tessuto elastico. Dato che i
sensori hanno proprietà piezoresistive, la deformazione del tessuto può essere correlata ad una variazione della resistenza elettrica
del sensore.
E’ stato poi anche brevemente illustrato il progetto ALLODERMA,
che è finanziato dalla Regione Lombardia, ed ha come destinatari principali le aziende tessili comasche allo scopo di promuoverne la competitività. L’idea progettuale nasce dalla necessità di apportare innovazioni radicali su uno dei device più critici dal punto
di vista realizzativo e più interessanti in termini di opportunità di
mercato: il guanto per la riproduzione in ambiente virtuale dei
movimenti della mano. Verrà sviluppato un tessuto per il materiale costitutivo del guanto che porterà vantaggi in termini di costo,
adattamento ai movimenti, vestibilità, leggerezza e comfort.
Salvatore Giurdanella, in sostituzione di. Sergio Ferrero
(Microla Optoelectronics), ha parlato di sensori innovativi ed
elettronica flessibile integrabili nel tessile. La tecnica utilizzata
è rappresentata dalla stampa a getto d’inchiostro, che consente
la realizzazione di elettronica flessibile su qualunque substrato.
Ne sono esempi le connessioni elettriche che collegano porzioni
differenti di un capo di vestiario, i dispositivi RFID (Identificazione
a Radiofrequenza) antitaccheggio inseriti nel tessuto, le placche
30
N e w s l e t t e r
N ano t e c
i t
di nanogenerazione fotovoltaica (DSSC oppure celle solari interamente polimeriche), oppure la creazione di zone di accumulo di
energia mediante inkjetting di materiali polimerici contenenti ioni
litio, che agiscono da batteria tampone.
Materiali ad alte prestazioni per lo sport
Nathalie De Marco (Aquafil), ha illustrato le molteplici proprietà
della fibra Dryarn nel campo dell’abbigliamento sportivo. Trattasi
di polipropilene in microfibra il quale presenta ottime caratteristiche performanti per leggerezza, termoregolazione, traspirabilità,
antiallergenicità, batteriostaticità. La fibra non può essere né tinta
né stampata e la colorazione avviene in fase di produzione prima della filatura. I prodotti ottenuti con questa fibra presentano
inoltre altre positive caratteristiche: non stiro, asciugatura veloce,
facile eliminazione delle macchie, riciclabilità al 100%. Il valore di
mercato del prodotto e di circa il 3% di tutti i filati.
Aurelio Fassi (Mectex), ha illustrato le proprietà acquisite dai
tessuti in fibra sintetica dopo i trattamenti al plasma, ed in particolare ha parlato del loro prodotto bandiera, il costume LZR Racer
Speedo. Il capo è ottenuto da un tessuto bielastico, con il 100%
di elasticità nei due sensi ed un peso di circa 100g/mq. Il polimero del tessuto è trattato sia con plasma che con uno speciale trattamento idrorepellente. Gli studi effettuati dalla NASA sul
prodotto hanno dimostrato che il tessuto offre una resistenza al
moto in acqua del 20% inferiore a qualsiasi altro tessuto testato.
Dette proprietà sono state convalidate dai successi sportivi nel
nuoto: oltre il 90% delle medaglie olimpiche e dei record mondiali più recenti sono stati ottenuti da atleti che indossavano capi
prodotti con i loro tessuti.
Materiali a memoria di forma
Thomas Fischer (DITF Denkendorf), coordinatore del Progetto
AVALON, ha eseguito il secondo Roadshow del progetto nel corso del convegno NanoItalTex.
L’obiettivo di AVALON è di studiare l’applicabilità nel tessile delle
leghe a memoria di forma, al fine di promuovere la creazione di
prodotti innovativi ad alto valore aggiunto. tramite l’integrazione di nuovi materiali con proprietà multifunzionali. A tal fine, il
progetto ha anche lo scopo di adattare tecniche di lavorazione,
di sviluppare modelli finalizzati alla prototipazione virtuale di prodotto, di sviluppare nuove metodologie organizzative di supporto all’innovazione. Al progetto, che terminerà nel maggio 2009,
partecipano 31 partner di 10 paesi Europei, di cui 20 sono PMI.
A illustrazione dei risultati del progetto sono state presentate due
comunicazioni orali (Monero e Rossini) e 18 poster.
Alessandra Monero (D’Appolonia), e Ettore Rossini (eXtreme
Materials), hanno illustrato le peculiarità delle leghe a memoria di
forma (SMA) ed il loro utilizzo in tessuti tecnici. Dette leghe, composte da Ni-Ti, sono caratterizzate da superelasticità e dall’effetto
di memoria di forma. Tali proprietà sono apprezzate nella produzione di tessuti ibridi utili in campo bionico per la produzione
R I C ER C A
di stent ed arterie, e per l’ottenimento di tessuti tecnici speciali
capaci di assorbire gli urti e smorzare le vibrazioni, per la realizzazione di attuatori capaci di generare forze di elevato valore senza
parti mobili, oltre che di modificare la forma dei manufatti ove
sono inseriti.
E’ seguita una tavola rotonda a cui hanno partecipato i relatori
della sessione ed il Direttore di TexClubTec, Aldo Tempesti.
Prodotti performanti per la protezione umana
Lieven Tack (Bekintex NV), ha parlato dell’importanza di tessuti
antistatici. L’uso di abbigliamento da lavoro antistatico è sempre
più diffuso nell’industria petrolifera ed elettronica e presso i vigili
del fuoco, per dissipare l’elettricità statica che si accumula ed evitare scariche che in alcuni ambienti potrebbero provocare esplosioni o il danneggiamento di componenti elettronici. Bekintex,
che fa parte del gruppo belga Bekaert, è specializzata in tessuti
tecnici contenenti fibre metalliche. I prodotti tessili ottenuti hanno proprietà antistatiche, sono elettricamente conduttori e resistenti al calore.
Fabio Colombo (Colgra), ha presentato l’airbag per motociclisti.
Si tratta di un gilet al cui interno è ripiegato un sistema di airbag.
In caso di incidente l’airbag si attiva automaticamente gonfiando
delle sacche che proteggono le zone vitali del motociclista. Qui il
tessuto tecnico non è più un elemento primario, ma un componente che, assemblato insieme con parti metalliche e plastiche,
trasforma un capo di abbigliamento in un dispositivo che può salvare la vita. Il gonfiamento è basato sulla tecnologie della esplosione fredda, che consente la realizzazione di dispositivi molto
leggeri, affidabili e ricaricabili.
Maurizia Botti (Slam), che vanta una lunga esperienza nel settore dell’abbigliamento nautico ha presentato un nuovo prodotto
nel campo dell’abbigliamento specialistico, destinato a chi lavora
in condizioni estreme o si espone alla minaccia del fuoco, come
pompieri, militari e piloti. Si tratta di un capo underwear prodotto
con una fibra ignifuga di aramide, realizzato senza cuciture e di
grande elasticità, per garantire un comfort elevato.
Materiali e tecnologie per il trattamento superficiale
Marco Cerra (Stazione Sperimentale dells Seta), ha presentato
i primi risultati di un progetto di funzionalizzazione di fibre cellulosiche con nanodispersioni di polimeri uretanici. Lo scopo del
lavoro è quello di modificare alcune peculiarità delle fibre naturali
le quali, insieme alle loro molteplici caratteristiche positive, presentano anche degli inconvenienti. Ad esempio, la fibra di cotone presenta una elevata microporosità che richiede elevatissime
quantità di acqua per il suo processo. Con l’intervento in oggetto
si vuole ridurre questa microporosità, lasciando inalterate la flessibilità, la mano e la capacità di assorbire il colore. Il procedimento
prevede la formazione di un prepolimero uretanico a basso peso
molecolare, che viene disperso in acqua formando nanoparticelle, in grado di penetrare nelle microporosità delle fibre e fissar-
&
S V I L U P P O
t
si, senza formare uno strato superficiale che modificherebbe la
mano e l’aspetto della fibra trattata.
Gerd Brander (Huntsman - D), ha parlato della funzionalizzazione dei prodotti tessili analizzando i parametri che hanno una influenza sull’intero processo, cioè il tessile di partenza, il prodotto
usato nel finissaggio ed il processo di produzione. Molti processi
di funzionalizzazione non sono finalizzati al miglioramento di una
funzione ma ad un miglioramento del processo, come una più
elevata velocità di produzione, un più basso consumo energetico,
oppure una riduzione dei rifiuti e delle emissioni.
Davide Demango (Clariant), ha presentato e dimostrato le
caratteristiche dei tessuti trattati con il finissaggio Nanosphere.
Quest’ultimo è stato prodotto da Clariant in collaborazione con
Schoeller, imitando le caratteristiche naturali osservate sulle foglie
di loto. L’acqua infatti non aderisce alle foglie di queste piante, e
le goccioline che scivolano via asportano anche l’eventuale sporco depositato. La tecnologia Nanosphere riproduce una rugosità
sulla superficie del tessuto che lo rende idrorepellente ed autopulente.
Dirk Hegemann (Empa - CH), ha illustrato il processo di plasma
sputtering sviluppato da Empa per il deposito in continuo di film
metallici di spessore nanometrico su fibre sintetiche. Le fibre così
metallizzate conservano le proprietà tessili originali e possono essere tessute e lavorate a maglia in modo convenzionale. I tessuti metallizzati trovano numerose applicazioni in campo elettrico
(tessili antistatici, elettronica indossabile), in campo ottico (tessuti
riflettenti) e medico (tessuti antibatterici, elettrodi per ECG e per
elettrostimolazione).
L’importanza della conoscenza per le aziende
La sessione è stata composta da tre comunicazioni vertenti sul
processo su base volontaria della elaborazione di una Norma UNI
(Ruggero Lensi), sul coordinamento di progetti europei (Athanase
Contargyris, IFTH - F) e sul valore della proprietà intellettuale
(Claudio Germinario, SIB).
Ruggero Lensi (UNI). L’attività di normazione costituisce una modalità innovativa di concepire la democrazia in una visione sociale
di condivisione della conoscenza tecnica, a vantaggio dell’intera
collettività, in contrapposizione alle logiche di protezionismo. Le
fasi di elaborazione di una Norma: Messa alla studio della Norma,
Stesura del documento, Inchiesta pubblica, Pubblicazione, richiedono un iter complessivo di 24 - 36 mesi, che possono diventare,
in alcune occasioni, anche 40-50. I documenti prodotti da UNI
sono di tre tipi: La Norma Tecnica Nazionale (UNI), la Specifica
Tecnica Nazionale (UNI/TS), documento che è sottoposto ad
un periodo di verifica della sua validità, ed il Rapporto Tecnico
Nazionale (UNI/RT) che rappresenta uno stato dell’arte.
Athanase Contargyris (IFTH - F), ha illustrato alcuni esempi di
coordinamento di progetti europei :
il progetto Clevertex, finalizzato alla trasformazione al 2015 del
settore tessile/abbigliamento tradizionale in un settore industriale
N e w s l e t t e r
N ano t e c
i t
31
R I C ER C A
t
&
S V I L U P P O
indirizzato dalle nuove conoscenze (tessili intelligenti), ed il progetto Safeprotex, che è rivolto a ridurre il rischio di danni fisici
per mezzo di un equipaggiamento personale protettivo avanzato
che incorpora funzioni multiple da usare da parte di personale
sottoposto a condizioni di rischio in operazioni di emergenza.
Claudio Germinario (SIB), ha messo in evidenza l’importanza
della protezione della proprietà intellettuale mediante brevettazione. Datosi che lo sviluppo economico è legato alla capacità di
innovazione, la quale è ottenuta mediante la ricerca, che a sua
volta richiede finanziamenti, questi ultimi non vengono ottenuti
se i risultati della ricerca non sono protetti. La situazione brevettuale italiana nel settore tessile è addirittura peggiore della già
modestissima posizione generale. Delle 2110 domande di brevetto EP o Euro-PCT nel tessile presentate nel 2007, l’Italia ne ha
depositato il 2.46% (il valore medio generale italiano è stato nello
stesso periodo del 3.12%). L’importanza della protezione brevettuale è particolarmente significativa nel settore nanotecnologico,
dato che il passaggio dalla dimensione macro a quella nano permette di ottenere materiali con proprietà completamente nuove.
Non viene quindi più applicato il principio della “inerenza”, per
cui una proprietà sconosciuta di un prodotto noto su scala macro
non può essere brevettata, dato che detta proprietà era insita
nel prodotto stesso. Al contrario, una sostanza in scala nano può
essere brevettata anche se la stessa sostanza in scala macro è
ben nota.
Materie prime e tecnologie innovative
Luigi Torre, in sostituzione di Josè Kenny (Università Perugia),
ha illustrato un procedimento innovativo per la tracciabilità dei
prodotti dell’industria tessile, basato su materiali polimerici nanostrutturati decodificabili.
Il principio chimico-fisico su cui si basa la tecnologia è la capacità
conferita da dosi minime di un materiale organico o inorganico
su base nanometrica, di alterare lo specifico spettro elettromagnetico del polimero. La codificazione dell’informazione avviene
al momento in cui miscelando la matrice polimerica di base con
l’inclusione, vengono prodotti i materiali chiamati MPID (Materiali
Plastici Informativi Decodificabili), i quali non sono in alcun modo
riproducibili come tali. Per la decodificazione i MPID possono
essere letti con un sistema chimico-fisico in grado di fornire uno
specifico spettro (IR, UV) seguendo una procedura che trasforma
l’informazione in un codice alfanumerico.
Paolo Dominioni (Sider Arc), ha presentato la sua azienda che è
leader nel mercato dei monofili sintetici per applicazioni tecniche
e industriali. Le principali applicazioni sono nei tessuti per filtrazione, serigrafia, tessuti 3D - settore automotive e abbigliamento
sportivo, tessuti spalmati, nastri elastici e a strappo, tubi e trecce, medicali. Una produzione di monofili, progettata e realizzata
specificamente per il settore dei tessuti tridimensionali (Spacer
Fabrics), permette l’ottenimento di materiali innovativi che presentano vantaggi rispetto all’uso delle schiume poliuretaniche.
32
N e w s l e t t e r
N ano t e c
i t
Nel 2006 la Sider Arc ha prodotto circa 2300 tonnellate di monofili, mentre per il 2007 l’obiettivo è stato di 2700 tonnellate, grazie a due stabilimenti, uno a Cornaredo, Italia, e uno a Sighisoara,
Romania, per un totale di 14 linee di produzione.
Giovanni Baldi (Colorobbia), ha illustrato i tipi di materiali nanostrutturati sviluppati da Colorobbia. I prodotti sono ottenuti
mediante sintesi sol-gel ad alta temperatura, ottenendo delle nanodispersioni liquide monomodali (dimensioni tra 10 e 50 nanometri), stabili nel tempo, in solventi acquosi oppure a base alcolica o glicolica. Con tale tecnica sono prodotte nanodispersioni di
ossidi (SiO2, TiO2, ZrO2, Fe3O4, CoFe2O4) e di metalli (in particolare
Au e Ag). Una peculiarità importante dei nanomateriali è quella
della multifunzionalità, come ad esempio nel caso del biossido di
titanio, che ha proprietà di schermo UV, caratteristiche antibatteriche e capacità di decomporre gli inquinanti atmosferici. Tali
sospensioni liquide di nanocristalli permettono di veicolare le loro
caratteristiche chimico-fisiche sulle superfici di materiali molto
eterogenei. Ad esempio, nel caso delle fibre tessili, i nanocristalli
possono penetrare al loro interno “ceramizzando” il tessuto, cioè
portando caratteristiche tipicamente ceramiche su un materiale
formato da fibre naturali o polimeriche.
Marinella Levi (Politecnico Milano), ha descritto l’uso della
tecnologia sol-gel per l’ottenimento di prodotti tessili ad elevate
prestazioni. La tecnica prevede l’ottenimento di tessuti con specifiche attività funzionali mediante trattamenti sol-gel, acquosi
e non acquosi. La funzionalizzazione è ottenuta per mezzo di
rivestimenti, con l’uso di soluzioni inorganiche basate su nanoparticelle di silice modificata e di altri ossidi di metalli (nanosol).
La tecnica consente di progettare la modifica simultanea, ed a
volte sinergica, di proprietà fisico-meccaniche, ottiche, elettriche
e biologiche.
I risultati fin qui ottenuti sono così riassumibili: con TiO2 l’applicazione più promettente è nel settore medicale (effetti antimicrobici), sono inoltre di interesse la proprietà di assorbimento delle
radiazioni UV; con SiO2 vengono conferite al tessuto ottime caratteristiche idrofobiche, senza particolare influenza sulla “mano”,
consentendo di ottenere rivestimenti repellenti allo sporco; con
Al2O3 può essere aumentata la resistenza all’abrasione (aumento
dell’adesione interfibra).
La Conferenza si è avvalsa inoltre del contributo di circa 30 comunicazioni poster, di cui 18 prodotte per illustrare i risultati conseguiti nell’ambito del progetto Avalon.
Contatti
Piergiorgio Zappelli
AIRI/Nanotec IT
[email protected]
www.nanotec.it
R I C ER C A
&
S V I L U P P O
t
Le nanotecnologie e lo sviluppo
di una specifica normativa
tecnica
E. Rabino, Presidente della Commissione UNI Nanotecnologie - Business Line
Director, Centro Ricerche Fiat S.C.p.A. - www.crf.it
G.L. Salerio, Segretario della Commissione UNI Nanotecnologie - Responsabile
Uni, Divisione Beni di consumo e materiali - www.uni.com
I
l settore delle nanotecnologie apre nuove necessità nel campo
della normativa tecnica nazionale ed internazionale; processi
produttivi innovativi e specifici prodotti sviluppati con l’aiuto delle
nanotecnologie richiedono la definizione di norme tecniche appropriate in materia che vanno dalla terminologia e la nomenclatura, alla metrologia generale fino alla definizione degli aspetti
di sicurezza e salute da valutare, nonché l’impatto ambientale.
Poiché l’industria delle nanotecnologie è in ascesa, risulta urgente
iniziare subito una attività di standardizzazione per permettere
uno sviluppo del settore compatibile con la salute, la sicurezza e
l’ambiente, economicamente conveniente.
A livello internazionale si è già iniziato da qualche anno con la
costituzione di specifici Comitati Tecnici, rispettivamente a livello ISO (International Standards Organization) con la creazione
del TC 229 Nanotecnology destinato a trattare la normativa del
mondo non elettrico e a livello IEC (International Electrotechnical
Commission) con il TC 113 Nanotecnology for electrical and electronic products and systems, incaricato di studiare la normativa
specifica del settore elettrico ed elettrotecnico.
Focalizzando l’attenzione sul Comitato Tecnico ISO TC 229, a
cui si prevede la partecipazione attiva di 32 Paesi del Mondo per
studio delle norme tecniche (compresa l’Italia, con l’UNI, l’Ente
Nazionale italiano di Unificazione) , si apre un vasto numero di
argomenti che questo nuovo comitato tecnico dovrà trattare/studiare; per raggiungere al meglio i suoi obiettivi il Comitato ISO ha
organizzato la sua struttura in Gruppi di Lavoro, ciascuno focalizzato nella definizione di specifiche aree tematiche, come segue:
• J - Working Group 1 Terminology and nomenclature
(Terminologia e nomenclatura)
• J- Working Group 2 Measurement and characterization
(Misure e caratterizzazione)
• Working Group 3 Health, Safety and Environmental Aspects
of Nanotechnologies
(Salute, sicurezza e aspetti ambientali delle nanotecnologie)
• Working Group 4 Material specifications
(Specifiche dei materiali)
Per i Working Group 1 e 2 è stato concordato livello internazionale di studiare gli aspetti di terminologia / nomenclatura e di misura e caratterizzazione delle nanotecnologie unendo gli sforzi dei
due Comitati Tecnici mondiali ISO/TC 229 e IEC/TC 113; pertanto
i due WG sono congiunti.
A livello nazionale presso l’UNI si è costituita la Commissione
Tecnica Nanotecnologie. Lo scopo della Commissione UNI è quello
sviluppare la normazione e l’unificazione nel campo delle micro e
nanotecnologie, con specifico riferimento alla classificazione, alla
terminologia e nomenclatura, alla metrologia e alla strumentazione, alla riferibilità dei campioni e dei metodi di misura, ai metodi
di caratterizzazione. Inoltre la Commissione si deve occupare di
normazione degli aspetti connessi alla tutela della salute e sicurezza ambientale, di caratterizzazione dei processi produttivi inerenti alle micro e/o nanotecnologie e deve individuare dei metodi
di valutazione di prodotti, dispositivi e sistemi che utilizzano materiali con caratteristiche micro e nanotecnologiche. Infine è stato
dato mandato alla Commissione UNI Nanotecnologie di studiare
le applicazioni delle micro e nanotecnologie nel campo delle tecnologie biomediche e diagnostiche.
Questa Commissione ha il ruolo di seguire direttamente i lavori
normativi internazionali dei Comitati ISO e CEN, contribuendo
allo sviluppo della normativa mondiale ed europea. Inoltre la
Commissione Nanotecnologie mantiene dei rapporti di collaborazione e di scambio di informazioni con il Comitato Tecnico del
CEI (Comitato Elettrotecnico Italiano) CT 113 che segue l’attività
normativa internazionale sulle nanotecnologie per il mondo elettrico.
A livello nazionale la Commissione ha individuato tra i propri
membri diversi esperti disponibili a seguire l’evoluzione normativa internazionale, provenienti da aziende, università, laboratori
e centri di ricerca ma è necessario aumentare ulteriormente la
partecipazione a questi lavori incentivando l’industria e il mondo
scientifico ad investire nella standardizzazione delle nanotecnologie.
N e w s l e t t e r
N ano t e c
i t
33
R I C ER C A
t
&
S V I L U P P O
Per aumentare l’efficienza della Commissione UNI Nanotecnologie
e sono stati costituiti dei Gruppi di Lavoro, di interfaccia ai lavori
ISO e CEN. I Gruppi sono:
• GL 1 Terminologia
• GL 2 Misure, strumentazione e caratterizzazione
• GL 3 Salute, sicurezza ed aspetti ambientali
• GL4 Prodotti e processi nanotecnologici
Ma che cos’è una norma? A cosa servono le norme? Perché
usare le norme?
Per norma si intende un documento prodotto mediante consenso
e approvato da un organismo riconosciuto (Ente di Normazione),
il quale fornisce per usi comuni e ripetuti, regole linee guida o caratteristiche relative a determinate attività o ai loro risultati, al fine
di ottenere il miglior ordine in un determinato contesto. Le norme
sono documenti che definiscono le caratteristiche (dimensionali,
prestazionali, ambientali, di sicurezza, di organizzazione ecc.) di
un prodotto, processo o servizio, secondo lo stato dell’arte e sono
il risultato del lavoro di decine di migliaia di esperti in Italia e nel
mondo.
La norma deve avere le seguenti caratteristiche:
consensualità la norma deve essere approvata con il consenso di
coloro che hanno partecipato ai lavori;
democraticità tutte le parti economico/sociali interessate possono partecipare ai lavori e, soprattutto, chiunque (se partecipa) è
messo in grado di formulare osservazioni nell’iter che precede
l’approvazione finale;
trasparenza UNI segnala le tappe fondamentali dell’iter di approvazione di un progetto di norma, tenendo il progetto stesso a
disposizione degli interessati;
volontarietà le norme sono un riferimento che le parti interessate
si impongono spontaneamente;
Per influire sulla definizione dei contenuti delle norme e non subire requisiti stabiliti dai concorrenti è necessario partecipare attivamente ai lavori normativi presso il proprio Ente di Normazione
nazionale, anche per essere informati sui futuri sviluppi, con tempi e costi di adattamento ridotti e quindi con vantaggi competitivi
sulla concorrenza. La partecipazione ai lavori UNI nel settore delle
nanotecnologie permette di ottenere il necessario aggiornamento sullo “stato dell’arte” dei prodotti/servizi/processi relativi alla
propria attività e aiuta a ridurre i costi della ricerca ed i rischi ad
essa connessi, confrontando con gli altri partecipanti il proprio
know-how.
34
N e w s l e t t e r
N ano t e c
i t
Primi documenti normativi pubblicati:
SPECIFICA TECNICA ISO/TS 27687
Terminology and definitions for nano-objects - Nanoparticle, nanofibre and nanoplate
La Specifica fornisce una lista di termini e definizioni riguardanti
le particelle nel campo delle nanotecnologie;è destinata a facilitare la comunicazione tra organizzazioni/individui/aziende
RAPPORTO TECNICO ISO/TR 12885
Health and safety practices in occupational settings relevant to
nanotechnologies
Il rapporto ISO ha lo scopo di aiutare le aziende, i ricercatori, i
lavoratori e tutti gli interessati a prevenire conseguenze avverse
per la salute e conseguenze per la sicurezza durante la produzione, la manipolazione, l’uso e lo smaltimento di particelle nano
fabbricate.
I lavori normativi in corso
Numerosi sono i documenti normativi allo studio a livello internazionale e tra questi citiamo ad esempio le norme terminologiche e di nomenclatura (alcune già pubblicate), aspetti legati alla
misurazione delle particelle e alla loro caratterizzazione, norme
su simboli e informazioni da fornire per l’identificazione delle particelle nano nei prodotti, norme su materiali, norme sui
nano tubi, aspetti di sicurezza ambientale sulla diffusione delle
particelle nell’ambiente e/o effetti sulla salute umana, norme sulla valutazione dei rischi e sul ciclo vita, metodi di prova ecc. Qui
di seguito si fornisce un elenco dettagliato dei principali progetti
allo studio:
ISO/WD TS 10797
Nanotubes -- Use of transmission electron microscopy (TEM) in walled carbon nanotubes
1ISO/WD TS 10798
Nanotubes -- Scanning electron microscopy (SEM) and energy dispersive X-ray analysis
(EDXA) in the charaterization of single walled carbon nanotubes
2ISO/CD 10801
Nanotechnologies -- Generation of nanoparticles for inhalation toxicity testing
ISO/CD 10808
Nanotechnologies -- Monitoring nanoparticles in inhalation exposure chambers for
inhalation toxicity testing
3 4ISO/AWI TS 10812
Nanotechnologies -- Use of Raman spectroscopy in the characterization of singlewalled carbon nanotubes
ISO/WD TS 10867
Nanotubes -- Use of NIR-Photoluminescence (NIR-PL) Spectroscopy in the characterization of single-walled carbon nanotubes (SWCNTs)
ISO/WD TS 10868
Nanotubes - Use of UV-Vis-NIR absorption spectroscopy in the characterization of
single-walled carbon nanotubes (SWCNTs)
7ISO/WD TS 10929
Measurement methods for the characterization of multi-walled carbon nanotubes
(MWCNTs)
R I C ER C A
68ISO/AWI TS 11251
Nanotechnologies -- Use of evolved gas analysis-gas chromatograph mass spectrometry
(EGA-GCMS) in the characterization of single-walled carbon nanotubes (SWCNTs)
9ISO/AWI TS 11308
Nanotechnologies -- Use of thermo gravimetric analysis (TGA) in the purity evaluation
of single-walled carbon nanotubes (SWCNT)
ISO/WD TS 11751
Terminology and definitions for carbon nanomaterials
ISO/AWI TR 11808
Nanotechnologies -- Guidance on nanoparticle measurement methods and their
limitations
ISO/AWI TR 11811
Nanotechnologies -- Guidance on methods for nanotribology measurements
14ISO/AWI TS 11888
Determination of mesoscopic shape factors of multiwalled carbon nanotubes (MWCNTs)
ISO/AWI TS 11931-1
Nanotechnologies -- Nano-calcium carbonate -- Part 1: Characteristics and measurement methods
ISO/AWI 11937-1
Nanotechnologies -- Nano-titanium dioxide -- Part 1: Characteristics and measurement
methods
ISO/AWI 12025
Nanomaterials -- General framework for determining nanoparticle content in nanomaterials by generation of aerosols
&
S V I L U P P O
t
Il mondo delle nanotecnologie offre interessanti potenzialità applicative che possono contribuire in misura rilevante al miglioramento della qualità della vita, sia alla competitività dei prodotti.
L’industria nazionale, insieme al mondo della ricerca devono essere incentivate a partecipare ai lavori di standardizzazione ed a collaborare all’elaborazione delle norme, confrontando tematiche
ed idee e considerando i problemi emergenti per trovare soluzioni
sostenibili. Oggi si vive in un contesto mondiale più integrato e
competitivo e pertanto risulta strategico partecipare alla creazione di nuove norme piuttosto che limitarsi solamente ad adottarle,
sia per mantenere alti i livelli di qualità e funzionalità dei prodotti
sia per approfondire la conoscenza delle nuove problematiche di
sicurezza, anticipare lo sviluppo di soluzioni adeguate e garantirsi
una leadership per il futuro.
Contatti
Gian Luca Salerio
UNI, Responsabile Divisione “Beni di consumo e materiali”
Via Sannio 2 - 20135 MILANO
tel: +39 0270024414 - fax: +39 0270024369
[email protected]
30ISO/CD 29701
Nanotechnologies -- Endotoxin test on nanomaterial samples for in vitro systems
ISO/AWI TS 12144
Nanotechnologies -- Core terms -- Terminology and definitions
ISO/WD TR 12802
Nanotechnologies - Terminology and nomenclature - Framework
ISO/AWI TS 12805
Nanomaterials - Guidance on specifying nanomaterials
21ISO/AWI TS 12808
Nanotechnology - Terminology for the bio-nano interface
ISO/AWI TS 12843
Nanotechnologies - Terminology for medical, health and personal care applications
ISO/AWI TS 12901-1
Nanotechnologies -- Guidance on safe handling and disposal of manufactured
nanomaterials
25ISO/AWI TS 12921
Nanotechnologies - Terminology and definitions for nanostructured materials
ISO/AWI 13013
Nanotechnologies -- Terminology for nanoscale measurement and instrumentation
27ISO/AWI TR 13014
Nanotechnologies - Guidance on physico-chemical characterization of engineered
nanoscale materials for toxicologic assessment
ISO/AWI TR 13121
Nanotechnologies - Nanomaterial Risk Evaluation Framework
N e w s l e t t e r
N ano t e c
i t
35
N A N O TE C N O L O G I E
j
&
S O C I ET à
Nanotechnologies: an image
in the process of being defined
Claudio G. Cortese, Chiara Ghislieri, Federica Emanuel
Department of Psychology – University of Turin
Introduction
hat idea of nanotechnologies do Italian have today? What
feelings and expectations are associated with this topic?
Through what channels has the idea been constructed? How can
greater knowledge of nanotechnologies and the scope of their
use be spread? These are some of the questions which led to the
nation-wide qualitative-quantitative survey carried out within the
sphere of the Nanomat project, which is very briefly described
below.
As many sources have indicated [1-2, 9], the study of the social
representation of a scientific topic is important in order to foster
acceptance on the part of the general public both as it regards
marketing and as it regards public and private investments: GMOs
and biotechnologies are highly indicative cases in this sense.
from the Northern, Central and Southern parts of Italy, 3 interviews with pharmaceutical representatives and 9 interviews with
representatives of the small and medium sized companies. The
data collected were analysed with paper-and-pencil methods.
With regard to nanotechnologies, studies in the United States
and Europe have shown that the general public has very limited
knowledge about them [5-8]. In Europe, although only 20% of
the population believe that nanotechnologies can improve the
quality of life, from 1999 to 2005 a general improvement has
been observed in the attitude towards technologies (including
nanotechnologies) applied to medicine and pharmaceuticals [10].
Cobb and Macoubrie [3] demonstrate above all the fundamental
role played by knowledge: it seems to have a positive influence
on trust which, in turn, favours the perception of the benefits
rather than the risks linked to these technologies.
The questionnaire was filled in by a nation-wide sample of 2565
subjects (52% females; 48% males) formed on the basis of ISTAT
(the National Statistics Institute) data (available at the website
www.istat.it), representative of the whole Italian population [4].
Stratification was carried out according to certain personal identity variables considered significant: gender (male, female), geographic area of residence (North, Centre, South), size of the town
of residence (up to 50,000 inhabitants, over 50,000 inhabitants),
age (up to 24 years old, from 25 to 44, from 45 to 64, 65 and
over). The data were analysed by means of SPSS software.
W
Research objectives and method
The aim of the research was to study in depth the perception
of nanotechnologies, collecting data about: the level of the diffusion of knowledge on the subject; the prevalence of fears or
hopes; the connection with the more general attitude towards
scientific innovation; orientation relative to the most effective information channels.
Downstream of a bibliographic review, the data were collected in
two phases. The first phase, of a qualitative nature, involved the
formation of 1 focus group with experts of the Nanomat project,
12 focus groups with a random sample of 100 subjects recruited
36
N e w s l e t t e r
N ano t e c
i t
The second phase involved the use of a questionnaire containing 66 questions (10 of which regarded personal identity) with
answers on the Likert scale with a four-level choice or multiple
choice questions, constructed on the lines of descriptions given
in literature on the social perception of scientific and technological innovation, with specific reference to literature regarding the
perception of nanotechnologies, and the stimuli and questions
which emerged in the various qualitative phases carried out previously.
Results
The qualitative data
The focus groups and the interviews with the representatives of
the small and medium sized companies showed a certain interest
but at the same time superficial knowledge of the subject, gained above all from: television, conversations with acquaintances
engaged in the field, newspapers and specialised magazines, the
Internet, University courses. Different fields of application were
mentioned, often as only hypothetical. Such hypotheses did not
only regard the sectors of use, but also the reasons why nanotechnologies would be adopted, and how they tended to be distorted by the influence of possible science fiction reading. The
areas most frequently mentioned (with the subjects’ comments
N A N O TE C N O L O G I E
&
S O C I ET à
j
given in brackets) included the following:
♦Medicine and pharmacology (for clinical analyses and the administration of medicines): “…in surgery […] what struck me,
of the things I have read, is precisely the possibility of using nanotechnologies for the internal examination of the organism,
of the human body and organs” “… also for the administration of medicines”
♦Cosmetics (to obtain a stronger effect and to limit allergies):
“…nanotechnologies are mentioned in the description of certain creams, but I don’t remember very well” “…they are also
used for creams, perhaps to make them more tolerable for people with allergies”
♦Computer science, electronics and telecommunications (to
construct smaller objects and components): “…they could
make smaller mouses, extremely lightweight portable computers, mobile phones, for example, so small that you could put it
in your ear” “…in communications systems, I think […] I heard
in one news programme that HP was advanced in the use of
nanotechnologies”
♦Mechanical and aerospace engineering (to produce lighter
“machines”): “…I think I read that they are building lighter aeroplanes with nanotechnologies, which can fly much faster”
♦Energy production (to find alternative and renewable energy
sources): “…one could conceive of a machine which reproduces itself automatically. The machine would find energy and
with the energy it would create another molecular machine
which would go on with its work. When it has enough energy
it duplicates itself, and you have zero energy consumption”
♦War industry (to increase destructive power): “…I think they
were first developed in the military field and there are also very
terrible aspects […] in this case they want to build extremely
small automatic instruments […] nanometric microchips with
an autonomous function inside the organism. It’s a scenario
that the Borgs of Star Trek presented very precisely […] they
can also use them to genetically modify a plant, or a person’s
metabolism”.
proving the quality of life (83.0%), and capable of stimulating the
interest of the general public (80.9%). However, there was little
agreement from participants on the negative aspects of scientific
research, especially as it regards the statement “scientific research creates more problems than it solves” (20.5%).
In short, there are two main functions attributed to the adoption
of nanotechnologies in the various production sectors: the miniaturisation of products, and the reinforcement of materials.
This generally more positive figure is confirmed by the emotions
triggered off by the topic: the main reaction is curiosity (48.6%)
rather than indifference (15.5%), and in the same way trust
(21.9%) prevails over fear (7.1%). The use of nanotechnologies
in our country today is considered inexistent or very limited by
73.4% of those asked. The sector in which nanotechnologies are
believed to be more present is that of computer sciences (86.9%).
Medical care (81.1%) and telecommunications (79.5%) are also
sectors in which the use of nanotechnologies are believed to be
used. On the other hand, foodstuffs (25.5%) and furniture and
furnishings (23.6%) are the sectors in which people suppose
them to be less frequently used.
With regard to communication tools, the survey showed that people need, on one hand, instruments which offer immediacy and
With regard to information on the topic, the survey participants
were interested and wished to know more, and at the same time
they requested clarity, simplicity and possibility of use: specialist
jargon should be used with moderation, although making the
subject become excessively banal must also be avoided.
The quantitative data
The participants’ attitude was on the whole positive to scientific
research: there was, in fact, a prevailing image of scientific research aimed at problem solving (84.8% in favour), in pursuit of im-
Knowledge of nanotechnologies was shown to be decidedly limited. The 83.2% of those who answered the questionnaire,
in fact, stated that they knew “nothing” or “very little” about
the subject, demonstrating that in spite of a generally positive
and interested attitude towards scientific research, this particular aspect was still little known. Only 2.8% of the sample declared that they knew nanotechnologies well. The check question,
which consisted in assessing the accuracy of certain definitions of
nanotechnologies, the truth of which had previously been judged
by the Nanomat experts, confirmed the figure: the definition considered correct by 100% of the Nanomat experts (“A technique
which allows for constructing objects, devices and materials with
a dimension of one billionth of a metre”), was the one which
received least consensus from those who answered the questionnaire.
As it regards the sources, television resulted the main supplier of
information (41.3%), followed at some distance by daily newspapers (22.5%) and the Internet (20.5%). In any case, these
are sources which give information that is easily accessible and
“immediate”, albeit not particularly reliable or precise.
In line with the positive attitude towards scientific research, that
for nanotechnologies was also favourable on the whole, notwithstanding the scarce knowledge of the subject. As it can be seen
from table 1, in fact, there is prevailing agreement with the statements which show the potentials of nanotechnologies, with respect both innovation and the higher quality of the products. On
the other hand, there was little agreement with the statements
which indicated possible negative consequences for health.
N e w s l e t t e r
N ano t e c
i t
37
N A N O TE C N O L O G I E
j
&
easy access, and on the other hand, more in-depth information
and guaranteed scientific reliability of the sources. Television programmes are the information channel preferred by 60.3% of the
survey participants, followed at a distance by daily newspapers
(37.4%), brochures delivered to people’s homes (36.3%) and internet (31.5%). It is, in any case, significant to observe that only
University and scientists are considered to be trustable sources of
information on nanotechnologies, while all other sources, including consumer organisations and environmentalist organisations,
were considered less reliable (table 2).
Comparing the differences between the sub-groups of the participants, the analysis of variance (ANOVA, post-hoc LSD) showed
a more positive perception of nanotechnologies on the part of
males, of subjects living in North Italy, of subjects in towns with
more than 50,000 inhabitants, young adults and adults, those
with a high level of education (high school, University), those
with educational qualifications in scientific or medical fields, those who work in “education and research”, “health” and “public
and private services”, subjects who state that they read a daily
newspaper “three or four times a week” or “every day or almost
every day”, and those who state that they have a “good” knowledge of nanotechnologies.
Conclusions
The results of the survey can be summed up as follows:
- “we don’t know what nanotechnologies are, but we are not
afraid of them”. The level of knowledge in our country is decidedly low, lower than that recorded by similar surveys carried
out in the USA and in Europe. However, there is – as yet – no
association between nanotechnologies and perception of danger or harm, nor between nanotechnologies and other products or elements considered harmful to health (such as GMOs
or fine dusts), which in the same way would have made the
perception of nanotechnologies negative;
- “we believe they would improve life”. Nanotechnologies are
associated with the concrete aspect of obtaining an improvement in many sectors linked to health and to the quality of life
directly (medical appliances, pharmaceuticals, surgery techniques, cosmetics, etc.) or indirectly (the production of energy,
computer science, communications, the automotive sector,
etc.). The possible use in food production and packaging, however, rises some concern;
- “we would like to know more”. For precisely the above reasons,
the subject of nanotechnologies attracts interest, and many
participants to the survey (focus group members, or those who
filled in the questionnaire) took advantage of the occasion both
to ask for information and to start on their own path in search
of information. In other words, there seems to be a “demand
for knowledge” of the subject which could be answered by
38
N e w s l e t t e r
N ano t e c
i t
S O C I ET à
means of suitable communications campaigns;
- “we want easy communications accessible from home”. To reach this potential public, and to obtain a significant audience,
importance must be given to the simplicity of the message, since it is a topic which lends itself to conceptual sophistications
which can hinder understanding and dampen interest. Since
only a small minority of participants appear to be willing to
seek actively information, it will also be important to reach the
public by the classic means, such as the press, television and
internet. In any case, apart from communications addressed
to adults, it could be useful to promote campaigns directed
towards children and teenagers, who are culturally more ready
and open to assimilate information, and who are, at the same
time, a vehicle for access to the world of adults;
- “we trust those who have no commercial interests”. The source
has to be seen as authoritative and unconnected with gain,
otherwise the public would tend to suspect that the source
wished to hide something or that it was emphatic for second
aims. They expect nanotechnologies to improve the quality of
life: the list of advantages deriving from the use of nanotechnologies, to be considered truthful, will have to be guaranteed
by experts who have no economic interest. Otherwise, in this
era of great scepticism, the information would end up by being
considered a decoy, if not a real attempt to hide the truth.
In terms of communications strategies, the survey showed four
stereotypes which at moment represent the major obstacle to
correct representation of the subject.
A first stereotype regards the artificial nature of nanomaterials:
no focus group member was aware of the fact that they exist in nature. It is therefore necessary to underline the fact that
materials with nanometric properties are not only created in the
laboratory, but are present in our environment and man has lived
with them for centuries.
A second stereotype regards the fact that nanotechnologies are
something which will exist in the future, something found at present only in science fiction. To this regard, it is essential to promote awareness of the fact that today, in the industrial production
of certain goods or components of goods, as also in certain processes, nanotechnologies are already used.
A third stereotype regards the use of nanotechnologies almost
exclusively in the medical and computer fields, while the fourth,
which somehow match with the second stereotype, sees nanotechnologies confined to scientists laboratories. It will therefore
be important to emphasise that they are applied in many fields
that can impact with everyday life, and you don’t have to be a
scientific researcher to handle and use them.
In the light of these initial indications, the path towards the correct diffusion of information on nanotechnologies is a demanding task: but at the same time, we believe that it is essential and
N A N O TE C N O L O G I E
can no longer be deferred in order to avoid – in the absence of
any active and proper communication – incorrect and unwanted
perceptions, experiences and expectations which would be extremely difficult to modify.
References
1. Bucchi, M., Neresini, F. (2002). Biotech Remains Unloved by the More
Informed. Nature, 416, p. 261.
2. Bucchi, M., Neresini, F. (2005). Biotecnologie e opinione pubblica in
Italia. Rapporto conclusivo, www.observa.it.
3. Cobb, M.D., Macoubrie, J. (2004). Public perceptions about nanotechnology:
Risks, benefits and trust. Journal of Nanoparticle Research, 6, pp.395–
405.
4. Corbetta, P. (1999). Metodologia e tecnica della ricerca sociale. Bologna:
Il Mulino.
5. Currall, S.C., Lane, N., King, E.B., Madera, J., Turner, S. (2006). What drives
public acceptance of nanotechnology? Nature Nanotechnology, 1, 153155.
6. European Commission (2001). Eurobarometer Survey on Europeans,
&
S O C I ET à
j
Science and Technology. Brussels: European Commission.
7. European Commission (2006). Eurobarometer Survey on Europeans,
Science and Technology. Brussels: European Commission.
8. Lee, C.J., Scheufele, D.A., Lewenstein, B.V. (2005). Public attitudes toward
emerging technologies. Science Communication, 27, 240–267.
9. Moscovici, S. (1984). The Phenomenon of Social Representations. In Farr,
R.M., Moscovici, S. (edited), Social Representations. Cambridge: Cambridge
University Press.
10. Siegrist, M., Keller, C., Kastenholz, H., Frey, S., Wiek, A., (2007). Laypeople’s
and Experts’ Perception of Nanotechnology Hazards. Risk Analysis, Vol. 27,
1, 59-69
Contacts
Claudio Giovanni Cortese
Dipartimento di Psicologia – Università di Torino
Via Verdi 10
10124 TORINO
+39 011 6702027
[email protected]
Table 1 Answers to the question “Certain statements are given below. Considering nanotechnologies for each statement, please indicate how far you agree, using a scale of 1 (I hardly agree) to 4 (I absolutely agree)”.
Nanotechnologies…
Frequency
of disagreement
(1-2)
% of disagreement (1-2)
Frequency of
disagreement
(3-4)
% of disagreement
(3-4)
allow for the creation of new products
528
20.60%
1806
70.4%
improve product quality
583
22.70%
1941
75.7%
are innovations which improve the quality of life
580
22.60%
1946
75.9%
offer solutions to problems which might not be solved otherwise
751
29.30%
1765
68.8%
have no negative effect on health
1073
41.80%
1451
56.6%
can be used on purpose for harmful actions
1142
44.50%
1377
53.7%
are useful for cleaning and to safeguard the environment
1565
62.30%
946
36.9%
can damage the traditional economy
1728
67.40%
785
30.6%
are dangerous because such minute objects could get out of control
1758
68.50%
751
29.3%
are harmful to health
1881
73.30%
614
23.9%
are dangerous because nanoparticles can accumulate inside the human body
1890
73.30%
609
23.7%
Table 2 Answers to the question “Which of these sources is, in your opinion, most credible in terms of nanotechnologies?”.
Frequency of the answers
% of participants
Universities and scientists
2146
84.7%
Industry and entrepreneurs
678
26.7%
Public authorities (e.g the Ministry)
644
25.4%
Consumers’ organisations
539
21.3%
Environmentalists’ organisations
424
16.7%
Trade unions
108
4.3%
Religious organisation
86
3.4%
Political parties
70
2.8%
N e w s l e t t e r
N ano t e c
i t
39
T
N O T I Z I E
Notizie
Investire in cervelli: Siglato un importante accordo
tra Mapei e l’Università di Padova
Un importante accordo tra Mapei e l’Università di Padova, di durata decennale, è operativo dall’inizio del 2008. Si è in tal modo
instaurato un rapporto di collaborazione sistematico e di lungo
periodo tra l’Impresa e l’Università. L’accordo prevede il finanziamento da parte di Mapei di una linea di ricerca che i ricercatori universitari del gruppo di Geoscienze, diretto dal professor
Gilberto Artioli, svilupperanno congiuntamente con i ricercatori
del Centro di Ricerca Corporate Mapei di Milano. Il tutto per un
investimento complessivo di circa 8 milioni di euro.
L’Università e Mapei sono impegnate a collaborare, ciascuna per
la propria competenza, allo sviluppo e alla realizzazione di attività di ricerca nel settore dei materiali cementizi, con particolare
riguardo a:
• studi e ricerche su progetti specifici di interesse comune;
• analisi delle problematiche di ricerca applicative per il conseguimento di risultati scientifici di livello internazionale;
• formazione di un adeguato numero di giovani ricercatori con
solide basi scientifiche e capacità di svolgere in modo indipendente attività di ricerca nel settore;
• attività di divulgazione scientifica;
• sviluppo di una rete di contatti di alto livello scientifico con
grandi strutture di ricerca ed altri laboratori universitari.
Gli impegni di Mapei riguardano in particolare il finanziamento di
una cattedra di professore ordinario, di una posizione di ricercatore, di tre borse di dottorato di ricerca triennali e di un programma di “visiting professors” riservato a esponenti della Comunità
Scientifica internazionale.
Negli ultimi anni le ricerche di base e applicative sui materiali
cementizi hanno conosciuto un forte sviluppo, stimolato da esigenze applicative e industriali sempre più mirate e specifiche, e
favorito dallo sviluppo parallelo di tecniche di caratterizzazione
sempre più sofisticate.
In questo contesto, l’Università di Padova e Mapei hanno interesse comune alla costituzione di un Centro di Competenza, focalizzato sullo studio di tali materiali, che realizzi un’integrazione fra
il mondo accademico e quello industriale, affinché competenze
scientifiche di frontiera possano trovare applicazione in progetti
industriali, con il rispetto dei tempi e delle priorità.
Una interpretazione completa del sistema cementizio richiede una
visione a scale diverse del sistema - da quella atomica a quella del
cantiere - e quindi un efficace collegamento fra le proprietà delle
scale nanometrica e micrometrica e proprietà macroscopiche.
Le finalità principali del programma sono rivolte alla interpretazio40
N e w s l e t t e r
N ano t e c
i t
ne dei parametri macroscopici dei prodotti e dei processi basata
sulla comprensione dei meccanismi a scala atomica e molecolare,
al trasferimento di conoscenze specifiche di tipo cristallografico e
cristallochimico riguardo alle fasi complesse coinvolte nei processi
di idratazione, mediante l’utilizzo di tecniche analitiche e di caratterizzazione avanzate. In particolare, nell’ambito dell’analisi dei
materiali cementizi, alcune innovazioni recenti hanno permesso
di quantificare correttamente le fasi cristalline contenute nei clincker, nei cementi e nei prodotti di reazione mediante metodi di
analisi diffrattometrica a profilo completo.
Esiste inoltre la possibilità di caratterizzare le cinetiche di reazione
in situ in diverse condizioni sperimentali grazie a sorgenti intense
(luce di sincrotrone) e penetranti (neutroni).
Infine, è possibile studiare con tecniche microscopiche adeguate
- quali microscopia elettronica (ESEM), microscopia a scansione
di sonda
(AFM –STM), tomografia ad alta risoluzione - le interazioni superficiali fluido/cristallo.
Molto importanti sono sia l’interpretazione degli effetti indotti
dagli additivi organici e inorganici, in grado di controllare la materia alla scala nanometrica, che la capacità di influenzare nella
direzione voluta la formazione della nanostruttura del materiale
cementizio. La comprensione e la quantificazione di queste modificazioni devono essere basate sullo studio dettagliato dell’effetto, chimico e morfologico, di ciascun additivo sulle specifiche
fasi presenti nella pasta cementizia o sulle fasi che si formano
durante l’idratazione.
Per concludere, le metodologie e le tecniche analitiche che si
vogliono utilizzare per ottenere una migliore comprensione dei
complessi sistemi cementizi presuppongono un’investigazione a
diverse scale, partendo dalla scala atomica e molecolare (microscopia a forza atomica, microscopia elettronica a trasmissione),
passando poi alla scala cristallografica (diffrazione ad alta risoluzione con raggi-x da sincrotrone e neutroni, tomografia) per
arrivare alla scala macroscopica (reologia dei sistemi, caratterizzazione fisico-meccanica), integrando e correlando quindi i dati alla
scala nanometrica con quelli alla scala macroscopica.
Il ritorno atteso da Mapei da questo ambizioso programma è
l’acquisizione della capacità di progettare e realizzare materiali
cementizi di diverso tipo (adesivi, malte, intonaci funzionali, rasature ecc.) “tailor-made” per specifiche applicazioni, con proprietà
meccaniche controllate e con fenomeni di degrado conosciuti
e controllati e quindi con durata certa. Le conoscenze sviluppate nel programma consentiranno a Mapei di acquisire vantaggi
competitivi durevoli nei confronti dei concorrenti.
(Amilcare Collina - Responsabile Mapei per i rapporti con la comunità scientifica)
R I C ER C A
Gruppo di Lavoro Nazionale per l’individuazione
di misure di prevenzione protezione connesse con
l’esposizione a nanomateriali in ambito lavorativo.
Su iniziativa dell’Istituto Superiore per la Prevenzione E la Sicurezza
del Lavoro (ISPESL) è stato istituito il Gruppo di Lavoro nazionale
per l’individuazione di misure di prevenzione protezione connesse
con l’esposizione a nanomateriali in ambito lavorativo che si pone
come obiettivi principali: potenziare e consolidare a livello nazionale la collaborazione nell’attività di ricerca sui rischi da esposizione lavorativa a nanomateriali, effettuando una ricognizione
dei bisogni, delle priorità e delle possibilità di finanziamento; sviluppare un approccio multidisciplinare alla valutazione del rischio
promuovendo attività di ricerca integrate; individuare strumenti
idonei per lo sviluppo della comunicazione ed il trasferimento delle conoscenze nel settore.
Il Gruppo di Lavoro è composto da ricercatori che a diverso titolo
operano nel settore della salute e sicurezza dei nanomateriali in
ambiente di lavoro all’interno dell’ISPESL, arricchito dai rappresentanti degli Enti e delle Università che hanno mostrato maggiore sensibilità alla problematica a livello nazionale quali INFN,
ISS, FSM e le Università di Trieste, Parma, Milano, Roma Cattolica
e Tor Vergata e infine da Nanotec IT quale punto di riferimento
nazionale per le nanotecnologie per industria, ricerca pubblica e
istituzioni.
La riunione di apertura dei lavori del Gruppo svoltasi a Roma lo
scorso 12 novembre ha espresso la necessità di effettuare una
mappatura delle conoscenze disponibili sull’argomento, delle misure di prevenzione e delle questioni chiave su cui investire nella
ricerca; è emersa inoltre la volontà e l’interesse di individuare strumenti idonei per superare il limite di partecipazione da parte delle
aziende e dei produttori a questo tipo di iniziative.
Nel campo delle nanotecnologie il gap tra il progresso tecnologico e la ricerca in ambito della salute e sicurezza del lavoro è
ancora molto ampio. Gli studi relativi agli effetti sulla salute e
all’analisi del rischio da esposizione a nanomateriali sono limitati e non esistono metodologie validate per la valutazione del
rischio in ambiente di lavoro. Pertanto a fronte dello squilibrio tra
le scarse conoscenze sui rischi per la salute connessi con l’utilizzo
dei nanomateriali e la diffusione esponenziale che le nanotecnologie avranno nei prossimi anni, è necessario sviluppare la ricerca
nel settore con particolare attenzione alla analisi del rischio per i
lavoratori esposti, evidenziare le criticità e i bisogni delle politiche
di salute a sicurezza dei lavoratori correlati con lo sviluppo delle
nanotecnologie, nell’ottica di indirizzare gli sforzi verso un approccio responsabile e sostenibile al loro utilizzo.
(Fabio Boccuni, ISPESL)
Riferimenti
Fabio Boccuni
Istituto Superiore Prevenzione e Sicurezza sul Lavoro (ISPESL)
[email protected]
&
S VN I OL TU I PZ PI OE
tT
FramingNano project publishing the first
deliverables
The FP7 project FramingNano is a Support Action within the FP7
program, funded for two years, with a total budget of 0.7M€
and including 6 partners from 6 European States.
The objective of FramingNano is to support the establishment
of a multi-stakeholders dialogue on NS&T regulation and governance involving the scientific, institutional and industrial communities as well as the broad public, and foster the development
of a shared frame of knowledge, objectives and actions
leading to a constructive and practicable regulatory solutions
(Governance Plan) for a responsible development of NS&T at
European level (and beyond.
AIRI/Nanotec IT is the Coordinator, other partners include: The
Innovation Society (CH), The Institute of Nanotechnology (UK),
National Institute for Public Health & the Environment (The
Netherlands), Fondation EurActiv (Belgium), Technology Centre
(Czech Republic).
The FramingNano project started in May 2008 . The first phase, the
analysis of existing and proposed regulatory and governance frameworks for nanotechnologies, is now concluded, while the consultation of stakeholders (second phase) is beginning. The last phase, the design of the Governance Plan, will start in Summer 2009.
Several actions are in progress or completed:
•Mapping Study on Regulation & Governance of
Nanotechnologies
A detailed study providing a picture of the recent development regarding regulation and governance of NS&T in Europe and worldwide, identifying relevant NS&T stakeholders organisations and
making an assessment of these information has been published
in January 2009. The report gives an insight on the international
debate on risks and concerns related to nanotechnologies (EHS
issues and ELSI), and provides an ample overview of the different
regulatory approaches proposed or already developed to deal with
these issues: the existing regulatory situation in relation with nanomaterials and nanotechnology applications, the authorities involved, national/international initiatives, standardisation activities
and voluntary measures specifically devoted to nanotechnologies.
Finally, initiatives and positions on these issues of different kind of
stakeholders (policy makers, businesses, researchers, civil society
organisations) are presented, reporting the position of more than
25 organisations and social groups worldwide.
The report can be downloaded for free from www.framingnano.eu
• FramingNano multistakeholder workshop
A Workshop on the future regulation and governance of
Nanotechnologies took place in Brussels on Thursday 26 February
N e w s l e t t e r
N ano t e c
i t
41
T
N O T I Z I E
2009. Following keynote presentations on key environmental,
health and safety (EHS) issues, key ethical, legal and social issues
(ELSI), and industry needs by top-level experts, there will be three
interactive workshop sessions on EHS, ELSI and possible governance models, where attendees will be encouraged to provide
input and contributions concerning their positions on the future
governance of nanotechnology.
• Delphi consultation
Interested stakeholders are invited to participate to the project
consultation, completing an electronic questionnaire. The
study is designed to facilitate interested stakeholders in reporting their positions and views on those key issues and factors that should form the basis for shaping future EU governance and regulatory policy concerning nanotechnology
This information will be vital in ensuring that future dialogue and
proposals for governance and regulatory frameworks reflect the
input of the various active stakeholders.
All stakeholders with an interested in contributing to the
study are cordially invited to complete the questionnaire at
http://www.framingnano.eu/questionnaire
• FramingNano newsletter and website
A complete and updated website dedicated to regulation &
governance of Nanotechnologies is running since July, with
news, reports, events and details on the project activities.
The first two issues of the project Newsletter can be downloaded
from the project website.
References
www.framingnano.eu
ObservatoryNano project gears-up
The FP7 project ObservatoryNANO is a Support Action within the
FP7 program, funded for four years, with a total budget of 4 M€
and including 16 partners from 10 European States.
Its mission is “to create a European Observatory on
Nanotechnologies to present reliable, complete and responsible science-based and economic expert analysis, across different
technology sectors, establish dialogue with decision makers and
others regarding the benefits and opportunities, balanced against
barriers and risks, and allow them to take action to ensure that
scientific and technological developments are realized as socioeconomic benefits. AIRI/Nanotec IT is among the partners, its role
mainly regarding technology assessment of nanotechnology in
the textile sector and monitoring of development of regulation
and standards related to nanotechnology.
The ObservatoryNano project started in April 2008 and several
actions are now in progress:
42
N e w s l e t t e r
N ano t e c
i t
• Technology sector reports
Partners are preparing a series of reports regarding the economical and technological development of nanotechnologies Ten
broad technology sectors, each presented as a number of subsectors, are being analysed. They are: aerospace, automotive,
and transport; agrifood; chemistry and materials; construction;
energy; environment; health, medicine and nanobio; ICT; security; textiles. The draft of these reports are used as inputs for
the experts’ consultation phase and the discussion that will take
place during the first project symposium.
• ObservatoryNano experts’ consultation on nanotechnologies development
The project is engaging with the expert community through a series of structured discussions to map opinion on nanotechnology
developments and implications. The process is iterative, allowing
refinement and consensus taking.
Two electronics questionnaires are available in the project
website, dedicated to scientific and economic impacts
of nanotechnologies in the ten broad technology sectors on which the technology analysis phase is geared.
Experts from different scientific, technical, and economic fields
are being invited to complete sections of this questionnaire appropriate to their expertise
• Symposium
The first project Symposium “Shaping European Nanotechnology”
will be held in Duesseldorf (Maritim Hotel), March 10-11th,
2009.
• Website
A complete, user-friendly website, collecting all data and information produced by the project is already running, even though
most of the information will be uploaded after the symposia and
the publication of the first technology reports.
References
www.observatorynano.eu
Nanochallenge 2008 premia la nano-scrittura di
ThunderNIL e il super polimero di Chimatech
Sono stati assegnati a Padova lo scorso novembre i 2 premi da
300.000 Euro al termine della finale di Nanochallenge and
Polymerchallenge 2008, vincono due team italiani: ThunderNiL
per la categoria nano e Chismatech per la categoria polimeri.
Sono italiani i due team vincitori della quarta edizione di
Nanochallenge and Polymerchallenge, la business plan competition internazionale organizzata dal Distretto Italiano per le
Nanotecnologie Veneto Nanotech in collaborazione con Imast, il
Distretto campano per i materiali polimerici avanzati. L’edizione
2008 è stata supportata da aziende del settore privato interessa-
R I C ER C A
te alle applicazioni delle tecnologie. Tra queste Dainese e GearWorld del Gruppo Carraro, Alenia Aeronautica, Basf, Bracco,
Carel, Eurotech, PriceWaterhouse Coopers e Lux Research.
«E’ stata una scelta estremamente difficile e sofferta – ha commentato il professor Renato Bozio, prorettore alla ricerca dell’Università di Padova e presidente della giuria internazionale di scienziati, manager e imprenditori che ha valutato i progetti – visto
il livello delle proposte che anche quest’anno provenivano da
tutto il mondo. Un elemento che conferma la forte attrattività
di questa manifestazione, che ormai viene considerata un appuntamento fisso per tutti quei ricercatori che intendono fare il
salto nel mondo dell’imprenditoria». Alla finale di quest’anno
hanno partecipato i14 team di varia provenienza selezionati fra
40 proposte ricevute da tutto il mondo. Tanti gli scienziati e i
rappresentanti del mondo aziendale italiani e stranieri che si sono
sfidati a Palazzo del Bo dell’Università di Padova in una due giorni ricca di interventi, presentazioni, domande, confronti, dimostrazioni. Un lavoro che però non si ferma qui: sono infatti già
stati programmati da Veneto Nanotech una serie di incontri con
i maggiori investitori italiani e internazionali, a cui saranno presentare le migliori idee di business presentate durante la finale di
Nanochallenge and Polymerchallenge, al fine di reperire ulteriori
risorse per finanziare il maggior numero di start-up e sostenere la
creazione di nuova tecnologia.
Nella categoria nanotecnologie si è imposta ThunderNIL,
una start up nata all’interno del laboratorio TASC - Tecnologie
Avanzate e nano SCienza - Unità Operativa CNR-INFM di Trieste,
con un progetto che punta a rivoluzionare la produzione di molti
dei dispositivi elettronici e ottici di uso quotidiano. L’idea si basa
su una stampa ultraveloce su larghe aree che permette di incidere
tracce dello spessore di pochi manometri. «Potremo realizzare –
spiega uno dei fondatori Maurizio Tormen – superfici nanostrutturate con risoluzione e velocità di scrittura diverse migliaia di
volte migliori delle presenti tecnologie, riducendo i costi di produzione e migliorando le prestazioni dei dispositivi. Ad esempio in
un normale DVD sarà contenuto un volume di informazioni mille
volte superiore, oppure potranno essere prodotte celle solari più
efficienti e con un riduzione di costi che contribuiranno alla loro
diffusione su larga scala». ThunderNIL dispone di prototipi coperti da brevetti internazionali per l’industrializzazione. Le applicazioni riguardano principalmente dispositivi per l’archiviazione dei
dati ad alta densità, componenti ottiche per LED e fotocamere
digitali, chip usa e getta per l’analisi del DNA e delle proteine,
componenti ottiche per il fotovoltaico. I fondatori provengono
dal CNR INFM di Trieste, dal laboratorio TASC e dall’Università di
Padova e ora potranno avviare l’azienda all’interno del Distretto
Veneto Nanotech, utilizzando dei macchinari indispensabili per la
loro tecnologia.
Nella categoria materiali polimerici il podio è stato conquistato
da Chismatech, una start-up nata a Catania, grazie a tre giovani
ricercatori che da anni lavorano nel settore dei materiali avan-
&
S VN I OL TU I PZ PI OE
tT
zati . Chismatech ha sviluppato un super polimero con elevate
proprietà meccaniche e termiche. Le novità di questo materiale, che viene definito auxetico, ottenute grazie ad un processo
produttivo innovativo, sono nella forma e nella composizione. In
pratica, grazie ad una struttura che sostituisce il tradizionale nido
d’ape dei sandwich di poliuretano con un un’innovativa struttura
“a triangoli”, i ricercatori catanesi sono riusciti ad ottenere una
“plastica” che si plasma con grande facilità, ma non si deforma,
con proprietà di assorbimento del suono e con elevate capacità
di resistenza meccanica. Molto ampie le applicazioni: per la costruzione di navi, treni e aeromobilii, per la produzione di energia eolica, fino ad un utilizzo più comune come quello possibile
nell’edilizia e nelle costruzioni, e nel mercato di riferimento delle
schiume a base poliuretanica.
Ciascuno dei due team vincitori, premiati lo scorso 28 novembre
a Padova, ha ricevuto un premio da 300.000 Euro di cui 200.000
cash e 100.000 in servizi (incubazione, spazi per uffici, accesso
ai laboratori di Veneto Nanotech e di IMAST, servizi di supporto
legale, commerciale, marketing e promozionale) al fine di favorire
la nascita e lo sviluppo rispettivamente in Veneto e Campania
delle società ad alto contenuto tecnologico.
I vincitori delle precedenti edizioni sono stati: 2005 - Singular ID
società costituita dall’Institute of Materials Research and Engineer
della National University di Singapore insediatasi a Padova, che
impiega le nanotecnologie per l’etichettatura magnetica nella
lotta alla contraffazione dei prodotti ed acquisita nel dicembre
2007 dal gruppo farmaceutico indiano Bilcare per 15 milioni di
Euro; 2006 - Eurosen società formata da un gruppo di ricercatori slovacchi dell’Università di Bratislava che ha sviluppato laboratori portatili con sensori elettrochimici e biosensori innovativi
per l’analisi di parametri enologici, applicabili anche ad alimenti
e bevande operativo a Venezia; 2007 categoria Nanotecnologie
- Ananas Nanotech, già spin off dell’Università di Padova che
ha scoperto e messo a punto una tecnologia innovativa per la
produzione di nanoparticelle (60-200 nanometri) altamente definite, multifunzionali, biocompatibili e biodegradabili, applicabili
in immunodiagnostica e nel rilascio dei farmaci; 2007 categoria
materiali polimerici – HYPUCEM - Hybrid composite foams for
lightweight and high performance elements in civil and industrial
buildings - società con sede a Napoli nata da alcuni ricercatori del
CNR e dell’Università Federico II che ha sviluppato schiume ibride
e composite per componenti leggeri e dalle elevate performance
isolanti per il settore dell’edilizia, delle costruzioni civili e industriali. Già confermata la prossima edizione di Nanochallenge and
Polymerchallenge, che riaprirà il bando da febbraio 2009.
(Elisabetta Talarico, Veneto Nanotech)
Riferimenti
Elisabetta Talarico
Veneto Nanotech
Tel 049 7705500
Email [email protected]
www.nanochallenge.com
N e w s l e t t e r
N ano t e c
i t
43
T
N O T I Z I E
NANOMAT project: Piedmont on screen
The Nanomat project started two years ago, after more than a
year of planning. In this period nanotechnologies gained an increasing interest for innovation of industrial products and processes, and a common topic for the managers of the more innovative companies of the Piedmont Region, also thanks to the work
undergone by the Nanomat project.
Some figures related to Nanomat are worth to mention:
• more than 200 companies have taken part in the events
programmed in one and a half years;
• in more than 30 different projects (demonstrative, regional CIPE [Interdepartmental Committee for Economic
Programming], national, European) there has been joint
participation on the part of companies in Piedmont and
Nanomat research centres;
• more than 100 scientific articles have been published in
prestigious international magazines or presented at international congresses by Nanomat partners;
• 2 patents on the technologies developed have been applied for and other patent applications are being prepared in
collaboration with the companies which are project partners.
These are important numbers, especially because they have been
generated by a project which has had an unusually short term
for programmes of such impact. In addition to all this, Nanomat
has formed the Nanotechnologies Club, which represents the
result which sums up the Nanomat objectives; it is an association
of companies involved and interested in the field of nanotechnologies and nanomaterials.
The Club aims to organise training and the diffusion of information and projects, maintaining constant relations between the
Piedmont companies and the regional research centres which are
working on nanotechnologies and on the development of new
materials and production processes. The Club – open to every
type of company – was suggested by ASP (Associazione Sviluppo
Piemonte – The Development Association of Piedmont) in collaboration with the Turin Industrial Union and the AMMA (The
Association of Metallurgical, Mechanical and Similar Industries),
but it will extend its cooperation to other entrepreneurial association of the Region.
Apart from the several scientific and industrial activities prompted
by the project, there has been also important auxiliary activities.
One is the research on the social perception of nanotechnologies, the central point of which has been a national survey
carried out on a representative sample of 2,500 Italian citizens.
The survey indicated the situation as regards knowledge of nanotechnologies in Italy: almost 90% of the Italian population has
no familiarity with nanotechnologies, but they would all like to
know more about them and receive information from experts via
44
N e w s l e t t e r
N ano t e c
i t
the most widespread communications means. This involves an
important commitment for the scientific community and the business world, which can be performed with effective communication actions, such as, for example, events open to the public (an
article dedicated to this research is included in this Newsletter).
Communication activities have been the aim of ASP, the leader of
the Nanomat project, which has organised wide-reaching events
such as the Nanowor(l)d performance, an event for the theatre
especially commissioned for Nanomat; or the launch of the competition on the use of laser in design on materials such as fabrics,
ceramics and cardboard for packaging.
Another research carried out for Nanomat was a national survey
on the type, importance and effectiveness of the technological
transfer channels used by the small and medium sized Italian
companies in the nanotech compartment, from which it can be
understood that the results of the research carried out in the universities and in the research centres have an important role to
play in industrial innovation.
Considering the conclusion of these two years’ activity, one can
say that public investment has generated a virtuous cycle which
has allowed the research centres and companies to carry forward technological transfer in a sector – that of nanotechnologies – which, although still in the pioneering stage, has already
taken on great importance in industrial innovation. The target
Nanomat is now pursuing is to establish stable collaboration between companies and research centres, in order to
constantly foster and encourage the said virtuous circle.
(Giuseppe Caputo, Nanomat project)
References
Dr. Giuseppe Caputo
ASP - Progetto Nanomat
Technical Manager
Villa Gualino, Viale Settimio Severo 65 - Torino, Italy
Phone: +390116608425 - Fax: +390116608426
[email protected]
R I C ER C A
CNR-TASC coordina la piattaforma europea
Nanoscience Foundries and Fine Analysis
Il campo in cui si sono riscontrati i maggiori benefici della miniaturizzazione è notoriamente quello della microelettronica, che ha
perseguito costantemente l’incremento esponenziale delle prestazioni e la riduzione dei costi e dei consumi dei dispositivi. Negli
ultimi anni però sono andate via via espandendosi tecnologie che
spingono la miniaturizzazione fino a livello atomico o molecolare
in nuovi campi di applicazione.
La varietà e vastità dei settori in cui stanno entrando prepotentemente le micro e nanotecnologie (micromeccanica e microfluidica, sensoristica, fotonica, medicina e diagnostica medica,
genomica e proteomica, alimentazione, energetica, materiali e
rivestimenti) dimostra che si sta preparando il terreno per replicare in nuovi campi i successi ottenuti nell’elettronica grazie alla
miniaturizzazione.
Nei settori nanotecnologici emergenti gli approcci inizialmente
utilizzati sono stati quelli tipici dell’elettronica (si pensi ai primi circuiti microfluidici fabbricati in silicio e sigillati con tecniche di wafer bonding). Tuttavia, approcci fabbricativi innovativi (quali per
esempio la nanoimprint lithography, la soft lithography e il microcontact printing), nonché materiali nuovi (silicio nanoporoso,
nanoparticelle colloidali, polimeri e copolimeri speciali, molecole
autoassemblanti su superfici ecc.) sono venuti ad ampliare la “toolbox” già ampia delle tecniche tradizionali, con cui il nanotecnologo può affrontare le nuove sfide di innovazione tecnologica.
I benefici del down-sizing del prodotto e delle tecnologie per realizzarlo sono evidenti sia in termini di costi che di competitività.
Se poi si associa anche il fatto che una tipica catena di nanofabbricazione si addice per una molteplicità di realizzazioni in settori anche molto diversificati, si evince pure un elevato grado di
versatilità nel modificare il prodotto o il processo.
Di converso sta prendendo piede la possibilità di nano-strutturare
anche prodotti necessariamente di dimensioni macroscopiche,
quali materiali per infrastrutture e impiantistica, modificando a
livello nanometrico la loro struttura per ottenere migliori prestazioni o effetti di funzionalizzazione (per cui le proprietà chimico
fisiche cambiano in funzione di uno o più parametri esterni).
Al fine di rilanciare un forte impatto sistemico sul tessuto produttivo delle scienze e delle tecnologie che si spingono fino alla scala
atomica, nasce il progetto europeo NFFA: Nanoscience Foundries
and Fine Analysis. E’ un progetto di FP7 (settimo programma
quadro), inserito nella voce CAPACITIES (infrastrutture di ricerca) e si tratta in particolare di un DESIGN STUDY, ovvero della
DEFINIZIONE di una struttura di ricerca distribuita di interesse pan-europeo dedicata alle tecnologie di micro-nano-fabbricazione congiunte alle metodologie dell’analisi fine della materia. Il progetto è coordinato dal Laboratorio Nazionale
TASC del CNR-INFM e vede la partecipazione di Austria, Svizzera,
Spagna e Inghilterra. La missione strategica del progetto NFFA
può essere riassunta in tre punti salienti:
• Officina molecolare: interfaccia tra il mondo produttivo
&
S VN I OL TU I PZ PI OE
tT
e le grandi infrastrutture di ricerca. Il concetto di officina
molecolare esprime l’azione di integrare maggiormente con il
territorio le attività delle grandi facility scientifiche (quali sincrotroni e sorgenti di neutroni), che tipicamente sono dei grandi
strumenti per la caratterizzazione e l’analisi che servono per
“capire”, affiancando loro delle facility che servano per “fare”
(quindi fabbricazione, manipolazione e sintesi che hanno una
maggiore connessione con il settore produttivo). Il concetto di
poter “capire” a livello atomico ed in tempo reale quello che si
riesce a “fare” con la nanofabbricazione, costituisce un valore
aggiunto non facilmente riscontrabile.
• Piattaforma tecnica comune: protocolli, metrologie e
data repository per la manifattura spinta fino alla precisione atomica. Una technical liaison al servizio dei distretti
tecnologici e delle industrie per la prototipazione miniaturizzata e lo sviluppo di nuovi processi produttivi, con particolare
riguardo all’up scaling per la nanostrutturazione su ampie superfici ad elevata produttività.
• Istituto Tecnologico per la formazione superiore, anche a livello di scuole superiori e licei, di persone che abbiano un’elevata professionalità per rispondere alle esigenze del mercato
del lavoro nelle nuove tecnologie.
Al fine di mantenere una stretta connessione del progetto NFFA
con il sistema produttivo fin dall’inizio, ovvero nella fase di DESIGN
STUDY, e quindi di permettere di realizzare un progetto con un
elevato impatto sul sistema produttivo italiano, è stato attivato
sul sito http://NFFA.TASC.INFM.IT un questionario aperto a tutti
gli operatori nel settore delle micro e nanotecnologie con il quale
si intende raccogliere le esigenze di un bacino di utenza che si
auspica possa essere il più ampio ed eterogeneo possibile.
Riferimenti
Roberto Gotter, PhD
Laboratorio Nazionale TASC-INFM-CNR
AREA Science Park, SS 14 Km 163,5 I-34012 Basovizza, Trieste (Italy)
Email [email protected]
Smart textiles: the Systex project
Systex is a “Coordination action for enhancing the breakthrough
of intelligent textile systems (e-textiles and wearable microsystems)” within the FP7 EU program, in the cooperation area (ICT
theme – Micro/nanosystems), with an overall budget of about
800.000 euro and lasting from May 2008 to April 2011. The
12 Partners of the project are from Belgium, Italy, France, The
Netherlands, Germany. Italian partners are; the Interdepartmental
Research Centre “E.Piaggio“, University of Pisa, The CNR-INFM,
National Institute of physics of Matter – National Research Council
Centre “S3”and Smartex Srl.
SYSTEX aims at developing a framework for current and future
actions in research, education and technology transfer in the field
of e-textiles and wearable micro systems / electronics in Europe
N e w s l e t t e r
N ano t e c
i t
45
T
N O T I Z I E
to support the textile industry in the most efficient and effective
way to transform into a dynamic, innovative, knowledge-driven
competitive and sustainable sector.
E-textiles, also called intelligent, interactive or smart textiles or
textile systems are expected to be a new generation of textile
products that can help the textile industry in its transformation
into a competitive knowledge driven industry.
They are electronic systems based on or embedded in textile substrates, adding wearability and comfort to devices and systems
made for signal acquisition, transmission and processing. An
example could be wearable health monitoring systems. Basically
these systems include sensing and actuation, data processing,
communication and energy supply. E-textiles and wearable electronics are expected to be one of the answers to these threats
and hence will play a significant role in the future European textile and clothing sector. But also on societal level they will contribute significantly. In particular application areas like health, sports
and protection their benefits are enormous, leading to improved
health care and safety, combining increased performance and
cost savings.
Several projects in smart textiles and wearable electronics have
been carried out or are under execution within national as well as
European programmes. Also in the US and Asian countries small
and large projects are being undertaken. Co-ordination is limited and only takes place on an international level. E-textiles and
wearable electronics are complex systems that combine knowledge from many disciplines with the specific requirements of
textile and clothes and this is a huge challenge. Intelligent stand
alone suits must be considered as systems consisting of a set of
components and this system approach is rather new to textiles.
However without a system approach successful developments
cannot be achieved. In addition individual components/devices
are often available but when they are brought together in one
system for one particular application often the overall result does
not meet the requirements. Similarly, solutions found for one particular application may not fully meet the requirements for other
applications.
Another challenge is the gap between Microsystems (often large
to very large companies) and textiles (consisting of more than
90% of SME’s). Many materials and systems are available as well
as devices for sensing and actuation, but they are not compatible
with a textile nor with the textile production process. They could
be transformed into a textile compatible structure or even in a full
textile structure, but for this understanding on how the devices
work must be combined with knowledge on textile materials,
structures and processes and this turns out to be the obstacle.
Organic electronics is an emerging field that merges electronics
and polymeric materials, but textiles are still hardly involved in
this.
SYSTEX wants to coordinate the activities of these actions and
46
N e w s l e t t e r
N ano t e c
i t
offer complementary actions to reinforce their overall result.
Actions that will be taken include preparation of an agenda for
research and development, dissemination of available and missing knowledge and experience an online free database), communication with all stakeholders ranging from policy makers to the
end users (wide public).
Apart from information, special efforts will be made to exchange
materials as well. This includes collecting demonstrators but also
prototypes for inter project exchange.
In particular, the analysis of the available and ongoing research
activities in e-textiles and wearable micro systems and the respective results will be edited in the an online interactive database.
All stakeholders can become members of this coordination action, with the main purpose of sharing information and knowledge on the sector. The Consortium is currently calling for members at different level of the value chain (medical, means of
transport&logistic, active sports & Healthcare, Protective).
Partners of the project are
1. Universiteit Gent – Belgium (Coordinator)
2. Smartex S.R.L. – Italy
3. Commissariat a l’Energie Atomique – France
4. Universita di Pisa – Italy
5. Consiglio Nazionale delle Ricerche – Italy
6. Interuniversitair Micro-Electronica Centrum VZW – Belgium
7. Philips Electronics Nederland B.V. – The Netherlands
8. Multitel ASBL – Belgium
9. Institut Francais du Textile et de l’Habillement – France
10. Anne de Moor BVBA – Belgium
11. Hofmann ISA – Germany
12. Stichting Plastic Electronics Foundation – The Netherlands
References
Anna Smaniotto
Interdepartmental Research Centre “E.Piaggio”, School of Engineering
University of Pisa, Via Diotisalvi, 2, Pisa
[email protected]
Lina Rambausek (project coordinator)
Universiteit Gent
Vakgroep Textielkunde, Technologiepark 907
9052 Zwijnaarde, Belgium
tel +32 9 2645409 - fax + 32 9 2645831
[email protected]
www.systex.org
The Dutch Nanotechnology Action Plan
The Dutch government has launched its Nanotechnology Action
Plan, dealing with research and innovation; managing risks;
ethical aspects, societal dialogue and communication; and legal
aspects.
The Netherlands is the third biggest investor, as a percentage of
GDP in nanotechnology, after Israel and Singapore according to
R I C ER C A
the Dutch Ministry of Economic Affairs. The Netherlands also has
a number of powerful industrial players, which puts it in a good
starting position for the purpose of being able to profit from the
expected global growth of products made possible through nanotechnology.
This Action Plan is aimed at those matters pertaining to nanotechnology that specifically require further examination, to which end
the Cabinet View will be further developed in terms of concrete
action and proposals. At the same time, the Cabinet is aware that
there is a great deal of uncertainty around nanotechnology and
that policies should evolve accordingly. For that reason, the action
plan should be regarded as “work in progress”. Progress reports
will appear every year detailing action that has been taken, and
its effects.
The Dutch Action Plan focuses on varies types of actions. In relation to risks the most significant actions are:
• Scientific research should help increase insights into the risks associated with nanotechnology. The Cabinet has asked
the Netherlands Nanotechnology Initiative (NNI) to present a
proposal for the nanotechnology research agenda. The Dutch
government will make its position known with regard to the
research agenda no later than mid-2009. At least 15% of the
research agenda will be reserved for risk research for a minimum of five years.
• The National Institute for Public Health and the Environment
(RIVM) has already begun an assessment of the potential risks of the technology (Knowledge and Information point Risks
Nanotechnology, KIR nano) and the first assessment has been
published in autumn 2008.
• A broad societal committee will be formed advising the government on ethical aspects, societal dialogue and communication.
• Participation in OECD sponsorship programmes.
• A dialogue with relevant parties, initiated by the Dutch
Department of Housing, Spatial Planning and the
Environment.
In terms of the current legal position on the technology, the
Dutch government has concluded that at present no new legislation is needed to govern nanotechnology. The Commission is in
agreement with the Dutch government that current legislation is
adequate. Nevertheless risk research is needed to clarify lack of
knowledge about potential risks.
(Piergiorgio Zappelli, AIRI/Nanotec IT)
&
S VN I OL TU I PZ PI OE
tT
Elisabetta Borsella (ENEA, FIM).
Attualmente nel campo delle Nanoscienze e Nanotecnologie, grazie alle attività di R&S, si stanno registrando progressi in un’ampia
gamma di settori, tra cui quelli concernenti la salute, la società
dell’informazione, l’energia, i trasporti, la sicurezza e lo spazio.
Alcuni prodotti derivanti dall’uso delle nanotecnologie (cosmetici,
rivestimenti ecc.) sono già sul mercato, ma in molti altri settori si è
ancora allo stadio della ricerca di base e si possono solo ipotizzare
“market relevant applications”.
Il divario attualmente esistente fra le enormi prospettive a livello
industriale ed il livello di conoscenza dei fenomeni, spesso ancora
al livello di base, ha fatto sì che a fronte di ingenti investimenti siano stati redatti dalla Commissione Europea e dalla NSF (National
Science Foundation - US) dei documenti strategici (Roadmap) per
individuare i prodotti, i sistemi ed i componenti più promettenti
nei settori di maggiore interesse.
Il volume è basato su una lettura attenta e critica di tali documenti, a cui si rimanda per eventuali approfondimenti. La parte
iniziale di questo studio è dedicata all’analisi dei nanomateriali e
delle tecnologie di produzione. Per ciascuna tipologia di nanomateriali sono state riassunte le proprietà più interessanti ed indicate
le prospettive di applicazione.
Nella seconda parte vengono analizzati lo stato dell’arte, le opportunità ed alcuni aspetti critici (quali le barriere socio-economiche
da superare ed i rischi tecnologici e di mercato) connessi all’uso
dei nanomateriali nei principali settori applicativi: energia, salute,
industria aero-spaziale ed automobilistica, tecnologie dell’informazione e delle comunicazioni.
La terza parte è dedicata ad un’analisi degli investimenti pubblici
e privati a livello mondiale nelle nanotecnologie e ad un quadro
attuale e futuro del mercato per le nanotecnologie, basato su
indicatori significativi. Le prospettive di crescita sono analizzate
per settore e per area geografica.
Il quarto capitolo descrive lo scenario italiano, con particolare
riguardo all’identificazione dell’apporto della ricerca pubblica e
privata allo sviluppo delle Nanoscienze e Nanotecnologie a livello
nazionale. Vengono anche quantificate le fonti di finanziamento
e tratteggiata la strategia politica (del Ministero della Ricerca e
delle Regioni) per incentivare le attività in questo settore.
Il volume può essere richiesto direttamente all’ENEA (costo: 15
euro).
Riferimenti
http://www.enea.it/produzione_scientifica/volumi/V2008_09_Nanoscienze.html
N&N: dalla ricerca alle applicazioni: nuovo volume
ENEA
E’ stato pubblicato da poco nella collana editoriale “FOCUS
TECNOLOGIE” del’ENEA, il volume “NANOSCIENZE E
NANOTECNOLOGIE - Dalla ricerca alle applicazioni”, autore
N e w s l e t t e r
N ano t e c
i t
47
T
N O T I Z I E
Seminari&Convegni
Italy-USA Bio Nano Business Forum 2008
6-7 novembre 2008, Boston, USA
Nei giorni 6-7 novembre, si è tenuto a Boston (USA) il Bio Nano
Business Forum che ha coinvolto strutture di ricerca ed imprese Italiane ed Americane impegnate nel campo delle bio e delle
nanotecnologie. L’iniziativa è stata promossa dall’Istituto per il
Commercio con l’Estero - ICE (Area Beni Strumentali, Tecnologia,
Servizi di Roma ed Ufficio ICE di Los Angeles), al fine di stimolare
i contatti e favorire le collaborazioni tra i due Paesi in questi settori. Per l’organizzazione del Forum ICE si è avvalsa della collaborazione di AIRI/Nanotec IT e ASSOBIOTEC che hanno contribuito
alla formazione della delegazione Italiana ed alla definizione del
programma delle attività previste, preparato materiale informativo da inserire nella documentazione da distribuire, illustrato, in
una sessione dedicata, la situazione Italiana nei due settori (Elvio
Mantovani, AIRI/Nanotec IT, nanotecnologie e Leonardo Viggiani,
ASSOBIOTEC, biotecnologie). La delegazione Italiana era piuttosto numerosa e composta sia da rappresentanti del mondo della
ricerca che di quello delle imprese. Per le nanotecnologie, erano
presenti: Gianfranco Innocenti (Centro Ricerche Fiat-CRF), Laura
Boschis (Poli Torino), Cino Matacotta (Scriba Nanotecnologie),
Carlo Falessi (Selex SI), Emanuele Barborini (Tethis), Franco
Carnagliotto (Trustech), Nicola Trevisan (Veneto Nanotech),
Giorgio Fascina ( Xeptagen).
Il programma dei due giorni prevedeva, nel primo giorno, un workshop, con interventi da parte di rappresentanti dei due Paesi, seguito da una fase di networking, con incontri “one-to-one” preorganizzati, mentre nel secondo giorno sono state effettuate una
serie di visite a strutture di ricerca presenti nell’area di Boston.
Nel corso del workshop, articolato in cinque sessioni successive,
sono stati affrontati argomenti sia di carattere scientifico che di
carattere piu’ generale. In particolare “Biosafety in a Globalised
World”; “Patent Consideration in Transatlantic Collaboration”;
“Biotechnology
and
Nanotechnology
Development”;
“Approaches to Cancer Detection, Drug Development, and
Therapy”. ������������������������������������������������������
Tutti I componenti della delegazione Italiana sono intervenuti sono intervenuti al workshop e sono stai coinvolti negli incontri che hanno visto la partecipazione di circa 60 esperti
Americani. I risultati sono stati soddisfacenti ed hanno consentititi
di attivare nuovi contatti o consolidare preesistenti rapporti. Le
visite del secondo giorno erano articolate in una serie di incontri
presso alcune prestigiose Università dell’area. In
�������������������
particolare hanno riguardato la Boston University (Photonic Center/Incubator,
Institute for Technology Enterpreneurship). Harvard University
(Center for Nanoscale Systems), University of Massachussetts
at Dartmouth (Advanced Technology Manufacturing Center,
Technology Venture Center).
In conclusione, si può dire che il Forum ha complessivamente
48
N e w s l e t t e r
N ano t e c
i t
raggiunto gli obiettivi prefissati. Gli incontri e le visite sono stati
di notevole interesse ed hanno confermato il grande impegno
degli USA nelle nanotecnologie e l’eccellenza delle loro strutture in questo campo. Senza dubbio l’entità di questo impegno,
almeno in termini di quantità, è di gran lunga più elevato rispetto a quello in Italia. Ciò anche perché esso può contare su un
sostegno economico, e in termini programmatici, da parte del
Governo Federale (ma in molti casi anche da parte dei singoli Stati) di grande importanza, quale dovrebbe essere adottato
anche in Italia. Tuttavia, la qualità delle attività svolte nel Paese
è stata riconosciuta e si è riscontrata una ampia disponibilità ad
intrattenere rapporti di collaborazione sia a livello di ricerca che
di sviluppo applicativo di mutuo interesse e che i partecipanti al
Forum, di tutte e due le parti, si sono detti intenzionati a perseguire. (Elvio Mantovani, AIRI/Nanotec IT)
Convegno Italo-Svedese sulle nanotecnologie e
nanoscienze a Stoccolma
13-14 ottobre 2008, Kista Science City, Stoccolma
Si è tenuto presso la sala conferenze dell’Electrum 3, l’“ItalianSwedish Workshop on Nanoscience and Nanotechnology”, promosso dal Dipartimento di Materiali Funzionali del Politecnico di
Stoccolma (Royal Institute of Technology-KTH) per la parte svedese e dall’Ufficio Scientifico dell’Ambasciata d’Italia per la parte
italiana.
Nel corso del convegno, si sono susseguiti quarantuno interventi
di alto livello scientifico, da parte di venti scienziati che operano in strutture svedesi e di ventuno colleghi italiani. I relatori dei
due paesi si sono alternati per presentare in dettaglio lo stato
attuale della ricerca in Svezia e in Italia in ciascun settore. Tutti gli
interventi, pur di carattere specialistico, sono iniziati con un’introduzione a carattere più generale volta a illustrare i centri di
ricerca che operano in questo settore e gli sviluppi futuri che si
prevedono, in modo da gettare le basi per collaborazioni in nuovi
progetti. Sono stati toccati tutti i maggiori ambiti scientifici delle
nanoscienze e nanotecnologie, dal nanomagnetismo alla fotonica
ed elettronica, dai nanomateriali alle applicazioni nel campo della
conservazione dei beni culturali, delle biotecnologie, dell’astrofisica e della medicina.
Dal confronto tra i due paesi è emerso che, in generale, la ricerca
in questo campo in Italia è di altissima qualità, ma notevolmente
più dispersa e non collegata direttamente alle applicazioni come
in Svezia. Il programma del convegno, la lista dei partecipanti,
gli estratti e gli interventi di tutti i relatori sono già disponibili
all’indirizzo:
Riferimenti
http://science.italianembassy.se/Nanosciences2008/nanosciences.php
R I C ER C A
Convegno “Nanotecnologie, Ambiente e Sicurezza”
20 novembre 2008, Milano
Il giorno 20 novembre 2008 si è tenuto il convegno “Nanote
cnologie,Ambiente,Sicurezza” organizzato da Legambiente
Lombardia in collaborazione con Veneto Nanotech e l’Acquario
Civico di Milano. Legambiente fa parte di NanoCap, progetto europeo finanziato dall’Unione Europea a cui partecipano università, sindacati e associazioni ambientaliste provenienti da diversi
paesi europei e che si pone l’obiettivo di avviare un dibattito con
la società civile sulle Nanotecnologie.
Questo convegno è stato un momento di riflessione sull’attuale
panorama dei potenziali campi applicativi e dei rischi relativi alla
lavorazione, alla diffusione e all’utilizzo di prodotti legati alle nanotecnologie. La prima parte dellla giornata è stata dedicata alla
presentazione dello stato dell’arte della diffusione delle nanotecnologie con una panoramica generale dei settori applicativi e
delle attuali problematiche che ne ostacolano la crescita. Il dott.
Elvio Mantovani (Airi/Nanotec.it) ha illustrato la situazione dello
sviluppo della ricerca e degli investimenti sulle nanotecnologie in
Italia e nel mondo, e il prof. Paolo Milani (Centro interdisciplinareMateriali e Interfacce Nanostrutturali, Università degli Studi di
Milano) ha mostrato l’utilizzo delle nanotecnologie all’interno di
processi industriali, con le principali opportunità rispetto alle tecnologie più tradizionali e i limiti del loro sviluppo. Infine, la dott.
ssa Iolanda Olivato (Veneto Nanotech) ha portato l’esempio di
uno dei maggiori distretti italiani in cui si studiano e si sviluppano
le nanotecnologie.
Per quanto riguarda, invece, le applicazioni con maggiori vantaggi
per l’uomo e l’ambiente, l’attenzione si è soffermata soprattutto sulle tecnologie legate all’energia e alla potenziale riduzione
nell’utilizzo di risorse. Il dott. Livio Baldi (Centro di ricerca e sviluppo Numonyx) ha presentato il settore della nanoelettronica, ponendo l’accento sul ruolo della stessa nella riduzione al ricorso di
materie prime mentre il prof. Saverio Mannino (Facoltà di Agraria,
Università degli Studi Milano) ha invece brevemente illustrato le
applicazioni delle nanotecnologie nel settore alimentare.
Il prof. Gianfranco Pacchioni (Dipartimento di Scienza dei
Materiali – Università degli Studi di Milano-Bicocca), ha illustrato le nanotecnologie energetiche applicate ai catalizzatori e alla
produzione di idrogeno, mentre il prof. Stefano Ossicini ( Centro
di Fisica e Nanoscienze, Università di Modena e Reggio Emilia)si è
concentrato sui materiali nanostrutturati applicati alle tecnologie
per il solare e il fotovoltaico, attraverso un confronto di queste
stesse tecnologie nel tempo. Nella seconda parte della giornata,
l’attenzione si è concentrata sull’analisi dei rischi attraverso una
valutazione tossicologica di alcune applicazioni legate alle nanotecnologie e la presentazione di alcuni casi di studio.
La prof.ssa Marina Marinovich (Università degli studi di Milano)
ha effettuato un’introduzione generale sui potenziali rischi dei
prodotti da nanotecnologie, mentre la dott.ssa Laura Manodori
(Ricercatore Civen) ha presentato i risultati del monitoraggio di
&
S VN I OL TU I PZ PI OE
tT
nanoparticelle effettuato in un ambiente occupazionale. Infine,
il prof. Luigi Manzo (Direttore servizio di Tossicologia, Università
di Pavia) ha mostrato un caso di studio effettuato sui nanoubi di
carbonio con interessanti esiti. In conclusione, è stata trattata la
regolamentazione, con la valutazione dei provvedimenti adottati
a livello comunitario. Il dott. Andrea Porcari (Airi – Nanotec.it) ha
presentato l’attuale panorama della regolamentazione sulle nanotecnologie mentre la dott.ssa Mariassunta Piccinni (Ricercatore
Ciga) si è soffermata sulle previsioni normative a livello europeo.
E’ possibile scaricare le presentazioni dal seguente sito:
www.legambiente.org nella sezione documenti/ convegno
Nanotecnologie 2008.
Verso uno sviluppo responsabile delle Nanotecnologie
L’obiettivo di Legambiente è quello di favorire uno sviluppo sostenibile e consapevole delle Nanotecnologie, da realizzare attraverso un sistema di tracciabilità nel loro intero ciclo di vita,
partendo dalla sperimentazione in laboratorio, proseguendo con
la produzione industriale e arrivando all’immisione sul mercato e
al consumo da parte dei cittadini.
E’ importante inoltre investire più risorse nello studio dell’impatto di queste tecnologie sulla salute di lavoratori e consumatori e
sull’ambiente. In attesa dei risultati di queste ricerche è necessario regolamentare questo sviluppo, non solo implementando la
legislazione già esistente (come voluto dall’unione europea) ma
anche adottando specifiche misure che, sulla base del principio di
precauzione, limitino al massimo i rischi (soprattutto per quei prodotti sui quali ci sono già motivi giustificati circa potenziali effetti
negativi) senza compromettere lo sviluppo di quelle applicazioni
positive e meno rischiose. Ed è necessario anche informare i cittadini attraverso un adeguato sistema di etichettatura, rendendoli
consapevoli sia dell’effettivo utilizzo di Nanotecnologie, che dei
potenziali rischi.
I prossimi appuntamenti saranno a marzo, con un incontro insieme ad alcuni esponenti politici per discutere delle scelte e delle
misure da adottare per raggiungere uno sviluppo responsabile delle Nanotecnologie e ad aprile con la conferenza finale di
NanoCap presso la sede del Parlamento Europeo a Brussels.
Riferimenti
Lidia Crivellaro
Area Rifiuti e Nanotecnologie, Legambiente Lombardia Onlus
Via S. Mercadante,4 - 20124 Milano
Tel: 02 87 38 64 80 - Fax: 02 87 38 64 87
[email protected]
www.legambiente.org - www.nanocap.eu - http:/nanocap.legambiente.org
NNC - National Nanomedicine Conference
28 – 29 novembre 2008, Advanced Biotechnology Center (CBA), Genova
It is well known that nanoscale objects exhibit physical, chemical
and biological properties which are different from those of the
corresponding mass materials. These properties, together with
N e w s l e t t e r
N ano t e c
i t
49
T
N O T I Z I E
their nano-size, the same of naturally occurring biomolecules,
promise revolutionary potential applications in clinical practice,
that could contribute to improve healthcare in the 21st century.
This emerging area of research, Nanomedicine, is the application
of Nanotechnology to Medicine. Key issues of Nanomedicine are:
miniaturisation of devices, novel nanosized materials, chip-based
technologies, imaging techniques, drug delivery, new analytical
tools that could quickly bring a better understanding of initiation
and progression of disease.
The National Nanomedicine Conference, NNC, which was held
at the Advanced Biotechnology Center of Genova (CBA), on 28th
and 29th of November, 2008, was devoted to explore this new
and intruiguing field (http://www.nanomed.unige.it/conferenza/
conference.htm).
The Conference was attended by more than 100 partecipants,
joining together both young researchers and experts from different fields, such as physics, molecular biology and genetics,
engineering, biomedicine, biochemistry. The dense series of contributions was openend by the remarks of Prof. Deferrari, Rector
of the University of Genova, Prof. Giannini, Head of the Physics
Department and Prof. De Flora, President of the CBA, and closed
by Prof. Edoardo Boncinelli (Università Vita-Salute San Raffaele,
Milano).
The rich list of contributors from public and private research centers included some remarkable invited speaker, such as Professors
Enrico Avvedimento (Università Federico II di Napoli), Laura
Ballerini (Università di Trieste), Vittorio Bellotti (Università di Pavia),
Albert Duschl (Univesità di Salisburg - Austria), Sergio Ferrari
(Università di Modena) and Silke Krol (Consorzio di Biomedicina
Molecolare - Trieste).
The success of this first meeting prompted the ������������������
scientific��������
and ���
organizing committee to reappoint it next year in Pavia (contact
person: Maddalena Patrini, Dipartimento di Fisica “A. Volta”,
Università degli Studi di Pavia, Tel: +390382987498, [email protected]). The final aim is to let the large and expanding
scientific community of Nanomedicine gather, in order to find
new strategies, methodological approaches and technological
solutions just at the frontier of current knowledge.
References
Valentina Mussi
Nanomed Labs, Advanced Biotechnology Center & Physics Department, University
of Genova
www.nanomed.unige.it
[email protected]
Missione Italiana in Giappone
18-24 febbraio 2009, Tokyo – Sendai
Si è tenuta in Giappone la ottava edizione del Convegno
Nanotech Tokyo 2009 (18-20 febbraio), una delle più grandi
esposizioni internazionali sulle nanotecnologie. Impressionanti i
numeri della manifestazione, che nel 2008 ha visto la partecipa50
N e w s l e t t e r
N ano t e c
i t
zione, durante i 3 giorni dell’evento, di quasi 50.000 persone,
l’organizzazione di più 20 conferenze tematiche ed un’area dove
erano disponibili 884 spazi espositivi, dei quali circa il 60% giapponesi ed il restante 40% provenienti da 23 paesi diversi.
Le aree tematiche coperte dall’area espositiva e dalle diverse conferenze riguardano la maggior parte delle applicazioni delle nanotecnologie. L’Organizzazione è a carico di un ente no profit, il
“Nano Tech Executive Committe”, composto da circa una ventina
di esperti provenienti da industria, accademia ed istituzioni governative giapponesi, coordinato dal Prof. Tomoji Kawai dell’Università di Osaka (Institute of Scientific and Industrial Research).
L’evento è supportato da numerosissimi enti, istituzionali e non,
tra cui diversi Ministeri giapponesi e le Ambasciate di più di 15
paesi.
L’Istituto Nazionale per il Commercio Estero (ICE), in collaborazione con AIRI/Nanotec IT, ha organizzato in occasione della
partecipazione italiana alla fiera Nano Tech 2009, una Missione di
imprese, Enti e centri di ricerca del settore delle nanotecnologie
italiano, al fine di favorire lo sviluppo del Partenariato tecnologico
tra Italia e Giappone.
Il Programma della Missione prevede la presenza di uno stand
Italiano (predisposto da ICE) nella parte espositiva nel quale i
componenti della delegazione Italiana possono esporre/distribuire materiale informativo e incontrare altri partecipanti all’evento,
visite ad Istituti di ricerca e Parchi Scientifici locali; eventi mirati di
presentazione e networking, al fine di rafforzare l’immagine del
Sistema Italia nonché favorire i rapporti di conoscenza e collaborazione tra imprese ed Istituzioni accademiche e Centri di ricerca
italiani e giapponesi.
Successivamente al Convegno, è previsto un programma operativo di visita nel Distretto tecnologico di Sendai, capoluogo della
Prefettura di Miyagi, che rappresenta uno dei distretti nanotecnologici più importanti del Giappone, sede di diverse Istituzioni
pubbliche competenti in materia di innovazione ed investimenti.
La visita a Sendai prevede la realizzazione, il giorno 23 febbraio
del Forum “Japan- Italy Nanotecnology” che costituisce un
logico proseguimento ed approfondimento del Nanotech Forum
realizzato nel giugno 2007 sempre a Sendai, a cui seguiranno incontri bilaterali. Il 24 febbraio saranno realizzate visite ad aziende e Centri di ricerca e al Science Park della Tohoku University.
Riferimenti
www.ics-inc.co.jp/nanotech/en/index.html
R I C ER C A
Nanotec2009.it Conference
31 marzo-3aprile 2009, Roma
Nanotec2009.it: Competitiveness & Innovation for Industrial
Growth, International Conference jointly organised by AIRI/
Nanotec IT, the National Research Council (CNR) and Veneto
Nanotech, with the collaboration of the Institute for Foreign
Trade (ICE), represents the annual National event for nanotechnology. The Conference is based on the success of Nanotec2008.
it and it will maintain its focus on application, with extended goals, contents and aims. The most important Italian players and
renowned experts from abroad in the field will be present.
Nanotec2009.it, with contributions of representatives from research community, industry, financial world and governmental
bodies, aims to:
• Give a comprehensive picture of nanotechnology activity, perspectives and needs in Italy;
• Present the latest developments and trends at world level
about research, applications and governance;
• Foster a debate amongst representatives of industry, public
research, financial community and governmental bodies;
• Stimulate cooperation, coordination and support to make
more effective the activity in the field.
Themes of the Conference are:
• Nanotechnology Governance
• Health & Medical Devices (Nanomedicine)
• Sustainable Development (Energy, Transport, Environment)
• ICT, Electronics, and Security
• Made in Italy (advanced materials, agrifoods, conservation of
cultural heritage, ...)
A distinctive feature of Nanotec2009.it will be the Networking
Day, at which will be devoted the entire April the 3rd 2009. The
day will be organised around a number of presentations and
one-to-one meetings aimed to promote research and industrial
collaborations, which will see the presence also of representatives from Industry, Research Institutions, and Venture Capitalists
coming from China, Japan, USA and Italy.
References
www.nanotec2009.it
Conference on Nanostructured Polymers and
Nanocomposites
April 15-17, 2009, Paris, France
The European Centre for Nanostructured Polymers (ECNP) is a
non-profit Consortium Company formed by the “Nanostructured
and Functional Polymer-Based Materials and Nanocomposites
(Nanofun-Poly)” European Network of Excellence (European
Commission, Directorate General Research, 6th FP, Networks of
Excellence).
&
S VN I OL TU I PZ PI OE
tT
Major aim of ENCP is the coordination and the joint carrying out
of activities and operations, principally for the sake and in the
interests of the partners of the “NANOFUN-POLY” network, as
well as for itself, aimed at the following objectives:
• Promotion of excellence in the technological development in
Europe, in the priority sectors of the European Research Area
(ERA), particularly with regard to polymer nanotechnologies;
• Coordination with other ERA participants, within and outside
of the European Network of Excellence “NANOFUN-POLY”;
• Increase the excellence of members of the NANOFUN-POLY
Network through contributions to research, development and
innovation in ERA.
Within its institutional activities, ECNP organises the “5th
International Conference on Nanostructured Polymers
And Nanocomposites”
Topics of the Conference are:
• Chemistry of nanostructured polymers and copolymers
• Physics of soft matter in nanostructured polymers: relaxation
phenomena, optoelectronic and magnetic properties
• Nanostructured blends and copolymers
• Nanofillers: carbon nanotubes and nanofibers, hybrids, POSS
and metal‐oxo clusters, nanocellulose
• Nanostructured coatings and adhesives
• Processing of nanostructured polymers and nanocomposites
• Advanced characterization techniques
• Mathematical modelling
• Life Cycle Analysis
Detailed information can be found in the ECNP website.
References
http://www.ecnp.eu.org/
NSTI Nanotech 2009
1-5 maggio 2009, Houston, USA
Nei giorni 1-5 maggio 2009 si terrà a Houston (USA) il Convegno
annuale del Nano Science and Technology Institute (NSTI
Nanotech 2009), uno degli eventi sulle nanotecnologie piu’
importanti a livello mondiale, il quale prevede anche un Trade
Show.
Come già nelle edizioni precedenti, AIRI/Nanotec IT collabora con
L’Istituto Nazionale per il Commercio Estero (ICE) per organizzare la partecipazione Italiana al convegno dove, anche nel
2009, ICE mette a disposizione nell’area espositiva uno stand nel
quale la delegazione Italiana può esporre materiale informativo
circa le proprie attività nel campo delle nanotecnologie e intrattenere contatti con gli altri partecipanti al Convegno.
Durante il periodo del Convegno è prevista anche l’organizzazione di eventi volti a favorire i contatti della delegazione Italiana con
rappresentanti del mondo della comunità scientifica (Università e
N e w s l e t t e r
N ano t e c
i t
51
T
N O T I Z I E
Centri di Ricerca) e imprenditoriale dell’area, nonché una serie di
visite alle strutture di ricerca, ma non solo, presenti nella zona.
Le analoghe iniziative degli anni passati hanno visto una delegazione italiana piuttosto nutrita e gli eventi organizzati hanno
consentito ai suoi componenti di stabilire contatti con realtà ed
esperti all’avanguardia nel campo delle tecnologie di notevole interesse. Nell’area di Houston sono presenti strutture prestigiose
che operano in settori di punta per l’applicazione delle nanotecnologie, come quello medicale, e la partecipazione al Convegno
ed agli eventi organizzati da ICE ed AIRI/Nanotec ITpuo consentire
di stabilire/rafforzare i rapporti con queste strutture. AIRI/Nanotec
IT si farà diligente per far circolare informazioni relative alla organizzazione della delegazione Italiana. Mentre informazioni costantemente aggiornate dell’evento possono essere trovato sul
sito indicato sotto.
Riferimenti
Andrea Porcari
AIRI/Nanotec IT
[email protected]
http://www.nsti.org/Nanotech2009/
BioInItaly 2009: The Italian Biotech Event
May 4-5, 2009, Milano
Assobiotec, the Italian biotech industry association, is the organiser of the BioInItaly 2009 event, that will bring together national
and international venture capital and Italian companies from all
sectors of the biotechnology industry. The event will provide a
unique opportunity for investors to monitor the pulse of the dynamic biotech sector in Italy.
Investors will have an opportunity to discover some of the exciting
developments in the Italian biotech sector in a single meeting.
Italian companies, ranging from start-ups and spin-offs to established companies, will present their new business ideas and
projects in the fields of biotech and nanobiotech. The projects
will be selected by a committee of experts in the biotech field.
More than 50 organisations participated to the first edition, coming from France, Switzerland, Germany, United Stated, Finland.
The meeting is open to potential investors. Participation is free,
but Assobiotec asks that participants register by April 24, 2009 by
sending an email including the participants name, organization,
address and email address to [email protected].
References
Assobiotec
Via Giovanni da Procida 11 - 20149 Milano
Tel. +39 02 34565306 - Fax +39 02 34565284
[email protected]
Internet: http://www.assobiotec.it
52
N e w s l e t t e r
N ano t e c
i t
Euronanoforum 2009
Praga, 2-5 giugno 2009
La Conferenza Euronanoforum 2009 è la quarta edizione di
una serie di conferenze sulle nanotecnologie organizzate dalla Commissione Europea. L’evento si svolgerà a giugno 2009 a
Praga, in corrispondenza con la Presidenza EU della Repubblica
Ceca.
L’edizione 2009 ha come tematica le Nanotecnologie per lo sviluppo sostenibile ed affronterà argomenti di notevole importanza
quali l’esigenza di riduzione delle emissioni di carbonio e dell’uso
di combustibili di origine fossile, la ricerca di nuove soluzione per
l’efficienza energetica e dei materiali, il controllo dell’inquinamento, la depurazione delle acque.
Oltre alle diverse sessioni call for papers, sono previste nei 4 giorni
di Conferenza sessioni plenarie e panels sui seguenti argomenti:
• Nanotechnology for sustainable economy
• Eco-& Energy-efficient industrial production
• Nanotechnology for Energy and the environment
• Nanotechnology applications for sustainable health care
• Future prospects for industrial nanotechnologies
• Integrated, safe and responsible nanotechnology governance
in the EU
• Panel discussion: Industrial Innovation in Nanotechnology
• Panel discussion : The impact of nanotechnology on global environmental and societal challenges
E’ prevista la partecipazione di speakers di rilievo a livello internazionale, una importante area espositiva e diversi eventi collaterali.
E’ aperta fino al 31 marzo la call for papers.
Riferimenti
http://www.euronanoforum2009.eu/
Nanoforum 2009
9-11 giugno 2009, Torino
Il Centro Congressi Torino Incontra, Via Nino Costa 8 – Torino,
ospiterà la quinta edizione di nanoforum, la mostra-convegno
dedicata alle micro e nanotecnologie volta a favorire i processi di
trasferimento tecnologico tra il mondo della ricerca scientifica e
quello imprenditoriale.
Nato nel 2005, nanoforum rappresenta quest’anno più che mai
un’importante opportunità per conoscere lo stato dell’arte nei
principali settori applicativi, comprendere le tendenze del mercato e incontrare alcuni dei maggiori esperti italiani ed internazionali.
Nanoforum 2009 comprende:
• una mostra specializzata, destinata sia alle Imprese sia ai centri
di Ricerca, per poter incontrare tutti i partecipanti
• convegni di alto livello, su tematiche importanti, come la medicina, il tessile, i materiali strutturati, l’ambiente, i beni culturali.
R I C ER C A
Con la presenza di relatori altamente qualificati
• un programma di tutorial per chi desidera avvicinarsi al tema
• incontri 1to1
• Nanoforum Tour e Nanoforum Week-end, allo scopo di visitare
Centri Italiani ad alta specializzazione
Nanoforum si presenta come un importante occasione di incontro tra ricerca ed impresa, per promuovere una concreta innovazione. L’edizione 2008 ha visto circa 1000 presenze nei due giorni
di evento, provenienti da 15 nazioni diverse (grazie soprattutto
alla collaborazione con l’ICE – l’Istituto per il Commercio Estero),
190 incontri 1to1 (organizzati in collaborazione con la Camera
di Commercio di Milano) , 22 sessioni di convegno con oltre 100
relatori qualificati.
Riferimenti
Cristina Gippa
Via Rovetta 18, 20127 Milano
Tel. +39 02 28311642 &
S VN I OL TU I PZ PI OE
tT
Nanorobotics
• Nanomedicine
• Nanomagnetics
• Nanotoxicology, Health and Environmental Safety. Nanobioscience and Nanobiotechnology
• Molecular Electronics, Inorganic Nanowires, Nanocrystals,
Quantum Dots
• Nanoeconomy and Emerging Nanotech Companies. Modelling
and Simulation
• Industrial and Commercial Applications
Plenary talks, Invited talks and Contributed papers will be given,
and tutorials ad workshops will be organized. Suggestions from
prospective participants are welcome for specific tutorials and
special workshops/sessions.
IEEE Nano 2009 will be hosted in the Economy Faculty building of
The University of Genoa–Darsena, Via F. Vivaldi 5.
References
www.medinfo.dist.unige.it/ieeenano2009
IEEE Nano 2009
July 26-30, 2009, Genova
IEEE conferences are organized by IEEE (Institute of Electrical
and Electronics Engineers), the world’s leading professional association for the advancement of technology. Through its global
membership, IEEE is a leading authority on areas ranging from
aerospace systems, computers and telecommunications to biomedical engineering, electric power and consumer electronics
among others.
IEEE members are more than 365,000 in more than 150 countries.
Past IEEE Nano conferences have been hosted in Maui (2001),
Washington D.C. (2002), S. Francisco (2003), Munich (2004),
Nagoya (2005), Cincinnati (2006), Hong Kong (2007), and
Arlington (2008).
IEEE Nano 2009 aims to bring together researchers, industry workers, entrepreneurs and funding agency leaders, hope that the
conference will provide a forum for exchange of ideas, interaction, networking and collaboration for research and development
in nanotechnology with special reference to the latest advances
in nanotechnology.
The technical program covers all major topics in Nanotechnology
and will include:
• Nanoelectronics
• Nanotools and Nanodevices
• Nanooptics, Nanophotonics and Nanooptoelectronics
• Nanofabrication, Nanomaterials, Ultra-thin film technologies,
Nanolithography
• Fullerenes, Buckytubes, Nanocarbons, Nanodiamonds and related technologies
• Nano/Micro/Macro System Integration, NEMS and ActuatorsN e w s l e t t e r
N ano t e c
i t
53
T
N O T I Z I E
Prossimi eventi
Feb 18 - Feb 20, 2009
Tokyo, Japan
Nanotech 2009
May 3 - May 5, 2009
Houston, USA
NSTI Nanotech 2009
Feb 26, 2009
Brussels, Belgium
FramingNano workshop: regulation & governance
of nanotechnologies
May 4 - May 5, 2009
Milano
BioInItaly 2009
March 4 - March 6, 2009
Berlin, Germany
6th International Conference on
Biomedical Applications of Nanotechnology
March 10 - March 11, 2009
Dusseldorf, Germany
ObservatoryNANO symposium
March 19, 2009
London, UK
ObservatoryNano dissemination event
March 23 - March 27, 2009
Lausanne, Swtizerland
Nanoimpactnet conference 2009
March 27, 2009
Brussels, Belgium
Risk bridge project final conference
March 31 - April 3, 2009
Roma, Italy
Nanotec2009.IT:
Competitivness & Innovation for Industrial Growth
Apr 2, 2009
Brussels, Belgium
Nanocap final conference:
Working and living with Nanotechnologies
April 15 - April 17, 2009
Paris, France
Nanostructured polymers and nanocomposites
N e w s l e t t e r
N ano t e c
Jun 2 - Jun 5, 2009
Prague, Czech Republich
EuroNanoforum 2009
Jun 10 - Jun 12, 2009
Torino, Italy
Nanoforum 2009
March 11 - March 12, 2009
Roma, Italy
Smart Fabrics 2009
54
May 26 - May 27, 2009
Dresden, Germany
Nanofair 2009
i t
July 26 - July 30, 2009
Genova, Italy
IEEE NANO 2009
AVVISO PER I LETTORI
MODALITà DI DISTRIBUZIONE
DI NANOTEC IT NEWSLETTER
Gentile lettore,
Newsletter Nanotec IT viene distribuita in forma cartacea (e gratuita) alle organizzazioni iscritte ad AIRI/Nanotec IT ed ai soggetti che collaborano con l’Associazione per la
realizzazione di pubblicazioni ed eventi, in particolare tutte le organizzazioni che hanno
risposto al Censimento delle nanotecnologie, viene inoltre distribuita durante gli eventi
organizzati dal Centro.
La rivista è inviata in formato elettronico ad un ampio indirizzario di soggetti a livello italiano ed internazionale, al fine di favorire una più efficace promozione delle nanotecnologie
e la conoscenza dell’attività in corso, in particolare a livello italiano.
Tutti i numeri della rivista sono infine scaricabili gratuitamente da www.nanotec.it
Rimane possibile richiedere eventuali copie su carta mediante il versamento di un contributo per spese di tecniche e di spedizione di 20 Euro all’anno (per dettagli: info@nanotec.
it, www.nanotec.it).
Nota importante:
Nel caso lo riteniate opportuno o vogliate essere inseriti ex-novo nella mailing list della
Newsletter vi preghiamo di comunicare il vostro attuale indirizzo e-mail a info@nanotec.
it o di contattare i nostri uffici.
Pubblicazione notizie ed articoli sulle nanotecnologie:
Nanotec IT è interessata a ricevere articoli, notizie ed informazioni in genere su attività di
ricerca nel campo delle nanotecnologie da pubblicare su Newsletter Nanotec IT. Quanti
volessero sruttare tale opportunità sono pregati di contattare la redazione.
Per informazioni
Andrea Porcari
tel. 068848831, 068546662 - e-mail: [email protected]
PUBBLICITà
L i s t i n o p r e z z i [ a l n e tt o d i IVA 2 0 % ]
è possibile inserire messaggi promozionali sia sulla newsletter che sul sito web www.nanotec.it
1. NANOTEC IT NEWSLETTER
Sulla Newsletter sono riportate le notizie più importanti (disponibili anche su www.nanotec.it), quali
risultati di ricerche ed applicazioni, eventi, corsi, iniziative di Nanotec IT e degli iscritti, articoli su tendenze e su risultati di ricerche, su politiche della ricerca, su problematiche connesse alla diffusione delle
nanotecnologie.
Tiratura: n. 1000 copie. Pubblicazione: giugno, novembre.
Destinatari (attivi o interessati alle nanotecnologie): industrie, istituti universitari, enti pubblici di ricerca,
associazioni industriali e pubbliche amministrazioni.
Gli ordini devono pervenire a AIRI/Nanotec IT entro il 20 maggio 2009 per il secondo numero del
2009.
Gli iscritti ad AIRI / Nanotec IT usufruiscono di uno sconto del 30% sulla tariffe previste.
II e III di copertina - per ogni numero
1 pagina
cm
20x29
1/2
“
“
20x14,5
1/3
“
“
20x7
1/6
“
“
10x7 ?
?
?
?
IV di copertina - per ogni numero
1
pagina
cm
20x29
1/2
“
“
20x14,5
1/3
“
“
20x7
1/6
“
“
10x7
? 1.000,00
? 600,00
? 400,00
? 250,00
800,00
500,00
350,00
200,00
2. SITO WEB (www.nanotec.it)
Banner
Dimensioni 150x50 pixel (o equivalenti), risoluzione 200 dpi.
12 mesi
3 mesi
? 1500,00
? 500,00
A I R I / N ano t e c I T M e mb e r s
INDUSTRY
- APE RESEARCH
- BRACCO IMAGING
- CERAMICHE DI SIENA – Gambarelli Group
- COLOROBBIA
- CRF - FIAT Research Centre
- CSM – Centro Sviluppo Materiali
- CTG - Group Technical Centre – ItalCementi
- DE NORA Tecnologie Elettrochimiche
- HITECH 2000 s.r.l.
- ELSAG Datamt
- ENI
- FINMECCANICA
- PIRELLI LABS
- SAES GETTERS
- SELEX COMMUNICATIONS
- SELEX SISTEMI INTEGRATI
- SERVITEC
- STMICROELECTRONICS
- TETHIS
- SMILAB
- VENETO NANOTECH
PUBLIC RESEARCH
• CNR (National Research Council) - Molecular Design
Department:*
• CNR(National Research Council) - Materials and Devices
Department **
• CNR- ITIA (Institute of Industrial Technologies and Automation
• Scuola Superiore S.Anna, CRIM (Centre for Applied Research in
Micro and Nano Engineering)
• INSTM (Inter- University Consortium for Material Sciences and
Technologies)
Representing 44 Italian Universities
• ENEA (National Agency for New Technologies, Energy,
Environment)
Advanced Physical Technologies And New Materials (FIM) Department
• INFN (National Institute for Nuclear Physics)
Frascati National Laboratories
• Fondazione Kessler/IRST- Centre for Scientific and
Technological Research
• Polytechnic of Torino
CHILAB (Materials and Microsystems Laboratory)
• SINCROTRONE Trieste
• University of Modena and Reggio Emilia,
Dep. of Material and Environment Engineering
* Institutes involved in nanotechnology: ISMAC, ISMN, ISTM (http://www.cnr.it/istituti/Perareetematiche.html)
** Institutes involved in nanotechnology: IMM, IFN, ISM, IPCF, INFM-TASC, INFM-MATIS, INFM-LAMIA, INFM-LUXOR, INFM-LYCRIL,
INFM-MDM, INFM-S3, INFM-NEST, INFM-NNL, INFM-SL, INFM-PolyLab (http://www.cnr.it/istituti/Perareetematiche.html)
3º CENSIMENTO
D ELLE N A N O TE C N O L O G I E
I N I TA L I A
AIRI/Nanotec IT ha avviato l’indagine per la realizzazione della terza edizione del Censimento
delle Nanotecnologie in Italia.
Il Censimento costituisce dal 2004 una importante fonte di riferimento, unica nel suo genere in
Italia, per avere informazioni dettagliate sulle organizzazioni, pubbliche e private, con attività di
R&S e di produzione nelle nanotecnologie a livello italiano.
Con la sua copertura capillare, il Censimento consente di evidenziare capacità, esperienze ed
eccellenze presenti in Italia, e favorire cosi’ l’interazione tra i diversi attori del settore, il rafforzamento dell’attenzione del mondo industriale e finanziario, nazionale ed internazionale, l’avvio
di iniziative a livello istituzionale atte a sostenere lo sviluppo
delle nanotecnoloogie.
Tutte le organizzazioni, pubbliche e private, con attività di Ricerca & Sviluppo, progettazione o
produzione nel settore delle nanotecnologie interessate a partecipare al Censimento possono
mettersi in contatto con AIRI/Nanotec IT.
Il questionario sarà disponibile sul sito www.nanotec.it a partire da aprile 2009.
Informazioni:
Andrea Porcari
AIRI/Nanotec IT
Tel. 06 8848831
[email protected]
Nanotec IT - Centro Italiano per le Nanotecnologie
Il centro è stato creato nel 2003 da AIRI, Associazione Italiana per la Ricerca Industriale, per farne un punto di riferimento
nazionale per le nanotecnologie per industria, ricerca pubblica, istituzioni governative.
La sua missione è quella di promuovere lo sviluppo e l’applicazione delle nanotecnologie in Italia, al fine di accrescere il
posizionamento competitivo del Paese.
Nanotec IT contribuisce a:
Raccogliere e diffondere informazioni sulle nanotecnologie circa risultati e tendenze di R&S, applicazioni, dati e previsioni di mercato,
politiche/strategie nazionali
Indirizzare/stimolare l’interesse e l’attività delle imprese, grandi e PMI, verso queste tecnologie
Sollecitare azioni nazionali atte a promuovere e sostenere le iniziative in questo campo
Agevolare contatti e collaborazioni, a livello nazionale ed internazionale, tra ricerca pubblica e imprese, e tra imprese
Favorire il trasferimento tecnologico
Perseguire uno sviluppo responsabile delle nanotecnologie
Nanotec IT- Italian Centre for Nanotechnology- started in 2003 by AIRI- Italian Association for Industrial Research – as an internal
division, is a national bridging point connecting industry, public research, and governmental institutions.
Its mission is to promote nanotechnology and its applications in Italy to increase through it the competitive position of the Country.
The Nanotec IT activity aims to :
Stimulate the interest and the commitment in nanotechnology within the Italian enterprises;
Inform government, opinion leaders, and the public, to foster correct and timely initiatives for the development of nanotechnology
and its applications
Favour networking and exchange of information to promote cooperation;
Facilitate the use of research results and technology transfer;
Contribute to a responsible development of nanotechnology.
AIRI- Associazione Italiana per la Ricerca Industriale
Nata nel 1974 per promuovere lo sviluppo della ricerca e dell’innovazione industriale e stimolare la collaborazione tra settore privato
e pubblico, AIRI rappresenta oggi un essenziale punto di confluenza per più di 120 Soci:
Grandi imprese e PMI attive nella ricerca industriale
Università, Centri di ricerca pubblici e privati
Associazioni industriali, Parchi scientifici, Istituti finanziari che operano a supporto della R&S
I Soci raccolgono il 45% circa degli addetti alla ricerca in Italia.
Questa larga rappresentatività permette ad AIRI di agire quale interlocutore rilevante per tutti i decisori che sostengono la
ricerca industriale come strategia per lo sviluppo tecnologico del Paese.
AIRI- Italian Association for Industrial Research
Founded in 1974 with the aim of promoting industrial research and enhancing co-operation between private and public
sector, today AIRI is the focal point for more than 120 members:
Large companies and SMEs operating in R&D
Universities, public and private research Centers
Industrial associations, Scientific parks and Banks supporting R&D activities
Researchers from AIRI members represent about the 45% of the country.
Due to this broad representative base, AIRI is a key opinion leader for decision-makers sustaining industrial
research as strategy for the technological development of the Country.
AIRI/Nanotec IT - Viale Gorizia 25/c, 00198 Roma
tel. 068848831 – 068546662, fax 068552949
[email protected]; www.nanotec.it; www.airi.it
Scarica

N e w s l e t t e r