N e w s l e t t e r N u m e r o 1 1 m a r z o 2 0 0 9 Editoriale............................................................................................................................................. 3 ricerca & sviluppo Nanomechanical transducers based on cantilevers for bioanalysis......................................................... 5 Innovative polymer - and lipid - based nanotechnologies for drug and nucleic acid delivery ................ 9 Interactions of engineered nanomaterials with biological systems: models and methods to assess risk determinants..................................................................................................................................... 13 The research activities of DIMA on nanomaterials............................................................................... 21 Nanotecnologie per il tessile e abbigliamento..................................................................................... 29 Le nanotecnologie e lo sviluppo di una specifica normativa tecnica ................................................... 33 N A N O T EC N OLO G IE & SOCIE T à Nanotechnologies: an image in the process of being defined............................................................. 36 Notizie Investire in cervelli: Siglato un importante accordo tra Mapei e l’Università di Padova ........................ 40 Gruppo di Lavoro Nazionale per l’individuazione di misure di prevenzione protezione connesse con l’esposizione a nanomateriali in ambito lavorativo........................................................ 41 FramingNano project publishing the first deliverables......................................................................... 41 ObservatoryNano project gears-up..................................................................................................... 42 Nanochallenge 2008 premia la nano-scrittura di ThunderNIL e il super polimero di Chimatech .......... 42 NANOMAT project: Piedmont on screen............................................................................................. 44 CNR-TASC coordina la piattaforma europea Nanoscience Foundries and Fine Analysis........................ 44 Smart textiles: the Systex project........................................................................................................ 45 The Dutch Nanotechnology Action Plan............................................................................................. 46 N&N: dalla ricerca alle applicazioni: nuovo volume ENEA.................................................................... 47 S e m i n a r i & C o n v e gn i Italy-USA Bio Nano Business Forum 2008........................................................................................... 48 Convegno Italo-Svedese sulle nanotecnologie e nanoscienze a Stoccolma.......................................... 48 Convegno “Nanotecnologie, Ambiente e Sicurezza”.......................................................................... 49 NNC - National Nanomedicine Conference......................................................................................... 49 Missione Italiana in Giappone ........................................................................................................... 50 Nanotec2009.it Conference............................................................................................................... 50 Conference on nanostructured polymers and nanocomposites .......................................................... 51 NSTI Nanotech 2009......................................................................................................................... 51 BioInItaly 2009: The Italian Biotech Event........................................................................................... 52 Euronanoforum 2009........................................................................................................................ 52 Nanoforum 2009............................................................................................................................... 52 IEEE Nano 2009 ............................................................................................................................... 53 Prossimi eventi................................................................................................................................... 54 Periodico di informazione sulle nanotecnologie marzo 2009 Supplemento a Notizie Airi n. 165 novembre-dicembre 2008 Anno XXIII - 2008 Bimestrale Abbonamento annuo • Soci Euro 49,00 • Non soci Euro 70,00 Spedizione in abb. postale comma 20 lett. B art. 2 L. 23.12.96 n. 662 Roma/Romanina Pubblicità 45% Autorizzazione Tribunale di Roma n. 216 del 29 aprile 1986 Redazione AIRI: 00198 Roma Viale Gorizia, 25/c tel. 06.8848831, 06.8546662 fax 06.8552949 e-mail: [email protected] www.airi.it - www.nanotec.it nanotec2009.it Nanotechnology > Competitiveness & innovation for industrial growth Rome > march 31 : april 3 > 2009 National Research Council > Piazzale Aldo Moro 7 Nanotec2009.it, an International Conference jointly organised by AIRI/Nanotec IT, the National Research Council (CNR) and Veneto Nanotech, with the collaboration of the Italian Institute for Foreign Trade (ICE), represents the annual National event for nanotechnology. The Conference base on the success of Nanotec2008.it and it will maintain its focus on application, with extended goals, contents and aims. The most important Italian players in the field and renowned experts from abroad will be present. Themes of the Conference are: • Nanotechnology Governance • Health & Medical Devices (Nanomedicine) • Sustainable Development (Energy, Transport, Environment) • ICT, Electronics, and Security • Made in Italy (advanced materials, agrifoodsconservation of cultural heritage, ...) A distinctive feature of Nanotec2009.it will be the Networking Day, at which will be devoted the entire April the 3rd 2009. The day is organised around a number of presentations and one-to-one meetings aimed to promote research and industrial collaborations, which will see the presence also of representatives from Industry, Research Institutions, and Venture Capitalists coming from China, Japan, USA and Italy. www.nanotec.it – [email protected] Organizers In collaboration with Italian Institute for Foreign Trade p r imo piano t Editoriale Sono ormai cinque anni da quando, alla fine del 2003, AIRI/ Nanotec IT ha preso avvio ed è tempo di fare un primo bilancio della sua attività. Come indicato nel suo atto costitutivo, la missione di AIRI/Nanotec IT è quella di contribuire a promuovere le nanotecnologie e le loro applicazioni in Italia proponendosi come punto di incontro tra mondo della ricerca, l’industria e gli organismi di governo, con l’obiettivo di favorire contatti e collaborazioni e fornire un quadro di riferimento e indicazioni, utili per indirizzare strategie di ricerca, scelte operative e interventi di sostegno. Seguendo questa ottica, l’attività di Nanotec IT si è sviluppata in questi anni su molti fronti. Tra le prime iniziative intraprese, vi è stata, nel 2004, la realizzazione del “1° Censimento delle Nanotecnologie in Italia” al quale ha fatto seguito, nel 2006, il “2° Censimento”, che è stato poi integrato nel 2007. I due censimenti hanno messo in evidenza un impegno in questo campo crescente nel Paese (si è passati dalle 120 strutture censite nel 2004 alle circa 200 nel 2007), e come il settore industriale fosse il maggiore responsabile di questo incremento. La tendenza è senz’altro continuata e nel 2009 è previsto un muovo censimento per fornire un quadro ancora più completo ed aggiornato della situazione. Numerose sono state le iniziative promosse per favorire la diffusione delle informazioni ed il networking. La Newsletter ed il sito web (www.nanotec.it) sono due strumenti di questo impegno, ma Nanotec IT organizza ogni anno, da solo o con altri, convegni o workshops dedicati alle nanotecnologie, che affrontano un ampio spettro di temi. Dall’applicazione di queste tecnologie in settori specifici, quali la cura della salute o il tessile (dal 2005 Airi/Nanotec IT organizza a Milano un convegno su questo ultimo tema insieme a TexClubTec), alla nanometrologia (nel 2005 e nel 2007 sono stati organizzati due workshops a Torino, con l’Istituto Italiano di Metrologia), alla governance delle nanotecno- logie. Nel 2008, dal 10 al 13 marzo, insieme a Veneto Nanotech, è stato organizzato a Venezia un Convegno Internazionale (Nanotec2008.it), il cui programma faceva riferimento ai temi guida del progetto del Governo Industria 2015 (Risparmio Energetico; Mobilità Sostenibile; Nuove Tecnologie per la Vita; Made in Italy; Salvaguardia dei Beni Culturali), con lo scopo di mostrare come le nanotecnologie possano dare un contributo importante al raggiungimento degli obiettivi del Progetto. Forte del successo ottenuto, il convegno, questa volta con la collaborazione anche del CNR, sarà ripetuto nella primavera 2009 a Roma con obiettivi e finalità analoghe (Nanotec2009.it). L’intenzione è quella fare dell’evento un appuntamento annuale fisso, di riferimento per l’attività nelle nanotecnologie nel Paese. Per favorire interscambi e collaborazioni in questo campo tra gli operatori Italiani e quelli di altri paesi, AIRI/Nanotec IT ha collaborato con l’Istituto per il Commercio con l’Estero (ICE) ed il Ministero degli Affari Esteri (MAE) per organizzare iniziative indirizzate a tale scopo in occasione di convegni o di eventi promossi ad hoc. I Paesi nei quali queste iniziative hanno avuto luogo sono stati USA, Israele, India, Russia. AIRI/Nanotec IT, oltre che con una partecipazione diretta, ha dato il suo supporto alle costituzione della delegazione Italiana, alla preparazione di materiale informativo da distribuire, alla definizione del programma e dell’agenda degli incontri. I risultati sono stati positivi e la collaborazione è previsto che continui in futuro. L’impegno del Centro a livello internazionale si è esplicitato anche in altre forme. AIRI/Nanotec IT, infatti, ha stabilito ed intrattiene contatti e collaborazioni con organizzazioni analoghe e strutture di ricerca di altri paesi, Europei e non, ed ha partecipato e partecipa a diversi progetti Europei di ricerca sulle nanotecnologie. Nel 6° Programma Quadro (PQ6), AIRI/Nanotec IT è stato il coordinatore di due progetti: NanoRoadMap, il cui obiettivo era quello di definire il percorso di sviluppo delle nanotecnologie al 2015 nei settori dei materiali, energia, e medicina, e NAoMITEC, N e w s l e t t e r N ano t e c i t 3 p r imo t piano volto a favorire l’impegno delle PMI nelle micro e nanotecnologie. Nel 7° (PQ7) partecipa, come “workpackage leader”, al progetto ObservatoryNANO ed è coordinatore del progetto FramingNano, che si propone l’elaborazione di un “Governance Plan” per lo sviluppo responsabile delle nanotecnologie. Entrambi hanno preso avvio nella primavera 2008 e termineranno, ObservatoryNANO nel 2012 e FramingNano nel 2010. Lo sviluppo responsabile delle nanotecnologie è un obiettivo prioritario dell’azione di AIRI/ Nanotec IT che, in ragione di questo impegno, oltre a partecipare ai progetti suddetti, partecipa al gruppo di lavoro sulle nanotecnologie istituito da UNI, dedicato alle problematiche di standardizzazione in questo campo, a quello sui nanomateriali di ISPESL, impegnato sul versante della valutazione dei rischi potenziali associati a questi inoltre il centro intrattiene contatti con organismi e istituzioni internazionali attenti a questi temi come il Woodrow Wilson International Center for Scholars (USA) o l’ International Risk Governance Council – irgc (CH). AIRI/Nanotec IT è insomma ormai una realtà consolidata nel panorama delle nanotecnologie del nostro Paese, che opera in sintonia con e collega quanti, nell’ambito della ricerca pubblica ed in quello delle imprese, sono attualmente impegnati in questo cam- po. La gran parte di questi sono iscritti a AIRI/Nanotec IT ed i loro rappresentanti presenti nel Consiglio Direttivo contribuiscono a indirizzarne le scelte e le azioni. La maggior parte degli obiettivi fissati al momento della sua creazione sono stati raggiunti, peroòquello di contribuire a far attivare in Italia una iniziativa nazionale per sostenere e promuovere lo sviluppo delle nanotecnologie, non è stato ancora realizzato. Una iniziativa di questo genere esiste in molti paesi, a cominciare dagli USA, ma anche in Germania, Spagna, Cina, Russia e, perfino Iran. AIRI/Nanotec IT è convinto che anche l’Italia debba dotarsi di uno strumento di questo genere. Questo è anche l’auspicio di quanti operano in questo settore ed anche per farsi portavoce di questa istanza AIRI/Nanotec seguiterà ad impegnarsi in questa direzione. In fin dei conti una iniziativa specifica volta a promuovere e sostenere lo sviluppo delle nanotecnologie non sarebbe altro che la razionalizzazione di un impegno che già esiste. L’attivarla sarebbe però anche una scelta di tipo strategico, visto il ruolo che le nanotecnologie possono avere nella evoluzione dello sviluppo tecnologico futuro, in quanto tale iniziativa potrebbe consentire di incrementare il sostegno economico alle attività di R&S e, soprattutto, consentirebbe di indirizzare meglio gli sforzi e di ottimizzare l’uso delle risorse. Elvio Mantovani Direttore AIRI/Nanotec IT 4 N e w s l e t t e r N ano t e c i t R I C ER C A & S V I L U P P O t Nanomechanical transducers based on cantilevers for bioanalysis Roberto Raiteri*, Suman Cherian*(1), Paolo Bonanno*, Alessandro Garibbo** * Department of Biophysical and Electronic Engineering, University of Genova, Via dell’Opera Pia 11a, Genova, Italy (1) Currently at ST Microelectronics, Singapore ** SelexCommunications, via Pieragostini 80, Genova, Italy Introduction he development and the diffusion of scanning probe microscopes (the scanning tunneling microscope (STM) and the atomic force microscope (AFM) in particular) has boosted the research in nanotechnology in the last twenty years, not only by providing new imaging techniques with atomic resolution, but also by offering the possibility to probe directly molecular interactions and to manipulate matter with nanometer precision. These capabilities are enabled mainly by the peculiar properties of the AFM probe: an extremely sharp tip integrated at the free end of a highly flexible, microscopic cantilever structure. T A cantilever is a long, thin beam, fixed at one end and free to move at the opposite one. Commercially available silicon microcantilevers are typically few hundreds (up to 700) of micrometers in length, tens of micrometer in width and one (or even less) micrometer in thickness. They are characterized by a purely elastic behaviour (i.e. they follow Hooke law) when deformed with a very low spring constant (down to few mN/m) and a high resonance frequency (in the order of tens of KHz in air), which results in dramatically limiting oscillations that may get caused by external mechanical noise. It is therefore possible to detect changes in the deflection of few nanometers without the need of antivibrating systems. In the last decade, transducers based on structures similar to AFM cantilevers have attracted an increasing interest throughout the international research community1-6. This interest was – and is – mainly due to the merging of different originally independent technologies and know-hows, such as silicon microfabrication techniques and surface functionalization biochemistry, together with the development of multi-cantilever detection methods, thus offering new opportunities in physical and (bio)chemical sensing. Indeed, microcantilevers can transduce a huge number of different kinds of signal, e.g. mass, temperature, heat, electromagnetic field and stress into a mechanical deformation that can be noticed and measured either through measuring a bending or a change in the resonance frequency, with a resolution which is orders of magnitude higher than that achievable with macroscopic structures. Fig. 1 summarizes these transduction principles. Coating the cantilever with a bioreceptor, which can range from single molecules such as nucleic acids or proteins up to whole cells, results into a biosensor capable to detect and quantify the presence of a biological and/or chemical target species with high selectivity and sensitivity. In the remaining of this paper, we will describe the work done developing a new sensing platform based on an array of microcantilever for bioanalytical purposes. Key characteristics will be described: the technique implemented to measure changes in the deflection of the microcantilevers belonging to the array and the design of the fluidic system, necessary to convey the sample to the sensing area, i.e. to the functionalized free end. We then focus on just one kind of bioanalysis: DNA sequence detection via hybridizationa of single stranded oligonucleotides and melting of double stranded oligonucloetides. The immobilization strategy implemented to immobilize the probes onto the cantilever surface and some experimental results should give a glimpse of the potential of the technique, and of the issues still open as well. Cantilever arrays and deflection detection The array we used in the experiments is composed of sixteen identical rectangular silicon cantilevers and four reference mirrors grouped into four separate wells as shown in Fig.2a. The reference mirror can be used to measure the absolute cantilever bending by calculating the difference in the output signals between the cantilever and the reference mirror on the position sensitive detector (PSD) as shown in Fig.2b. Cantilevers are fabricated from single crystal silicon and are 500 µm long, 150 µm wide, and 1 µm thick (Silex Microsystems, Bruttovagen, Sweden, Fig.2c). The upper side of each cantilever is coated with a 5 nm Ti/W adhesion layer and a 30 nm Au layer. The cantilevers in each well have a N e w s l e t t e r N ano t e c i t 5 R I C ER C A t & S V I L U P P O pitch of 250 µm, respectively. The supporting chip is 22 mm long, 5 mm wide and 500 µm thick. Optical readout MCS deflections are monitored using an optical beam deflection readout which employs a linear array of vertical cavity surface emitting lasers (VCSELs, wavelength of 760 nm) and an array of microfocusing lenses. The laser spots focused on the cantilever free ends are reflected by a gold surface to a linear PSD. The laser power can be adjusted individually for each VCSEL to obtain a desired intensity signal at the PSD. The PSD (20x20 mm2 sensing area) position can be adjusted with two micrometer screws to align reflected laser spots. With this design, cantilever bending can be measured down to 0.1 nm. The interference on the PSD from the external light can be minimized by housing the whole setup in a closed chamber. Flow cell and fluidic delivery system To deliver the carrier fluid and different sample solutions to the array, a syringe pump fluidic system was used. Each well is connected to one syringe, which can then be operated in parallel. The system consists of four valves for the carrier fluid, four syringes, four sample loops, four injection valves for sample solution, and one cartridge containing the fluid cell with the four wells (Fig.3). When the cantilever array is mounted in the cell, each well is isolated by an individual Teflon gasket. This enables the introduction of different carrier fluids and sample solutions into the different wells, thus allowing in parallel analysis of various recognition assays. The whole cartridge containing the flow-through cell can be heated up to 70 °C using a resistor embedded in the metal body of the cartridge itself, together with two temperature sensors. Syringes are driven by a single stepper motor and can dispense carrier fluid to the four wells simultaneously and at the same rate in the range 0.5–2000 µl /min. Between each syringe and the corresponding well, there is a standard sample injection loop connected to a six-port injection valve which is used to interchange the flow stream. Results Monitoring DNA hybridization and determination of melting temperature The detection of specific DNA sequences from biological sample is fundamental in different application fields, such as diagnostics, food analysis and detection of bacteria and viruses in the environment. Most of DNA detection techniques rely on the highly specific hybridization interaction between complementary sequences, i.e. a known sequence (also called probe) is allowed to interact with an unknown sequence (also called target); if hybridization takes place, one knows that the probe and target share a complementary nucleotide sequence7 8, 9. 6 N e w s l e t t e r N ano t e c i t We therefore immobilized short DNA sequences (25 bases) onto gold coated cantilevers using thiol-on-gold chemistry. (fig.4), and studied the cantilever deflection response when introducing the target DNA sequence in the solution. The diagram in fig.5 shows ten signals from the same array: the deflection of four cantilevers coated with a certain sequence (probe1, red curves in the diagram), the deflection of four cantilevers coated with a scrambled sequence (i.e. the same number of oligonucleotides as probeA, but in a different, random sequence: probeB, blue curves in the diagram) and, as a reference, the signal from two reference mirrors (green curves). After having flowed a saline buffer solution for several hours in order to let the system to reach equilibrium, we introduced at t = 9 min, a target sequence complementary to probeA. All cantilever coated with probe1 did respond by bending ≈ 25 nm from their starting position. On the other hand, the cantilevers coated with probeB bent only few nanometers. By flowing the buffer solution back, the cantilevers do not return to their original positions, thus showing a non reversible adsorption, as expected. Another parameter, which can provide information on the nucleotide content and about the sequence of double-stranded DNA molecules is the temperature at which the two strands of DNA separate in solution (DNA melting temperature)10-12. We therefore used cantilevers where hybridization was detected and, consequently, double strands of DNA were formed, and compared their deflection response to temperature changes with cantilevers coated with single-stranded oligonucleotides only. Fig. 6 shows the deflection of these cantilevers while the temperature was increased at 1 oC steps. Since the cantilevers are coated with gold on a side, they are sensitive to temperature (the well-known bimetallic effect), i.e. they bend away from the gold coated side when temperature increases, as it is clearly shown in the diagram. Ideally, without considering the transients due to thermal stabilization, the deflection varies linearly with the temperature. There is a certain temperature value, however, where the behaviour of the cantilever coated with the double-stranded DNA (red curves) differs from the cantilever coated with one strand only (blue curves), this can be clearly seen in the inset of fig.6. At T = 313.7 Kelvin the “red curves” show a local minimum, which correspond to a transient small bending (few nanometers) in the opposite direction (toward the gold side) of the cantilevers. This phenomenon can be explained as a bimetallic response to a local decrease in the temperature due to phase transition (DNA melting) that is taking place, precisely at that specific temperature, on the cantilever surface. As a matter of fact, on the cantilevers with only single-stranded DNA, this behaviour was not observed. Conclusions In this report we described a possible sensing platform based on the bending of an array of microcantilevers together with some R I C ER C A experimental results showing the capability to real-time monitoring, without the need of any label and getting high sensitivity, a fundamental biochemical process such as DNA hybridization and melting. Microcantilever sensors present several unique advantages: as shown, they can be applied to perform direct, label free detection and, at least in principle, they feature extremely high sensitivities due to their micro- nano-scopic dimensions; moreover, because of their small size, it is possible to develop large arrays of sensors and only very limited quantities of analyte are needed for detection. A small volume also means fast kinetics and short analysis time. Using batch silicon microfabrication technique to build microcantilever-based arrays allows mass production, reproducibility, and makes it possible to integrate these arrays with on-chip fluidics and electronics (e.g. for detection, data processing and transmission).However, the most promising feature probably resides in the flexibility of the transduction principle: in fact, microcantilever-based arrays can work in vacuum, gaseous, and liquid environment. The same simple mechanical structure can transduce force, mass, viscosity, heat and stress into a bending or a change of its resonance properties (frequency and Q factor). All the aforementioned features make micro- and nano-cantilevers a flexible general tool for lab-on-a-chip development. On the other hand, cantilever based sensors are still in a premature stage for real world application: a handful of technological challenges do remain and some fundamental issues are yet to be solved. & S V I L U P P O t From the technological point of view, main challenges affect: the reproducibility in the fabrication of small (nano) cantilevers; the development of sensitive integrated detection mechanisms and microfluidics to efficiently bring nanoliter volumes of sample onto the sensing area; the development of techniques for the reliable and automatic deposition of (bio)molecules on large arrays of small cantilevers. The mail fundamental scientific issue is developing a comprehensive theory to explain the mechanism, both at the molecular and microscopy level, of development of surface stress upon adsorption and ligand/receptor binding. This basic understanding is fundamental to optimize the efficiency of the transduction, in terms of the properties of the cantilever surface (e.g. roughness) and the bioreceptors immobilization strategy (e.g. use of flexible crosslinkers). Figure Captions: Fig. 2 (a) A sketch of the optical laser beam deflection readout system of the cantilever array. Four cantilevers and a fixed mirror are present within each of four wells (A, B, C, and D). The lasers beams are time multiplexed. (b) Cantilever bending is induced by the interactions of molecules with the sensing surface. z is the value of absolute bending between the reference mirror and the cantilever within the well. (c) Scanning electron microscope (SEM) micrograph of one well within the array. Fig.1 Schematic drawings (side view) of a variety of possible cantilever transducer principles: (a) force sensor with integrated tip for AFM; (b) “bimetallic” temperature and heat sensor; (c) mass loading sensor; (d) medium viscoelasticity sensor; (e) thermogravimetric sensor; and (f) stress sensor Fig.3 A schematic outline of the fluidic delivery system for the microcantilever array. N e w s l e t t e r N ano t e c i t 7 R I C ER C A t & S V I L U P P O Fig.4 Cartoon showing the lateral view of a cantilever coated with the thioled DNA probe. Oligonucleotides (25 bases) were conjugated with a short alkane chain ( (CH2)6, as a spacer) and a thiol group (HS-). Once introduced in solution the HS- binds strongly to gold thus forming a uniform monolayer of HS-(CH2)6DNA. The different layers are not in scale. Fig.6 Deflection response of the cantilever sensor to a stepwise temperature increase. Both cantilevers coated with a double-stranded DNA (red lines) and with single-stranded DNA (blue lines) responds to each temperature step increase bending away from the gold coated side (bimetallic effect), while the signal from reference mirrors is minimally affected (green lines). Inset: cantilever deflection in the temperature range [312.7 ; 316.7] where the average response to temperature of the cantilevers coated with the double-stranded DNA significantly differs from that of the cantilevers coated with single-stranded DNA. References Fig.5 Sensor response to the introduction of the target DNA sequence: deflection vs. time diagram of four cantilevers coated with a sequence complementary to the target DNA (red lines), four cantilevers coated with a scrambled sequence (blue lines), and two reference mirrors (gree lines). Before and after target DNA injection a continuous flow of buffer solution was maintained. Contacts Alessandro Garibbo Selex Communications via Pieragostini, 80, 16151 Genova tel +39-010-614-5543 [email protected] 8 N e w s l e t t e r N ano t e c i t 1. Thundat, T.; Oden, P. I.; Warmack, R. J., Microcantilever sensors. Microscale Thermophysical Engineering 1997, 1, (3), 185. 2. Moulin, A. M.; O’Shea, S. J.; Welland, M. E., Microcantilever-based biosensors. Ultramicroscopy 2000, 82, (1-4), 23. 3. Ziegler, C., Cantilever based Biosensors. Analytical and Bioanalytical Chemistry 2004, 379, (7-8), 946. 4. Raiteri, R.; Grattarola, M.; Butt, H.-J.; Skládal, P., Micromechanical cantileverbased biosensors. Sensors and Actuators B-Chemical 2001, 79, 11. 5. Yan, X.; Ji, H.-F.; Thundat, T., Microcantilever (MCL) Biosensing. Current Analytical Chemistry 2006, 2, (3), 11. 6. N. V. Lavrik, M. J. S., P. G. Datskos, Cantilever transducer as a platform for a chemical and biological sensors. Review of scentific instruments 2004, 75, (7), 25. 7. Mukhopadhyay, R.; Lorentzen, M.; Kjems, J.; Besenbacher, F., Nanomechanical sensing of DNA sequences using piezoresistive cantilevers. Langmuir 2005, 21, (18), 8. 8. McKendry, I.; Zhang, J.; Arntz, Y.; Strunz, T.; Hegner, M.; Lang, H. P.; Baller, M. K.; Certa, U.; Meyer, E.; Guntherodt, H. J.; Gerber, C., Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proceedings of the National Academy of Science 2002, 99, (15), 9783. 9. Wu, G.; Ji, H.; Hansen, K.; Thundat, T.; Datar, R.; Cote, R.; Hagan, M.; Chakraborty, A.; Majumdar, A., Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, (4), 4. 10. Ririe, K. M.; Rasmussen, R. P.; Wittwer, C. T., Product Differentiation by Analysis of DNA Melting Curves during the Polymerase Chain Reaction. Analytical Biochemistry 1997, 245, (2), 154-160. 11. Zhou, L.; Wang, L.; Palais, R.; Pryor, R.; Wittwer, C., High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clinical Chemestry 2005, 51, (10), 7. 12. Reed, G.; Kent, J.; Wittwer, C., High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 2007, 8, (6), 11. R I C ER C A & S V I L U P P O t Innovative polymer - and lipid - based nanotechnologies for drug and nucleic acid delivery G. Cavallaro, E. F. Craparo, G. Giammona, M. Licciardi, F. S. Palumbo, G. Pitarresi(*) Laboratory of Biocompatible Polymers Dipartimento di Chimica e Tecnologie Farmaceutiche, via Archirafi 32, 90123, Palermo, Italy (*) authors are inserted alphabetically Introduction n the recent years the research in pharmaceutical field focused its attention always less frequently on the discovery of new chemical entities, a long and expensive process, and always more often on the development of innovative technological formulations and systems (Drug Delivery Systems, DDS). These systems help drug delivery optimization, bioavailability and in general pharmaceutical performance of already known drug molecules. I DDS are able to improve drug water solubility, and to increase its chemical stability, allowing its administration also through routes, otherwise not feasible. Moreover, targeted DDS are able to promote drug accumulation into the target organs, decreasing administered dose and consequently side and toxic effects. Specific advantages are offered by colloidal delivery systems, in other term nanotechnologies for delivery of bioactive agents [1]. Nanotechnologies used for modified and targeted drugs, including conventional organic molecules, peptides, proteins, nucleic acid based drug molecules (NABDs), such as siRNA, antisense, are constituted by nanostructured materials at colloidal size (1500 nm), able to release biologically active agents, chemically or physically incorporated, into specific sites and within well defined interval times, also in consequence of answer to specific stimuli: pH variation values, electric field, presence of enzymes. These systems are characterized by: • nanoscaled dimensions, able to allow their direct interaction with cell components of the ill tissue at molecular level; • ability to incorporate high amount of active molecules (high drug loading amounts) with subsequent increase of the efficiency of the drug delivery systems; • well defined and narrow size distribution, that allows to obtain standardized drug release amount and rate; • ability to delivery an intact form of chemically or physically unstable drugs, by increasing their bioavailability and decreasing administered doses, or making possible their administration, such as for nucleic acid based drugs (NABDs); • ability to obtain an efficient localization of the drug in the target site, through the use of targeting portions, properly anchored on the surface of the nanosystems and characterized by high cell specificity. The preparation of efficient nanotechnologies for drug delivery needs [2]: - the proper choice of innovative materials (often based on natural or synthetic polymeric structure), depending on their compatibility, chemical and structural versatility; - biophysical and technological characterization of obtained nanosystems, particularly concerning size distribution, surface properties, porosity, changeability, ability of drug loading, physical stability, ability to constitute stable composite medicines (in the presence of proper excipients); - the proper choice of drug molecules to use particularly concerning NABDs and peptides. The great interest toward these nanostructured systems, as driving strategy in drug delivery, derives from the wide versatility of this kind of approach, that can be successfully used for the treatment of pathologies characterized by a strong impact on public health, such as tumoral pathologies, exploiting the physiopatological properties of nanosystems, of accumulating into the tumor mass by enhanced permeability and retention (EPR) and neurodegenerative pathologies (Alzhaimer, Parkinson), for the ability of some of these systems, if properly targeted, to reach CNS and here release drug molecules. The improvement of the drug delivery and targeting, by above cited pharmaceutical technologies, received excellent impetus by the use of synthetic polymeric materials, for synthetic polymers have some striking advantages as materials for DDS. In fact polymeric materials are characterized by an excellent chemical versatility allowing the production of systems with different chemical and physicochemical properties, able to satisfy different pharmaceutical requests; in other terms, synthetic polymers can be proN e w s l e t t e r N ano t e c i t 9 R I C ER C A t & S V I L U P P O perly tailored for specific aims for what they are designed. Among polymeric materials, polyaminoacids are a very interesting class because of their protein-like nature and the possibility of preparation by synthesis. They can be considered as a compromise between natural and synthetic macromolecules being biocompatible and with the advantage to possess a more regular arrangement and a smaller diversity of amino acid residues than natural proteins. Two very interesting synthetic polyaminoacids employed for the preparation of oral DDS are α,βpoly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) [3,4] and α,β-polyaspartylhydrazide (PAHy)[5-6], both derivated from a polysuccinimide (PSI) with a high molecular weight, by reaction with ethanolamine or hydrazine, respectively. These polymers, initially proposed as plasma expanders, are water-soluble, non-toxic and non antigenic. Moveover they are produced by simple and reproducible reactions, with high yield and low cost. Among natural macromolecules useful for preparation of colloidal DDS, polysaccharides, such as dextran, hyaluronic acid and inulin, play an important role, because they are easily found, at low cost and, if necessary, susceptible to chemical derivatization to modify their physicochemical properties. In many cases, in order to modulate various intrinsic properties of oral drug delivery systems, such as for example water affinity and enzymatic biodegradability in the gastrointestinal tract, it is possible to prepare easily and at low cost, composite materials based on combination between polysaccarides and polyaminoacids, bearing or not polyethers, like PEG or polyesters like polylactic acid (PLA) and polylactic-co-glycolic acid (PLGA). These composite materials generally show different degradation and release profiles, respect to polysaccharides or polyaminoacids alone, that allow the formulator to modulate, as he needs, these parameters thus obtaining optimized performances of dosage form. Nanotechnologies in the Laboratory of Biocompatible Polymers (Palermo University) Since many years, researchers of the Laboratory of Biocompatible Polymers of the University of Palermo work on the design, preparation and chemical and pharmaceutical characterization of new polymer – and lipid – based technological systems for the modified and targeted drug release. Nanostructured systems investigated in this laboratory include main nanomedicine systems, such as: • macromolecular prodrugs (drug-polymer conjugates) • polymeric micelles • interaction complexes (polymer/protein complex) • polyplexes (polymer-DNA complexes) • nanoparticles. 10 N e w s l e t t e r N ano t e c i t Figure 1: Nanostructured systems for drug and gene delivery Macromolecular prodrugs In macromolecular conjugates, active agents are covalently linked to hydrophilic polymeric carrier by hydrolizable bonds, so that the hydrolysis of active agent/polymer linkage is necessary to its release and to obtain the effect. The main advantage of these systems is constituted by their ability to efficiently protect linked drug molecules, whereas one drawback is represented by the limited capacity to carrier drug, without undesirable changes of physic-chemical properties of drug-polymer conjugates. Different drug-polymer conjugates using PHEA as starting carrier were synthesized and characterized [7-10]; the ability of these systems to increase water-solubility and chemical stability of drugs as well as to increase bioavailabity and target accumulation was shown. [7-10]. Polymeric micelles are colloidal systems obtained by self-assembling of amphiphilic copolymers above critical aggregation concentration (CAC) through the occurring of physical interactions and in that the drug can be incorporated by physical or chemical linking to polymeric surfactant. The ability of micelle constituting polymeric surfactants to promote drug absorption increases drug membrane crossing, thus strongly improving drug bioavailability. Moreover, also polymeric micelles, for their small size can be absorbed giving circulating nanodevices able to slowly release drug molecules. PHEA based polymeric micelles were proposed to carrier antitumoral drugs as well proteins with strong improvement in drug bioavailability in vivo [12-14]. Physical polymeric complexes are nanosystems in that synthetic copolymers are properly designed and realized in order to complex by physical interactions small molecules or macromolecules. Colloidal resulting systems are able to strongly stabilize R I C ER C A and protect peptide and protein molecules, allowing their administration for different administration routes. Application fields include successful oral delivery of peptides, proteins and vaccines. Therefore these polymeric materials are able to reversibly complex peptide or protein molecules (hugging like) and to release them in the intact form after absorption in blood circulation. The ability of polyaminoacidic systems to oral administer proteins was demonstrated by in vivo studies [15]. Polyplexes Polyplexes (InterPolyElectrolyte Complexes, IPECs) are physical interaction complexes obtained by electrostatic interaction between cationic polymers (positively charged) and genetic material (such as plasmids or nucleic acid based drugs, negatively charged); these systems are able to condense genetic material (until to colloidal size) and to neutralize its negative charges, in order to make possible its introduction into cells and besides they protect DNA from nuclease degradation improving transfection efficiency. PHEA and PAHy cationic copolymers have been showed to be non toxic and able to transfect plasmid to cells in vitro[16-18] Polymeric and lipid nanoparticles Polymeric nanoparticles are drug loaded nanomatrices obtained by chemical or physical crosslinking of properly derivarized macromolecules. Drug release from nanoparticles (especially from oral route) can occur by response to external stimuli such as pH or biological events, such as the activity of specific enzymes. Stealth nanoparticles based on PHEA copolymers allowed successfully to escape reticulo-endotelial system [19]. Nanoparticle can be characterized by swellable nature and in this case the constituting nanomatrice has hydrogel properties. Hydrogels are polymeric three-dimensional networks, obtained by physical or chemical crosslinking, that in contact with an aqueous medium (e.g. in a physiological/biological environment), are able to swell by taking up from 10-20% up to thousands of times their dry weight in water. As a consequence of their water affinity, hydrogels do not cause irritant effects on tissues or organs. For this reason, hydrogels are very attractive systems especially for oral drug release because they combine a good tissue biocompatibility with the possibility to modulate in appropriate way the release rate of therapeutic agents [20, 21]. & S V I L U P P O t • “stimuli-responsive” hydrogels, that exhibit large volume changes in response to small changes in external environment conditions, such as pH, temperature, electric field, light, etc. Stimuli-responsive hydrogels are also indicated as ”intelligent” or “smart” materials because they have both sensor and effector functions (Figure 2). In particular, pH-responsive hydrogels are frequently used to develop drug delivery systems for oral administration; in fact, the difference of pH between the stomach and the intestine is large enough to generate a pH-dependent swelling that promotes drug delivery (Figure 3). If necessary, biodegradable hydrogels can be prepared that undergo a selective hydrolysis in the intestinal tract, e.g. by colonic enzymes (Figure 3). PHEA and PAHy based hydrogels showed good biodegradability and the possibility to obtain particulate systems with well defined and narrow size distribution [22, 23]. Figure 2 – Schematic representation of “Smart Hydrogels” Chemical hydrogels can be obtained by easy, fast, safe and at low cost methods, such as the use of chemical crosslinking agents or by UV, gamma or microwave irradiation. Taking into consideration the dependence of swelling behaviour on the environmental conditions, these systems can be produced as: • “conventional” hydrogels, which are usually uncharged and exhibit no significant change in swelling as a function of the external environment; Figure 3 – Nanosystems for colon targeted drug delivery N e w s l e t t e r N ano t e c i t 11 R I C ER C A t & S V I L U P P O Lipid nanoparticles Besides polymeric materials, also natural lipids can be used as nanoparticles to prepare colloidal drug delivery systems. These systems, due to their nature and size, can be absorbed in the intestinal tract (by enterocytes and M cells of Peyer’s patches), then they arrive to the blood circulation. It is also possible to prolong their blood circulation time by producing stealth lipid nanoparticles. This allows to prolong blood time residence of drug and its efficacy. Lipid nanoparticles are particularly useful for I.v. administration of drugs for the treatment of nervous central system diseases, since they are able to cross the blood brain barrier [24]. Conclusions Nanotechnologies represent today a very promising approach to design and obtain drug and gene delivery systems able to reduce drug dose, improve drug stability and water solubility and in general optimize pharmaceutics and cell targeting and uptake of drug delivery systems. In the Laboratory of Biocompatible Polymers of the University of Palermo different nanotechnologies have been produced for drug and gene delivery; in particular: macromolecular prodrugs, able to strongly increase bioavailability of drugs and to target them toward specific cells (7, 11); polymeric micelles able to significantly increase water solubility and again bioavailability also of protein drugs (12-14); physical polymeric complexes that are able to make possible the oral administration of protein (15); polyplexes with very high transfection efficiency for gene and oligonucleotide therapy (18) and nanoparticles based on lipid or/ polymer with excellent biocompatibility and good release profile (19, 23, 24). These nanotechnologies have been successfully proposed in nanomedicine, but also their application in diagnostics and cosmetics is attractive. References 1) Tumour-targeted nanomedicines: principles and practice, T. Lammers, W. E. Hennink and G. Storm, Br J Cancer 99 (3), (2008) 392-397. 2) Polymer conjugates as anticancer nanomedicines, R. Duncan, Nature Reviews cancer 6 (9), 2006 688-701. 3) Water-soluble copolymers of an antiviral agent: synthesis and their interaction with a biomembrane model, G. Giammona, B. Carlisi, G. Pitarresi, G. Cavallaro and V. Turco Liveri J. Control. Release 22 (1992) 197-204. 4) Viscosimetric investigation of the interaction between sodium dodecylsulfate micelles and a polymer drug carrier, G. Cavallaro, G. Giammona, G. La Manna, S. Palazzo, G. Pitarresi and V. Turco Liveri, Int. J. Pharm. 90 (1993) 195-201. 5) A new water-soluble synthetic polymer, α,β-Polyasparthy hydrazide, as potential plasma expander and drug carrier, M G. Giammona, B. Carlisi, G. Cavallaro, G. Pitarresi and S. Spampinato, J. Control. Release 29 (1994) 6372. 6) Conformational analysis of α,β-poly(N-hydroxyethyl)-D,L-aspartamide (PHEA) and α,β -Polyasparthydrazide (PAHy) polymers in aqueous solution, T. Coviello, Y. Yuguchi, K. Kajiwara, G. Giammona, G. Cavallaro, F. Alhaique and A Palleschi, Polymer 39 (1998) 4159–4164 7) Chemical stability and bioavailability of acyclovir coupled to α,β−poly(N12 N e w s l e t t e r N ano t e c i t hydroxyethyl)-D,L-aspartamide, G. Giammona, G. Puglisi, G. Cavallaro, A. Spadaro and G. Pitarresi, J. Control. Release 33 (1995) 261-271. 8) Coupling of the antiviral agent zidovudine to polyaspartamide and in vitro drug release studies, G. Giammona, G. Cavallaro, G. Pitarresi, G. Fontana and B. Carlisi, J. Control. Release 54 (1998) 321-331. 9) Synthesis, physico-chemical properties and biological characterization of a paclitaxel macromolecular prodrug, G. Cavallaro, M Licciardi. G. Giammona, P. Caliceti, S. Salmaso, Eur. J. Pharm. Biopharm. 58 (2004), 151-159. 10) Chemical conjugation of dexametasone to a polyaspartamide and in vitro evaluation studies, G. Cavallaro, L Maniscalco, G. Giammona, C. Civile, M. G. Mazzone, V. Enea, J. Drug Del. Sci. Technol. 14 (2004), 373-381 11) Folate-mediated targeting of polymeric conjugates of gemcitabine, G. Cavallaro, M. Licciardi, S. Salmaso, P. Caliceti, G. Giammona, Int. J. Pharm. 307 (2006) 258-269 12) Poly(hydroxyethyl) derivatives as colloidal drug carrier systems, G. Cavallaro, M. Licciardi, G. Giammona, P. Caliceti, A. Semenzato, S. Salmaso, J Controlled Rel. 89, (2003) 285-295. 13) Tamoxifen-loaded polymeric micelles: preparation and in vitro biological evaluation, G. Cavallaro, L. Maniscalco, M. Licciardi, G. Giammona, Macromol. Biosc. 4 (2004), 1028-1038. 14) Supramolecular association of recombinant human growth hormone with hydrophobized polyhydroxyethylaspartamides, S. Salmaso, R. Schrepfer, G. Cavallaro, S. Bersani, F. Caboi, G. Giammona, G. Tonon and P. Caliceti, Eur. J. Pharm Biopharm, 68 (2008) 656-666 15) Colloidal vectors at polyaminoacid structure for oral release of peptides and proteins and its attendant production method, M. Licciardi, G. Giammona , G. Cavallaro, G. Pitarresi, International Application number PCT/IT/2008/000376 16) Novel cationic copolymers of a polyasparthylhydrazide synthesis and characterization, G. Cavallaro, F. S. Palumbo, M. Licciardi, G. Giammona, Drug Delivery 12 (6) (2005) 377-384. 17) Synthesis and characterization of novel non toxic polyaminoacidic polycations for gene therapy, M. Licciardi, M. Campisi, G. Cavallaro, M. Cervello, A. Azzolina, G. Giammona, Biomaterials 27 (2006) 2066-2075 18) Polyhydroxyethylaspartamide-spermine copolymers: efficient vectors for gene delivery, G. Cavallaro, S. Scirè, M. Licciardi, M. Ogris, E. Wagner, G. Giammona, J. Controlled Release, 131, 54-63, 2008. 19) Pegylated nanoparticles based on a polyaspartamide. preparation, physico-chemical characterization and their intracellular uptake, E. F. Craparo, G. Cavallaro, M. L. Bondì, D. Mandracchia and G. Giammona, Biomacromolecules, 7 (2006) 3083-3092. 20) Hydrogels for biomedical applications, A. S. Hoffman, Adv. Drug. Del. Rev. 54 (2002) 3-12. 21) Hydrogels: from controlled release to pH-responsive drug delivery, P. Gupta, K. Vermani, S. Garg, Drug Discov. Today 7 (2002) 569-579. 22) Photocrosslinking of dextran and polyaspartamide derivatives: a combination suitable for colon-specific drug delivery, G. Pitarresi, M.A. Casadei, D. Mandracchia, P. Paolicelli, F.S. Palumbo, G. Giammona , J. Control. Release, 119 (2007)328-338. 23) Composite nanoparticles based on hyaluronic acid chemically crosslinked with α,β-polyaspartylhydrazide, G. Pitarresi, E.F. Craparo, F.S. Palumbo, B. Carlisi, G. Giammona, Biomacromolecules 8 (2007) 1890-1898. 24) Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimer’ disease: preparation, characterization and cytotoxicity studies, M.L. Bondì, G. Montana, E.F. Craparo, P. Picone, G. Capuano, M. Di Carlo, G. Giammona., Current Nanoscience 5(1) (2009) 00-00. Contacts Prof. Gennara Cavallaro, [email protected] Prof. Giovanna Pitarresi, [email protected] Prof. Gaetano Giammona, [email protected] Dipartimento di Chimica e Tecnologie Farmaceutiche, via Archirafi 32, 90123, Palermo, ITALY. R I C ER C A & S V I L U P P O t Interactions of engineered nanomaterials with biological systems: models and methods to assess risk determinants E. Bergamaschi (1), O. Bussolati (1), L. Migliore (2), R. Colognato (2), A. Magrini (3), A. Pietroiusti (3), M. Bottini (3), L. Ghibelli 3, J.M. Legramante (3), P. Boscolo (4), I. Iavicoli (5), S. Bellucci (5), A. Bergamaschi (5), S. Bellucci (5§) 1 Dipartimento di Clinica Medica, Nefrologia e Scienze della Prevenzione e Dipartimento di Medicina Sperimentale, Università degli Studi di Parma 2 Dipartimento di Scienze dell’Uomo e dell’Ambiente, Università di Pisa e NMI Unit, European Commission, DG-Joint Research Centre, Institute of Health and Consumer Protection, Ispra, (VA) 3 Dipartimento di Bio-patologia e Medicina del lavoro, Università di Tor Vergata, Roma 4 Dipartimento di Scienze Bio-mediche, Università degli Studi “G. d’Annunzio” Chieti-Pescara 5 Istituto di Medicina del Lavoro, Università Cattolica del “Sacro Cuore” e § INFN, Frascati, Roma 1. Introduction anotechnology is one of the key industries in Europe [1]. The estimated economic impact of nanoparticles in industrial, consumer, and medical products will be US$ 292 billion by 2010 and US $1 trillion by 2015 [2] The prosperity of our continent and out country will also depend on the safe and sustainable development of this emerging technology. Indeed, every new technology brings with it new risks and for nanotechnology, the potential health risks to workers and consumers are paramount. They can arise from exposure to nanomaterials (NM) either at work or through consumer products. Among the stakeholders there is an increasing awareness that these risks, if not assessed and managed properly, can prevent economic growth and deprive us of a much needed competitive edge, but more importantly could have grave potential consequences for human and environmental health [3, 4]. It is acknowledged that the risks associated with NM production and use must be considered using a precautionary approach [5] and that further research is essential to inform the management of these new and emerging risks. The need to research the potential hazards of ENP is evident from several EU-funded toxicology studies underway (e.g. NANODERM - bio-kinetics of TiO2 nanoparticles from dermal exposure-; NANOSAFE 2 - Safe production and use of NM: Development of risk assessment and management for secure industrial production of nanoparticles; PARTICLE RISK - Risk Assessment of ENP). The last call of the Sixth EU Framework Programme (FP6) funded at least two projects to study the mechanisms of interaction between engineered nanoparticles (ENP) and the living system, e.g. the NANOSH and NANOINTERACT [6]. In the first call of the Seventh EU Framework (FP7), more projects on the risk asses- N sment of ENP have been selected. In addition, national governments - including those of the UK, Denmark, France, Germany and Belgium - are also funding studies on the toxicology of ENP. 2. Rationale for a research project aimed at assessing nanobio-interactions By tailoring the structure at the nanoscale it is possible to engineer novel materials that have entirely new physicochemical properties as compared to bulk materials. The unusual physicochemical properties of NM are attributable to the higher surface to volume ratio associated with nanoparticles (NP) and the quantum effects that occur in the nanometre scale. However, chemical composition, surface structure (reactivity, surface groups, inorganic or organic coatings), solubility, shape and aggregation should also be considered. Although impressive from a physicochemical point of view, the novel properties of NM raise concerns about adverse effects on biological systems, since they may favour enhanced uptake and interaction with several cell types and tissues [7, 8]. In environmental and industrial toxicology, there are established protocols and terminology describing how to assess risk and what standard of proof must be met. Accepted and standardized tests and models have been set up and are in place to allow for an evaluation of any new chemical or material against existing benchmarks and to categorize their associated risk level. Hazard identification is the process of determining whether exposure to an agent can lead to adverse health and environmental outcomes, whereas hazard characterization defines the relationship between the dose of an agent and the occurrence of adverse effects in exposed population. Being aware of the health issues concerning engineered nanoN e w s l e t t e r N ano t e c i t 13 R I C ER C A t & S V I L U P P O materials, in 2006, some Italian scientists mainly concerned with occupational health risk issues funded a consortium to develop an effective approach for improving the assessment and to suggest the management of potential health risks from exposure to engineered nanoparticles. Here we report on some findings obtained in the framework of a collaborative research project granted by the Italian Ministry of University and Research (PRIN-MIUR 2006069554). The following table (table 1) summarizes the Institutions participating and their expertise. Relying on the collaboration of researchers with different scientific backgrounds the present research project was aimed at: a) clarifying the mechanisms underlying the toxicity of different NM, such as carbon nanotubes or NP of metallic elements, so as to yield a solid toxicological rationale based on structure-function relationships and on relevant biological responses; b) developing experimentally validated, reliable in vitro methods to assess NP toxicity, so as to characterize a battery of tests suitable for human health risk assessment of newly synthesized NM. 3. Interactions of carbon nanotubes with airway epithelial cells: how physical features affect the biological behaviour. Although they are attractive because of their innovative mechanical and electrical properties, engineered CNTs raise some concerns about the inhalatory hazard and the possible long-term consequences, because they have three properties that are clearly associated with particle pathogenicity: i) they are nano-sized, and so could have more toxicity than larger-sized particles; ii) they are fibre-shaped and so might behave like pathogenic fibres and, hence, exhibit toxic properties referable to their needle-like shape; iii) they are essentially graphitic, i.e. not soluble in a neutral or mild acid pH and, therefore, potentially biopersistent, i.e. they do not undergo chemical dissolution and breakage in tissues [9]. The pathogenicity of CNTs also depends on the mechanisms by which they interact with resident cells. Whereas macrophagic cells appear relatively resistant to cytotoxicity or induction of apoptosis by CNT, lung epithelial cells have been reported to undergo significant toxicity when exposed to CNTs. However, the consequences of CNT exposure have been much less studied in airway epithelial cells (AEC) than in macrophagic cells, although the former represent the first body barrier for inhaled particles and the contact between the NM and these cells may be prolonged [10]. Table 1: Institutions participating to the research project granted by the Italian Ministry of University and Research (PRINMIUR 2006069554), the people involved and the groups’ expertise. Research Units and Institutions People Dipartimento di Clinica Medica, Nefrologia e Scienze della Prevenzione e Dipartimento di Medicina Sperimentale Università degli Studi di Parma Istituto di Medicina del Lavoro, Università Cattolica del “Sacro Cuore” e INFN Frascati, Roma Dipartimento di Bio-patologia e Medicina del Lavoro, Università di Tor Vergata, Roma e Burnham Institute for medical research, La Jolla, CA, USA Dipartimento di Scienze dell’Uomo e dell’Ambiente, Università di Pisa e NMI Unit, European Commission, DG-Joint Research Centre, Institute of Health and Consumer Protection, Ispra, (VA) Dipartimento di Scienze Biomediche, Università degli Studi “G. d’Annunzio” Chieti-Pescara 14 N e w s l e t t e r N ano t e c i t Enrico Bergamaschi (Project leader) [email protected] Ovidio Bussolati, BiancaMaria Rotoli, Massimiliano Bianchi Antonio Bergamaschi [email protected] Ivo Iavicoli, Stefano Bellucci Andrea Magrini [email protected] Antonio Pietroiusti, Massimo Bottini, Jacopo Legramante, Lina Ghibelli, Milena De Nicola Lucia Migliore [email protected] Renato Colognato, Alessia Bonelli Paolo Boscolo [email protected] Mario Di Gioacchino Expertise Identification of the structural determinants affecting the trans-epithelial permeability of NM; characterization of dose-effects and –response relationships of distinct types of NP on biologically relevant cell types Exposure assessment and characterization of micro - and nanoparticles; synthesis and functionalization of new NP; advanced microscopy techniques Cell internalization and intracellular distribution on NM; CNT with different chemical functional groups and of supramolecular nanoassemblies; animal models to assess cardiovascular effects Molecular and cellular effects on DNA: primary oxidative and chromosome damage by single cell assays (Comet and micronucleus); subcellular and molecular targets of NP and CNT genotoxicity Characterization of the effects of distinct types of NP on immune cell types R I C ER C A One of the most important characteristics of AEC is the maintenance of tight junctional complexes that allow strictly polarized secretory functions, prevent the entry of pathogens and chemicals, and may participate in signal transduction that regulate gene expression [11]. This property is maintained by several airway cell lines, such as CaLu-3, a cell line derived from a human lung adenocarcinoma. These cells have the capability, once cultured on permeable filters, of forming very tight monolayers with transepithelial electrical resistance (TEER) values > 1000 Ohm/cm2. Using CaLu-3 cells we carried out our experiments [12] with commercial single-walled (SWCNT) or multi-walled CNT (MWCNT), presenting a low level of metal contamination although synthesized through the carbon vapour deposition (CVD) method, or with a mixture of MW/SW CNT synthesized with the arc discharge method (AD-CNT) [provided by Dr. S. Bellucci from the National Institute of Nuclear Physics (INFN - Frascati, Rome)], totally metalfree. Carbon Black (Printex 90 14 nm diameter – Degussa, Italy) was used as a control, amorphous probe. All the NM were used at doses ranging from 5 to 100 microg/ml. The carbon nanomaterials, used at the highest nominal dose [100 µg/ml], had very different effects on TEER (Panel A). Whereas laboratory-grade NT and CB were completely ineffective, MWCNT produced a progressive decrease in TEER. SWCNT produced a late and smaller, although significant, TEER decrease. Figure 1. Carbon nanotubes lower the trans-epithelial electrical resistance (TEER) of Calu-3 cell monolayers. Empty symbols, control filters maintained in the absence of CNT. The figure shows representative experiments repeated three times with comparable results. Data are means ± S.D. *p < 0.05, **p < 0.01 vs. untreated cultures [from Ref. 12]. If C-nanomaterials were added during the establishment of tight functional complexes, as assessed from the progressive increase & S V I L U P P O t of TEER during the growth of CaLu-3 monolayers, their effect was again strictly dependent on the type of material used. For instance, MWCNT had a profound inhibitory effect and substantially suppressed the formation of a high-resistance epithelium. The suppression of the barrier function was associated with an increase in the paracellular (i.e. between cells and not through the cells) permeability of CaLu-3 monolayers to mannitol, without substantial changes in cell viability [12]. Since the maintenance of the barrier efficiency is a very important factor for the prevention of respiratory diseases and the determination of the biological effects of exposure to xenobiotics, it is conceivable that MWCNT-induced changes may have important functional consequences, such as the enhanced sensitivity to pathogens and the increased likelihood of extra-pulmonary translocation from the airways to other body compartments [11, 12] The observed changes are independent on the mass concentration of the material and could attributed to the high number of structural irregularities, which could greatly increase their chemical reactivity. However, it is known that also fibre length plays an important role in determining the potential toxicity of nanofibres because it influences their persistence in the respiratory tract. Time of incubation (days) Figure 2: Effect of MW carbon nanotubes on the trans-epithelial electrical resistance (TEER) of tight Calu-3 cell monolayers. Squares, control filters maintained in the absence of nanomaterials. Triangles, filters exposed to the nanomaterials indicated in each panel. Data are means ± SD of three independent determinations in a representative experiment repeated twice with comparable results. ** p < 0.01 vs. control, untreated cultures measured at the same experimental time (7d of treatment). [From Ref. 13] N e w s l e t t e r N ano t e c i t 15 R I C ER C A t & S V I L U P P O I ��������������������������������������������������������������� n separate experiments [13], we assessed the role of CNTs length on the airway barrier dysfunction. Commercial CNT used in this study were “Long” MWCNT (Aldrich 659258), largely made of multi-walled nanotubes (carbon content > 90%), with residual amorphous carbon and metal traces (iron < 0.1%); “Short” MWCNT (Aldrich 636843) with a carbon content > 95%; “Long” SWCNT (Aldrich 636797), consisting by >50% of single-walled CNT and by 40% of other CNT; “Short” SWCNT (Aldrich 652512) which are >90% “pure” SWCNT. The daily measurement of the trans-epithelial electrical resistance up to 7d of treatment indicated that only L-MWCNT (Figure 2, panel A) and, to lesser extent, L-SWCNT, produced an appreciable and progressive decrease in TEER, while the shorter counterparts (Figure 2, panel B) were without any significant effect. No overt alteration in the expression of the junctional proteins occludin and ZO-1 at messenger (mRNA) level was detectable for any nanomaterial used. These data points to a structure-activity relationship, although the precise determinants of toxicity are still to be identified, and underlie some peculiar similarities with the toxic properties of asbestos fibres [13]. To study in detail the behaviour of polarized human AEC exposed to MWCNT, the most effective nanomaterial, we used confocal laser scanning microscopy. After several days of incubation, confocal images of the monolayer revealed CNT aggregates and tangles. By simultaneously labeling the monolayers with vital (calcein) and non vital dyes (propidium iodide), we were able to demonstrate that even a relatively brief contact with the MWCNTs aggregates is sufficient to induce cell death. Other morphological studies indicated that cells migrated on the MWCNT aggregates in the attempt to reconstitute a tight monolayer on the tangles, which, however, was not completely successful due to an enhanced rate of apoptosis of these elements. These data indicate that MWCNT did not cause a generalized damage of the epithelial monolayer but, rather, focal lesions corresponding to the areas of contact with the MWCNT tangles. Structural features of the nanomaterials seem a major determinant, since the “shorter” counterparts of effective MWCNT (0.5-2 ���������������������� μ��������������������� m vs. 5-9 μ���������� ����������� m, respectively) do not seem to share the same cytotoxic effects. The overall hypothesis that emerges from these studies is that MWCNT aggregates, persisting in close contact with the epithelial monolayer, are covered by epithelial cells and, hence, included in the epithelium. Hence, these data support the possibility that MWCNT induce lung-blood barrier focal dysfunctions restricted to areas of adhesion of the epithelium to the aggregates in the absence of generalized cytotoxic effects on the airways [14]. 4. Molecular and cellular effects on DNA of metal-based nanoparticles and carbon nanotubes: primary oxidative and chromosome damage. One of the major hypothesis of metal toxicity deals with the production of Reactive Oxygen Species (ROS), triggering DNA da16 N e w s l e t t e r N ano t e c i t mage by oxidative stress [15]. CNTs are able to bind DNA, thereby possibly affecting directly its integrity. Primary DNA damage can be assessed by the standard Comet assay, while its modified version allows also the detection of oxidative DNA damage. Genotoxicity can also be assessed by the micronucleus test, which detects DNA damage at chromosome level, and abnormalities of the mitotic spindle. 4.1. Molecular and cellular effects of Cobalt nanoparticles on DNA Targeted drug delivery is the uptake and the distribution of a drug in the body which can be controlled in order to reach only targeted tissues or organs directly at cellular or subcellular level. A specific application of targeted drug delivery is the treatment of solid tumours, by injecting metal nanoparticles (MNP) which, under a magnetic field, increased their temperature thus activating necrotic and apoptotic mechanisms in tumour cells (hyperthermia). One of the most promising compounds for this purpose is cobalt ferrite magnetic nanoparticles. However, cobalt and its compounds are classified as possibly carcinogenic to humans (IARC group 2B) and, depending on the considered cobalt species, different toxicity outcomes, including mutagenicity and carcinogenicity, can be observed. Preliminary studies of our group were thus aimed at assessing the possible genotoxic and cytotoxic effects of CoFe2O4 particles (CoFe), of different sizes, by means of the micronucleus test (MN) in human lymphocytes [16]. Nanosized CoFe (5.6 nm) have shown a significant decrease of the cytokinesis blocked proliferation index (CBPI), a marker of citotoxicity (p<0.05) starting from a concentration of 5 µM, in parallel to a slight, but significant increase in the frequency of micronucleated binucleated lymphocytes (BNMN) (p<0.05). CoFe at 10 µm produced a significant increase in BNMN at a 10-fold higher concentration if compared to nano CoFe, but little, if any, cytotoxic effect. For CoFe particles of 120 µm no significant effect in both indices was detected. These effects were flattened, though not abolished, following the organic grafting, thus suggesting that the organic grafting prevents the cobalt leaching in cellular medium, which should be considered the true responsible for the genotoxic effects and the decrease in cell proliferation. Molecular mechanisms that trigger the toxic capacity of magnetic nanomaterials, are not well understood, but such NP have the tendency to localize preferentially at mitochondrial level, thus inducing free radical production and the activation of an oxidative stress pathway, while bigger particles can activate other molecular pathways. In further experiments [17], we assessed whether metal cobalt nanoparticles (CoNP 50 nm as single particles) are genotoxic compared to cobalt ions. Genotoxicy was evaluated by incubating human peripheral leukocytes of healthy donors with subtoxic concentrations (10-5 to 8 x 10-5 M) of cobalt chloride (as a source R I C ER C A of Co2+), CoNP and ‘washed’ CoNP, the latter to exclude any interference by Co2+. On a group basis, Co2+ induced an increase of the micronucleus frequency, whereas CoNP showed only minor changes. The comet assay, which detects the amount of damaged DNA, showed a statistically significant dose-related increase in DNA fragmentation (% tail DNA) in leukocytes treated with CoNP (P < 0,001), whereas Co2+ did not induce significant changes over control values (Figure 3). Figure 3. Dose dependent modulation of Co2+, CoNP-induced DNA damage in isolated human peripheral leukocytes of three donors after 2h of exposure. Values refer to the different donors and are expressed as mean of % of tail DNA of 100 cells counted. Symbols *, **, and *** represent a statistical significance of P<0.05; P<0.01; and P<0.001 respectively (calculated by Fisher’s exact test). [From Ref. 17] Uptake experiments carried out at the JRC, showed that CoNP are able to cross cell membranes and to be efficiently internalized in blood leukocytes as compared to Co ions, leading to the observed genotoxic effects, which are, however, modulated both by donor’s characteristics and/or by Co2+ release [17]. 4.2. Genotoxicity of carbon nanotubes On the other side, we assessed the induction of DNA and chromosome damage following in vitro exposure to (CNTs) by using a macrophagic cell line. To detect the oxidative DNA damage, the micronucleus assay was performed in its alkaline modified version, which employs two enzymes involved in the excision repair (i.e. the repair of the damaged DNA by cutting the damaged bases), i.e. endonuclease III and formamidopyrimidine-glycosylase. The experiments were carried out by using increasing mass concentrations (from 10 ng/ml to 100 µg/ml) of two different types of commercially available CNTs: a mixture of single-walled (SW-) and multi-walled CNTs (MW-CNT) (S/MWCNTs 80:20), and a MWCNT preparation ( > 90%). In cells treated with the mixture of CNT, the number of micronucleated cells was significantly increased above that of the vehicle control at doses ≥ 0.1 µg/ml, whereas MWCNTs determined the same effect at slightly higher concentrations (1 µg/ml) (P < 0.05, Fisher’s exact test). Both type & S V I L U P P O t of CNTs determined a oxidative damage to DNA as revealed by increasing amounts of oxidised purines and pyrimidines and the dose-dependent increase of DNA single strand-breaks. However, following SWCNTs treatment, the oxidised purines increased only two times as compared to baseline values, whereas the pirimidines showed a dramatic ten-fold increase (P< 0.001). In cells treated with MWCNTs, a significant increase in DNA migration was seen, but it was independent on the mass concentrations (from 1 to100 µg/ml). These findings suggest that CNTs can induce DNA damage at chromosome and nuclear levels in cell line representative of first defence mechanisms [18]. 5. Carbon nanotubes affect the cardiac autonomic regulation It is known that the ultrafine component (UF) of airborne pollution may impair cardiovascular autonomic control, a high-risk condition for adverse cardiovascular outcomes [19]. Since engineered nanoparticles, such as single-walled carbon nanotubes (SWCNT), share physico-chemical properties with carbonaceous UF, we evaluated some cardiovascular parameters in a rat model undergoing two intra-tracheal instillations of SWCNT (1µg/gr body weight) at 2-weeks interval. SWCNT (CarboLex AP-grade, 50-70%, Aldrich, SteinheimGermany) produced by the arc-discharge process, employing CO in a continuous-flow gas phase as the carbon feedstock and Fe2(CO)5 as the iron-containing catalyst precursor and purified by the HNO3 acid treatment at room temperature, were used in this study. For their morphological and structural characterization, Raman spectroscopy and Scanning Electron Microscopy (SEM) were routinely used. The mean diameter, length and surface area of SWCNTs, were 1.2 - 1.6 nm, 2-5 nm and 300 m2/g, respectively. Surface area was determined by BET analysis. Arterial baroreflex function (BRF), arterial pressure and pulse intervals were continuously monitored by a telemeter catheter implanted in the abdominal aorta of the rats (Figure 4). The telemetric reports of freely moving animals showed ����������������� a significant decrease in the number of baroreflex sequences (from 498 ± 27.1 at baseline to 287 ± 40.2 at the post-four week recording; p<0.05) in SWCNT-instilled rats. Interestingly, the occurrence of baroreflex sequences showed an evident and significant trend to decrease in response to SWCNT exposure (427 ± 45.2, after 24 h, 386.0 ± 45.0, after 2 weeks, 287 ± 40.2, after 4 weeks, p<0.05 after 2 and 4 weeks). It is noteworthy that this event was not associated to a decrease in heart beat spontaneous fluctuations, as indicated by the lack of significant changes in both groups in the standard deviation of the heart rate time series (the main index of heart rate variability). BRS did not show significant changes during the whole experimental period both in controls and in SWCNT instilled rats, but the lack of statistical significance was probably due to the low number of animals. N e w s l e t t e r N ano t e c i t 17 R I C ER C A t & S V I L U P P O expected widespread use of this material in occupational and environmental settings in years to come. Figure 4. Number of baroreflex sequences at baseline and at different times following single walled carbon nanotubes instillations. Data are shown as mean + _ SEM. * P < 0.05 vs. baseline. The main finding of our studies is the demonstration that engineered nanoparticles affect the cardiac autonomic regulation; in particular, the repetitive exposure to SWCNT via intratracheal instillation used in our model can affect the baroreflex function, as revealed by a progressive significant decrease in the number of baroreflex sequences in exposed animals, but not in the control group. In contrast, the gain of the baroreflex control of sinus node (i.e., the physiological heart pace-maker), as estimated by the BRS, did not show significant changes both in exposed and non exposed animals [20]. Moreover, the relatively low amount of SWCNT used in our model may be considered similar, on the basis of available data on respiratory dust levels during laboratory handling of SWCNT, to cumulative exposures which can be reached in an occupational setting in less than two years [21]. The observed pattern of modification of the baroreflex function suggests a partial loss of sensitivity to arterial pressure and heart rate spontaneous fluctuations of the carotid and aortic baroreceptors, whereas the central baroreflex integration seems unaffected. Both direct and indirect mechanisms may link pulmonary exposure to SWCNT to the altered baroreflex function. Indeed, SWCNTs are able to induce a peculiar inflammatory pulmonary reaction [10] eliciting the release into the systemic circulation of inflammatory cytokines, which, in turn, may adversely affect the cardiac autonomic control. On the other hand, given their very small size, SWCNT may elude pulmonary macrophage uptake, gaining direct access into the systemic circulation. Therefore, a direct effect of SWCNT on specialized peripheral structures sending afferent stimuli to the brain, cannot be excluded. This finding, if confirmed by further studies, may have relevant implications in terms of public health, given the well known predictive role in cardiac mortality of the arterial baroreflex alterations and the 18 N e w s l e t t e r N ano t e c i t 6. Carbon nanotubes in nanomedicine and the role of functionalization The extremely high aspect ratio of CNTs, makes them ideal carriers for delivering doses of therapeutic and imaging cargos per targeting event. To overcome the major obstacles in the use of non-functionalized CNTs as nanocarriers, such as their complete aqueous insolubility and concerns about potential adverse effects due to the similarity with asbestos fibres, both non-covalent and covalent functionalization methods have been explored [22]. CNTs functionalization increase the solubility of CNTs and dramatically reduce their toxic effects [23] so as to allow their use, after the loading with small molecules, proteins, peptides or nucleic acids, as pharmaceutical, therapeutic and diagnostic tools [24-27]. The toxicity of pristine and oxidized MWCNT on human T cells, which would be among the first exposed cell types upon intravenous administration of CNT in therapeutic and diagnostic nanodevices, has been evaluated. Previous findings suggested that carbon nanotubes can be very toxic and induce massive loss of cell viability through programmed cell death at sufficiently high concentrations (>1ng/cell). Indeed, the effects of CNT on cell viability and proliferation depends on chemical status (e.g., pristine CNT on human T cell leukaemia Jurkat line was enhanced by the presence of carboxylic groups [28]) but also on cell types (phagocytic cells vs. non-phagocytic) [29]. Functionalization has been reported to decrease NT cytotoxicity. Chemically functionalized, water-soluble CNTs can target cells of the immune system and localize inside B and T lymphocytes, as well as in macrophages, without any effect on cell viability. However PEGylated CNTs activated macrophages and modify their subsequent capacity to respond to a physiological stimulus. Our group functionalized CNTs through adsorption of phospholipids terminated by PEG chains and used them to deliver antisense oligomers (ASO) into cultured cells and to target integrin-positive tumors in mice with a RGD peptide. Such PEGylated NTs were stably dispersed under physiological conditions, exhibited long blood circulation times and low uptake by the reticuloendothelial system (RES). Single administration of high doses did not lead to acute or chronic toxicity in nude mice [30]. Recently, our research group reported the fabrication of a multivalent, cell-type specific and cytoplasmic delivery system based on SWCNT. The CNT were functionalized through adsorption of phospholipids terminated by biotinylated PEG chains functionalized with fluorochrome-coupled neutravidin and, subsequently, with antibodies (anti-CD3epsilon and anti-CD28) for T cell receptor post-signaling endocytosis and a synthetic fusogenic polymer for the disruption of lysosomal compartments. The biomimetic nanoassemblies were composed by PEGylated individual/very small bundles of carbon nanotubes having an average length of R I C ER C A 176 nm (DS 77 nm). The nanoassemblies were stably dispersed under physiological conditions, visible by conventional optical and confocal microscopy and specifically targeted to T cells both in vitro and in living animals [31]. Those findings suggest that PNTs can work as an excellent scaffold for biological applications and the fabrication of nanocarriers. 7. Conclusions The responsible use of NM urgently requires the assessment of possible risks for the human health and the environment. For a proper risk assessment, there is the need to understand what physico-chemical properties of nanoparticles (NP) may be biologically relevant in determining potential hazard and toxicity. The interaction of NP with biological systems are not predictable on the basis of size and shape, and cannot be easily extrapolated from the knowledge based on larger scale materials [3-5]. To identify the hazard posed by NM, a combination of in vitro/ in vivo toxicology models is needed. In vivo models can help to estimate the dosimetry and effects on target organs following the translocation of NP in the body, whereas in vitro models are used to assess the quantitative structure-activity relation (QSAR) between physico-chemical NM attributes and specific cellular endpoints. A toxicological approach to health risk assessment of novel molecules requires studies at multiple, increasing levels of complexity, i.e. from biomolecules to cells, from in vitro to in vivo, from animal to man. Because in vivo experiments are expensive, time consuming, and ethically questionable, there is a strong demand for a low-cost high-throughput panel of in vitro assays without hampering the reliability of the risk assessment. By establishing a research consortium we assessed - and are still assessing - the interaction of some large volume production nano-sized materials, i.e. CNT and nanoparticles of metallic elements. The testing strategies adopted in the present project have been implemented as relevant models representative of possible interactions occurring in occupational and environmental exposure scenarios. Owing to their peculiar characteristics, each class of ENP should be individually considered for their capability of inducing specific biological effects. For instance, the cytotoxicity of CNT does depend on many other factors than concentration, including their physical form, diameter, length, and the nature of attached molecules or nanomaterials: carbon black, for instance, is less toxic than pristine CNTs (what shows the relevance of structure and topology); oxidized CNT are more toxic than pristine CNT. However, the toxic properties of CNT can be modulated by modifying surface characteristics making them suitable for biomedical applications. To date, the mechanisms of toxicity and the biological behaviour of newly synthesised NM are under investigation to assess their possible hazard and risks, and to establish a safe and responsible & S V I L U P P O t use of nanotechnology products. Whether this development may lead to additional hazard and health risks, will depend not only by the NM characteristics, but by the number of occupationally exposed people and at what levels of airborne nanomaterials they are exposed to, i.e. by the likelihood and the nature of exposure. Although experimental studies cannot replace the assessment of the actual exposure, they can contribute to identify the potential hazards posed by engineered NM and indicate the need of a precautionary approach and protective measures. Aknowledgements: The present Research Project was granted by the Italian Ministry of University and Research (PRIN-MIUR 2006069554). We are grateful to Dr. Andrea Porcari and Dr. Elvio Mantovani (AIRI-NanoTec) for the opportunity offered to disseminate some findings of our research activity. References [1] European Union: Directorate-General for Research Information and Communication Unit. 2004. Nanotechnology Innovation for tomorrow’s world. 56 pp. [2] Lux Research Inc. 2006. The Nanotechnology Report 4th Edition. New York, NY. [3] The Royal Society and the Royal Academy of Engineering. 2004. Nanoscience and nanotechnologies: opportunities and uncertainties. [4] Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB. 2006. Safe handling of nanotechnology. Nature 444:267-269. [5] Scientific committee on emerging and newly identified health risks (SCENIHR). Opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies SCENIHR/002/05. European Commission Health & Consumer Protection Directorate - General Directorate C - Public health and risk assessment C7 - risk assessment. 2005. [6] Thomas K, Aguar P, Kawasaki H, Morris J, Nakanishi J, Savage N. 2006. Research strategies for safety evaluation of nanomaterials, part VIII: International efforts to develop risk-based safety evaluations for nanomaterials. Toxicol Sci 92(1):23-32. [7] Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622-627. [8] Colvin VL. 2006. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166-1170. [9] Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. 2006. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5-22. [10] Shvedova, A. A., E. R. Kisin, R. Mercer, et al. 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol.Physiol 289:L698-L708. [11] Bergamaschi E, Bussolati O, Magrini A, et al 2006. Nanomaterials and lung toxicity. Interactions with airways cells and relevance for occupational health risk assessment. Int J Immunopathol Pharmacol 19 (4):3-10. [12] Rotoli BM, Bussolati O, Bianchi MG, et al. 2008. Non-functionalized multiwalled carbon nanotubes alter the paracellular permeabilità of human airway epithelial cells. Toxicol Lett 178: 95-102. [13] Rotoli BM, Bussolati O, Barilli A, et al. 2009. Airway barrier dysfunction induced by exposure to carbon nanotubes in vitro: which role for fibre length? Human & Exp Toxicol (in press) [14] Bergamaschi E. Interactions of carbon nanotubes with airway epithelial cells: N e w s l e t t e r N ano t e c i t 19 R I C ER C A t & S V I L U P P O mechanisms and possible implications for human health. A “G. Scansetti” Centre – NIS joint Colloquium “Carbon nanotubes between toxicity and biomedical applications”. Torino, June 27th, 2008. [15] Valko M, Morris H, Cronin MTD. 2005. Metals, toxicity and oxidative stress. Curr Med Chem 12:1161-1208. [16] Colognato R, Bonelli A, Bonacchi D, Baldi G, Migliore L. 2007. Analysis of cobalt ferrite nanoparticles induced genotoxicity on human peripheral lymphocytes: comparison of size and organic grafting-dependent effects. Nanotoxicology 1 (4), 301-308. [17] Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore L. 2008. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis, 23(5):377-382. [18] Migliore L, Bonelli A, Colognato R, et al. 2009. Carbon nanotubes induce oxidative damage in DNA of RAW 264.7 cells. Environ Mol Mutagenesis (in press) [19] Brook RD, Franklin B, Cascio W, et al. 2004. Air Pollution and Cardiovascular Disease. A Statement for Healthcare Professionals From the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 109:2655-2671. [20] Legramante JM, Valentini F, Magrini A, Palleschi G, Sacco S, et al., 2009. Cardiac autonomic regulation after lung exposure to carbon nanotubes. Human & Exp Toxicol (in press) [21] Mercer RR. et al. 2008. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. American Journal of Physiology- Lung Cellular and Molecular Physiology; 294:L87-L97. [22] Balasubramanian K and Burghard M. 2005. Chemically functionalized carbon nanotubes. Small 1: 180-192. [23] Sayes CM, Liang F, Hudson JL, et al. 2006. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161:135-140 [24] Prato M, Kostarelos K, Bianco A. 2008. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41: 60-68. [25] Polizu S, Savadogo O, Poulin P, Yahia L. 2006. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci Nanotechnol. 6(7):1883-1904 [26] Bottini M, Magrini A, Di Venere A, Bellucci S, Dawson MI, Rosato N, Bergamaschi A, Mustelin T. 2006. Synthesis and characterization of supramolecular nanostructures of carbon nanotubes and ruthenium-complex luminophores. J Nanosci Nanotechnol 6:1381–1386. [27] Bottini M, Cerignoli F, Tautz L, et al. 2006. Adsorption of streptavidin onto single-walled carbon nanotubes: application in fluorescent supramolecular nanoassemblies. J Nanosci Nanotechnol 6(12):3693-3698. [28] Bottini M, Balasubramanian C, Dawson MI, Bergamaschi A, Bellucci S, Mustelin T. 2006 Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J Phys Chem B Condens Matter Matter Surf Interfaces Biophys. 110:831-836. [29] Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T. 2006. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121-126. [30] De Nicola M, Mirabile Gattia D, Bellucci S, De Bellis G, Micciulla F, Pastore R, Tiberia AC, D’Alessio M, Vittori Antisari M, et al., 2007. Effect of different carbon nanotubes on cell viability and proliferation. J Phys Chem B Condens Matter Matter Surf Interfaces Biophys 19, 395013 (7 pp.). [31] Cato MH, D’Annibale F, Mills DM, Cerignoli F, Dawson MI, Bergamaschi E, Bottini N, Magrini A, Bergamaschi A, Rosato N, Rickert NC, Mustelin T, Bottini M. 2008. Cell-type specific and cytoplasmic targeting of PEGylated carbon nanotube-based nanoassemblies. J. Nanosci. Nanotechnol. 8: 2259. 20 N e w s l e t t e r N ano t e c i t Contact Prof. Enrico Bergamaschi, MD, PhD Department of Clinical Medicine, Nephrology and Health Sciences Unit of Occupational Medicine, University of Parma Medical School Via A. Gramsci, 14 - I-43100 Parma – Italy Tel. +39.0521.033096 Fax : +39.0521.033099 [email protected] R I C ER C A & S V I L U P P O t The research activities of DIMA on nanomaterials A. Corradi, C. Leonelli, T. Manfredini, F. Pilati, F. Bondioli, V. Cannillo, M. Messori, M. Romagnoli, C. Siligardi, P. Fabbri Università di Modena e Reggio Emilia, Dipartimento di Ingegneria dei Materiali e dell’Ambiente (DIMA) T he research activity carried out at the Dipartimento di Ingegneria dei Materiali e dell’Ambiente (DIMA) of the Università di Modena e Reggio Emilia has been traditionally devoted to materials science and technology with particular respect to ceramics, plastics, metals and composites. In the last decade great interest has been focused on nanomaterials and nanotechnology from both academic and industrial point of views. In the present paper the recent results of the research carried out by the different research groups present at DIMA are reported subdivided in these topics: 1.synthesis and characterisation of inorganic nanoparticles; 2.functionalisation of natural clay minerals for several applications; 3.nanomaterials applied to traditional ceramic materials; 4.glass-ceramic nanocomposites; 5.nanomaterials for polymer matrix composites; 6.modelling of nanomaterials. The research groups of DIMA have been, and are currently, coordinators of a great number of national and international research projects, scientific collaborations and academic formation programs with a wide feed back on the national and international industries. 1. Synthesis and characterisation of inorganic nanoparticles. In this field the research is mainly the synthesis of nanostructurated inorganic and metallic powders by using different non conventional methods. Chemical, thermal and mechanical properties are also faced. The aim is to optimize the production process according to the final destination of the product from both qualitative and economic point of view. Among the different used methods, the research group concentrated its efforts on the hydrothermal and solvothermal syntheses under microwave irradiation in a batch reactor as well as in a continuous flow reactor. When dielectric heating is applied via microwave irradiation, in fact, the homogeneity of the temperature reached within the reaction vessel strongly favours homogenous nucleation vs. heterogeneous nucleation mechanisms. The powders prepared by this efficient and cost-effective technique are: a)perovskite-like mixed oxides: La1-xSrxMnO3 submicronic particles (grain size: 300-500 nm, solvent: water, Tmax: 240°C, Pmax: 8 bar, time: 15min-1h); barium titanate nanoparticles (grain size: 15-50 nm, solvent: water and PEG, Tmax: 240°C, Pmax: 15 bar, time: 10-30 min); b)doped and undoped zirconia nanoparticles, ZrO2 (grain size: 5-20 nm, solvent: water, Tmax: 240°C, Pmax: 20 bar, time: 30min2hrs); c)magnetite nanoparticles, Fe3O4 (grain size: 20-25 nm, solvent: water, Tmax: 100°C, time: 2hrs) d)monazite nanotubes, LaPO4 (length: 0.2-1.0 mm, width: 5-10 nm, solvent: water, Tmax: 150°C, Pmax: 1.5 bar, time: 2 hrs); e)rutile/anatase nanoparticles, TiO2 (grain size: 50-80 nm, solvent: water, Tmax: 160°C, time: 5-30 min); f) doped and undoped ceria nanoparticles, CeO2 (grain size: 5-20 nm, solvent: water, Tmax: 240°C, Pmax: 20 bar, time: 30min-2hrs). Figure 1: TEM images of different oxide systems synthetized at DIMA The application proposed for the zirconia nanoparticles in the oxygen sensors fields has been sustained by funding the MATERAERANET “OxyNanoSen” Project. N e w s l e t t e r N ano t e c i t 21 R I C ER C A t & S V I L U P P O 2. Functionalisation of natural clay minerals for several applications The research on understanding the interaction between clay minerals and organic compounds have been conducted from the beginning of XX century increasing in number and in topics. Surface modifications of clay minerals have received attention because it allows the creation of new materials and new applications. The intercalation of organic molecules, such as cationic surfactants, into phyllosilicate minerals (to obtain “organoclays”) has attracted great interest in terms of both applied and basic research. In the preparation of polymer-clay nanocomposites (PCNs), surfactant species are principally used as modifiers to make the interlayer spaces of silicates organophilic, and such modification promotes the entrance of polymers. The organophilic properties of the surfactants-intercalated phyllosilicates can also be used to remove organic pollutants (such as herbicides) from water. Furthermore, intercalation of surfactants ions is often employed as an ideal model to explore the confinement effects induced by nano-sized interlayer pores due to relatively simple molecular structures of the surfactants (such as alkylammonium) species. Recent research of this group has demonstrated the importance on the choice and design of the organic molecules used to modify the surface (also internal) of clay minerals to obtain specific physical-chemical characteristics, useful for example in the obtainment of PCNs. In particular, nitrogen-based organic compounds (octadecyltrimethyl ammonium bromide (A) and N2,N4dihexadecyl-1,3,5-triazine-2,4,6-triamine (B)) were studied and XRD, TEM and elemental analysis (Figure 1) demonstrate the expansion of the interlayer and a much more organophilic and wellordered structure with respect to the pristine clay mineral used. Currently, the group is working to develop a multidisciplinary protocol based on computational method (molecular dynamic, MD), an organization of the significant amount of experimental literature that has been done so far, and on statistical method, (Design Of Experiment, DOE) with the final aim to rationally design an optimal organoclay. Among the different modification agents, the uses of organosilanes has attracted considerable interest, due mainly to the increasing requirements from the area of polymer-clay nanocomposites (PCNs), treatments of heavy metal contaminants and heterogeneous catalysis. Halloysite is defined as a two-layered aluminosilicate, chemically similar to kaolin, which has a predominantly hollow tubular structure in the submicrometer range. As for most natural materials, the size of halloysite particles varies within 1-15 μm of length and 10-150 nm of inner diameter depending on the deposits. Moreover, other recent applications of these hybrid materials are in the field of coatings with active anticorrosion properties through the integration of nanoscale containers (carriers) loaded with the inhibitor or any other active compound into existing “passive” films, thus designing completely new coating systems based on the “passive” matrix “active” container structure. The main idea, thus, is to develop nanocontainers, which can be sensitive to the external (e.g., mechanical damage) or internal (e.g., pH changes) corrosion trigger. Figure 2: TEM images and XRD patterns of organoclay (A and B) and for comparison the pristine clay mineral 22 N e w s l e t t e r N ano t e c i t R I C ER C A & S V I L U P P O t Figure 3: TEM images of natural halloysite clay nanotubes Recent research of this group has demonstrated the possibility to functionalize the surface of halloysite by grafting alkoxysilanes with different functional groups. This allow the introduction in polymer matrix, for example, as nanoparticles filler to obtain PCNs. In particular, we have studied and characterized the grafting process of two alkoxysilanes: 3-aminopropyltriethoxysilane (APTES) and 3-methacryloxypropyltrimethoxysilane (MPS). Different conditions for the surface modification were investigated and the efficiency of the grafting process was demonstrated by comparing the physical-chemical characteristics of the clay material before and after reaction with the organosilanes. Herein, we have demonstrated the possibility of modify and functionalize the surface chemistry of cheap halloysite clay, enabling applications in many fields as nanocomposites, drug releasing agents and components of active coatings. 3.=Nanomaterials applied to traditional ceramic materials The research activity at DIMA in the nanotechnology applied to the traditional ceramics is mainly devoted to the surface functionalisation of industrial ceramic materials produced by the Italian industry (Made in Italy). This aim has been pursued through the design and preparation of nanostructured powders that, once introduced in the materials, allow to manufacture nanostructured surfaces. The surface of unglazed and glazed materials has been modified using pigments and oxides able to confer to the products considerably improved mechanical (resistance to scratch and wear), chemical-biological (photocatalitic, antibacterial) and also aesthetical properties. The research has been focused on the design and realization of nanostructured systems to be applied to ceramic products based on alumina, zirconia, silica and their solid solutions. In particu- lar, the possibility to use nanopowders suspensions or solutions of precursors capable to be transformed in nanoparticles during the material sintering, has been evaluated. The above mentioned systems have been applied on reference ceramic materials at high added value such as porcelanized stoneware tiles. The feasibility has been evaluated either on the green material before the sintering process, or on the final product by designing ad hoc thermal treatment, or, finally, on the polished products with a suitable post firing and polishing treatment. Evaluation of the most efficient treatment has been conducted by characterizing the obtained products in terms of microstructure, surface micromechanical and technological properties based on the UNI EN ISO technical standards. Particular attention has been paid to preserve the aesthetical aspect of the final product and the obtained hue variation will be evaluated by means of UV-Visible spectroscopy and colorimetric analysis. This thematic has reached a noticeable interest for important industries within the traditional ceramic sector and has been sustained by PRIN 2007 funding. Figure 4: Sol-gel SiO2-TiO2 mixed films prepared and deposited onto grès substrate to improve its cleanability keeping good mechanical performances. TiO2 rich films exhibit photo-induced hydrophilicity and good scratch resistance. N e w s l e t t e r N ano t e c i t 23 R I C ER C A t & S V I L U P P O 4. Glass-ceramic nanocomposites Carbon nanotubes (CNTs) are some of the most innovative materials developed in the recent years. Since their discovery, several studies have been performed on their production, properties and structure characterization. Due to their molecular assembly, made from rolled graphene sheets, CNTs possess extraordinary electric, thermal, optical and mechanical properties. Both single(SWCNTs) and multi-wall CNTs (MWCNTs) exhibit a very large aspect ratio, i.e. their length is 1000 to 10,000 times their diameter. Such extraordinary and unusual mechanical properties are due to the fact that the graphene sheets are closed and despite other important properties, like their excellent electronic conductivity, CNTs may find extensive applications in replacing carbon fibres as the reinforcement of several materials, such as polymers, metals or ceramics, thus forming innovative nanocomposite materials. Incorporation of CNTs into ceramics has attracted more and more interests in recent years. Ceramics materials are already stiff and thermally stable, however their brittleness is always a disadvantage. Incorporation of CNTs into ceramic matrices is expected to enhance toughness and to lead to higher strength as well as raising the possibility of electrical conductivity. However, the study is still far from exploited due to the strong aggregation of CNTs in the matrix. Unlike carbon fibers, the as-prepared CNTs tend to form bundles due to van der Waals forces, and it is difficult to separate them individually. The effective utilization of nanotubes in composite applications depends strongly on the ability to disperse CNTs homogeneously throughout the matrix. Furthermore, good interfacial bonding is required to achieve load transfer across the CNT-matrix interface, a condition necessary for improving the mechanical properties of ceramic composites. We have investigated the possibility to obtain a carbon nanotubes reinforced glass-ceramic nanocomposite starting from a stable aqueous stable suspension of MWCNTs and the glass system CaO-ZrO2-SiO2 (CZS). Figure 5: SEM images of the starting green body (left), the final sintered material (right) and a scheme of microstructure obtained. 24 N e w s l e t t e r N ano t e c i t The obtainment of MWCNTs-glass nanocomposites was achieved under selected process conditions, investigating different temperatures of sintering and also and also preliminary investigation show the encouraging reduction from 1012 Ω*cm to 10 Ω*cm of electrical resistivity in the nanocomposite, indicating the potential of CNTs addition to fabricate electrical and thermal conducting inorganic composites. 5. Nanomaterials for polymer matrix composites Polymer–layered silicate nanocomposites (PLSNs) belong to an emerging class of organic–inorganic hybrid materials that exhibit improved mechanical properties at very low loading levels compared to conventional microcomposites together to the enhancement of functional properties such as flame resistance, barrier properties, optical transparency. Among various clays, montmorillonite and bentonite are two of the most used clay. They consists of two silicate tetrahedral sheets sandwiching an edgeshared aluminum or magnesium hydroxide octahedral sheet with lateral dimensions of approximately 200–1000 nm and silicate sheet thick of about 1 nm. Copoly(styrene-butadiene-styrene) (SBS) block copolymers belong to the class of styrenic thermoplastic elastomers (TPEs) are used in multiple applications. For several of these applications a reduced flammability represents an important properties and the use of bentonite as flame retardant additive for SBS can be of great interest from both academic and industrial points of view. Nowadays, it is well known that in the preparation of PLSNs, especially by melt intercalation, the organic modifiers commonly used, quaternary ammonium salts with long alkylic chain, present the drawback of a poor thermal stability. On the other hand, it is well known that nitrogen containing heterocycles show improved thermal stability and inherent fire retardancy, in particular melamine and its derivatives are effective fire retardants for many aspects. R I C ER C A & S V I L U P P O t of the investigated copolymer. The study of the synergistic effect of melamine-based organic modifiers with bentonite for further improvement of the fire retardancy properties of TPEs is still undergoing in our laboratories. Data obtain from cone calorimeter technique. TTI = Time To Ignition Figure 6: XRD patterns of PLSNs with different concentration of an ammoniumbased organoclays and flammability properties of a PLSNs obtain with a melamine based organoclay. Our recent research has demonstrated the possibility to obtain PLSNs based on SBS copolymer and two organoclays with nitrogen-based organic compounds and in particular one of these two contains a synthetically modified melamine skeleton. The intercalation of SBS block copolymer into organoclays was achieved under selected melting process conditions. Preliminary investigation of the resulting properties of fire retardancy have been analyzed with cone calorimeter technique. The synthetically modified melamine-based organoclay gave an improvement of ∼20% in the decrease of the peak of heat release rate (pHRR) which is an encouraging result considering the nature High-density polyethylene reinforced with submicron titania particles. Main aim of this project was the improvement of the creep resistance of one of the most widely used thermoplastics matrix (high density polyethylene, HDPE) by means the incorporation titania particles. Titania particles with different mean diameters (from 350 to 30 nm) and morphology were produced by either sol-gel route or hydrothermal crystallization. XRD analysis confirm that all sol-gel samples (coded as TiO2 A and TiO2 B) were amorphous while the hydrothermal crystallized titania (coded as TiO2 C) was mainly composed of rutile phase (80 wt%) with a minor amount of anatase (5 wt%). TEM analysis revealed that TiO2 A and TiO2 B particles were characterized by a spherical shape and narrow grain size distribution while the primary nanocrystals of TiO2 C powders were constituted of faced crystals (average dimension 30 nm) connected tightly to one another. In order to improve the interface interaction between particles and polymer matrix, titania particles were also surface modified after chemical reaction with CH3(CH2)17SiH3 (resulting particles coded as TiO2 A-M, TiO2 B-M and TiO2 C-M). The above described titania particles were subsequently used to obtain composites filled at 1 vol% by melt compounding (internal mixer) with a HDPE matrix. The presence of submicron particles slightly modifies the rheology with respect to the pure polymer. The torque measured after 10 minutes of melt mixing increases from 4.4 N·m for pure HDPE to 4.6-4.7 for polymer filled with unmodified particles and to 5.0-5.3 for polymer filled with surface modified particles. It is interesting to note that a higher melt viscosity was always obtained in the case of surface modified particles with respect to the unmodified ones suggesting an improved interaction at the interface between polymer melt and surface modified reinforcing particles. The mechanical properties of the prepared composites are summarized in the following Table. Table – Mechanical properties of the prepared HDPE/titania composites (E: elastic modulus; σy: stress at yield; εy: deformation at yield; εb: deformation at break; D(t=2000s) isochronous creep compliance at a time t=2000s) Composite code HDPE HDPE/TiO2 A HDPE/TiO2 A-M HDPE/TiO2 B HDPE/TiO2 B-M HDPE/TiO2 C-M Average size of TiO2 (nm) - E (MPa) σy (MPa) εy (%) εb (%) D(t=2000s) (GPa-1) 887 ± 7 26.3 ± 0.2 13.9 ± 0.2 395 ± 59 5.434 350 ± 20 1036 ± 19 27.4 ± 0.6 12.8 ± 0.4 30 ± 11 4.743 “ 1022 ± 54 27.8 ± 0.5 12.5 ± 0.2 74 ± 32 5.068 150 ± 10 927 ± 52 27.2 ± 0.9 12.5 ± 0.9 40 ± 9 4.738 “ 1064 ± 47 26.4 ± 0.7 11.9 ± 0.9 17 ± 2 4.824 30 ± 5 1100 ± 42 26.4 ± 0.2 13.3 ± 0.5 45 ± 40 5.203 N e w s l e t t e r N ano t e c i t 25 R I C ER C A t & S V I L U P P O The presence of titania nanoparticles induces a marked improvement of the elastic modulus of the HDPE matrix. It is interesting to observe that the modified nanoparticles are more effective than the unmodified ones, while it is difficult to establish a clear correlation with the size of the nanofiller. The highest modulus is observed for the nanocomposite filled with “TiO2 C-M”, for which an increase of 24% with respect to the unfilled matrix was registered. Comparing the elastic modulus results with theoretical predictions of traditional models for particulate composites (such as the Lewis-Nielsen model), it emerges that the mechanical models proposed for microcomposites are not longer applicable, being the experimental moduli markedly greater than the predicted ones. The introduction of titania nanoparticles leads to a little, but significant enhancement of the stress at yield (1-2 MPa). This improvement indicates a relatively good filler-matrix interaction. Concurrently, the introduction of titania leads to a significant embrittlement of the material, with a strong decrease of the deformation at break (about an order of magnitude) for all the filled samples. The introduction of such limited quantity of nanofiller in HDPE leads to a substantial improvement of its creep resistance, with a decrease of both the elastic and the viscoelastic components of the total compliance (about 15-20% with respect of the unfilled material). It is worthwhile to note that the creep resistance improves as the nanoparticles dimensions decrease: in fact, the smaller the particles the lower is the observed creep compliance. The effect of surface functionalization is not clear, since an opposite trend is observed depending on the particle dimensions. 6. Modelling of nanomaterials In order to gain a deeper understanding into the mechanical performance of nanocomposites and into phenomena occurring at the nanoscale, a modelling approach closely related to the composite morphology can be adopted. In fact several scientists pointed out the need for computational models able to reproduce the behaviour of complex and heterogeneous materials. This methodology can be very helpful for a complete investigation of nanocomposites: numerical simulations which can predict the overall mechanical behaviour of the system are an effective tool for a reliable design of such materials. Indeed there are several examples of analytical and numerical modelling for traditional micro-sized composites; however, in the field of nanocomposites several issues still need to be developed and addressed. Some recent papers proved the applicability of the Finite Element Method (FEM) for modelling composites with a nanometric secondary phase. Despite the FEM-based models are often applied to the so called RVE (Representative Volume Element), thus assuming that the microstructure of the composite can be reproduced by assembling a large number of such RVEs, an approach able to consider the actual microstructure morphology of the nanocomposite can be adopted in order to accurately predict the overall properties, thus accounting for the complex and highly heterogeneous composi26 N e w s l e t t e r N ano t e c i t tes microstructures of randomly dispersed particulate systems. Figure 7: Modelling approach used to estimate global properties of the nanocomposite, starting from the constituent characteristics and the morphology as obtained by SEM analysis. Thus, ceramic particles-polymer matrix nanocomposites were accurately modelled, by using a tool able to map a composite microstructure onto a finite element mesh, thus constructing models which accurately reproduce the composite morphology and characteristics. Since it is well known that the shape, the spatial arrangement, the volume fraction and above all the size of the nanoparticles play a major role in the resulting performance, such approach enables to have a deeper insight into the mechanical behaviour. The so obtained computational models can be used to interpret the available experimental results, focussing on the fundamental mechanisms arising in such systems. In such a way, the microstructural features having a significant impact on the overall properties can be identified. In particular, the computational approach pointed out that a third phase, namely the interphase, has to be taken into account in the model in order to accurately reproduce the experimental results. Permanent staff involved in nanotechnology: • Anna Corradi – Professore Ordinario ([email protected]) • Cristina Leonelli – Professore Ordinario ([email protected]) • Tiziano Manfredini – Professore Ordinario ([email protected]) • Francesco Pilati – Professore Ordinario ([email protected]) • Federica Bondioli – Professore Associato ([email protected]) • Valeria Cannillo - Professore Associato ([email protected]) • Massimo Messori – Professore Associato ([email protected]) • Marcello Romagnoli - Professore Associato ([email protected]) • Cristina Siligardi - Professore Associato ([email protected]) • Paola Fabbri – Ricercatore Universitario ([email protected]) R I C ER C A References 1. F. Bondioli, A. Bonamartini Corradi, A.M. Ferrari, C. Leonelli, C. Siligardi, T. Manfredini and N.G. Evans, “Microwave Synthesis of Al2O3/Cr2O3 (ss) Ceramic Pigments”, J. Microwave Power Electromagnetic Energy, 33[1] 18-23 (1998) 2. F. Bondioli, A. Bonamartini Corradi, C. Leonelli and T. Manfredini, “Nanosized CeO2 Powders Obtained by Flux Method”, Mat. Res. Bull., 34 [14-15] 215966 (1999) 3. F. Bondioli, A.B. Corradi, T. Manfredini, C. Leonelli, R. Bertoncello, “NonConventional Synthesis of Praseodymium-Doped Ceria by Flux Method”, Chem Mater, 12[2] 324-330 (2000) 4. F. Bondioli, A.M. Ferrari, C. Leonelli, T. Manfredini, L. Linati and P. Mustarelli, “Reaction Mechanism in Alumina/Chromia (Al2O3-Cr2O3) Solid Solutions Obtained by Co-precipitation”, J.Am.Ceram.Soc. 83[8] 2036-40 (2000) 5. F. Bondioli, A.M. Ferrari, C. Leonelli, C. Siligardi, N.G. Evans, N.A. Hart, “The Application of Microwave in the Synthesis of Ce0.9Pr0.1O2 Nanostructured Powders”, J.Mat.Chem., 11[10], 2620-24 (2001) 6. F. Bondioli, A.M. Ferrari, C. Leonelli, C. Siligardi and G.C. Pellacani, “Microwave-Hydrothermal Synthesis of Nanocrystalline Zirconia Powders” J.Am.Ceram.Soc. 84[11], 2728-30, (2001) 7. F. Bondioli, A.M. Ferrari, A. Bonamartini Corradi, “Role of Praseodymium on Zirconia Phases Stabilization”, Chem. Mater., 13[12] 4550-54 (2001) 8. Barbieri, L.; Cannillo, V.; Leonelli. C.; Montorsi, M.; Mustarelli P.; Siligardi C., “Experimental and MD Simulations Study of CaO−ZrO2−SiO2 Glasses”, J. Phys. Chem. B, 2003, 107 (27), 6519–6525. 8. F. Bondioli, V. Cannillo, B. Focher, T. Manfredini, M. Montorsi, A.M. Ferrari, M. Avella, M.E. Errico, M. Malinconico, “Preparation, characterisation and computational study of poly(α-caprolactone) based nanocomposites”, Materials Science and Technology, 20[10], 1340-1344, 2004 9. M.C. Caracoche, J.A. Martìnez, P.C. Rivas, A.M. Rodriguez, F. Bondioli, T. Manfredini, A.M. Ferrari, S. Conconi, “Hyperfine characterisation of metastable tetragonal configurations in Pr-doped zirconias”, Chem. Mater. 16[22], 4319-23 (2004) 10. M. Avella, F. Bondioli, V. Cannillo, S. Cosco, M. E. Errico, A. M. Ferrari, B. Focher, M. Malinconico, “Properties/Structure Relationships in Innovative PCL-SiO2 Nanocomposites”, Macromolecular Symposia, 218, 201-210, 2004 11. F. Bondioli. A.M. Ferrari, L. Lusvarghi, T. Manfredini, S. Nannarone, L. Pasquali, G. Selvaggi, “Synthesis and characterisation of praseodymium-doped ceria powders by a microwave-assisted hydrothermal (MH) route”, J. Mat. Chem., 15(10), 1061-66, 2005 12. F. Bondioli, A. M. Ferrari, C. Leonelli, T. Manfredini, M.C. Caracoche, P.C. Rivas, A.M. Rodrìguez, “Microwave-Hydrothermal Synthesis and Hyperfine Characterization of Praseodymium-doped Nanometric Zirconia Powders”, J. Am. Ceram. Soc., 88[3], 633-638, 2005 13. A. Bonamartini Corradi, F. Bondioli, B. Focher, A.M. Ferrari, C. Grippo, E. Mariani, C. Villa, “Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders”, J. Am. Ceram. Soc., 88[9], 2639-41 (2005) 14. F. Bondioli, V. Cannillo, E. Fabbri, M. Messori, “Epoxy-Silica Nanocomposites: Preparation, Experimental Characterisation and Modelling”, J. Appl. Polymer Sci., 97, 2382-86 (2005). 15. A. Bonamartini Corradi, F. Bondioli, A.M. Ferrari, T. Manfredini, “Synthesis and Characterisation of Nanosized Ceria Powders by Microwave-Hydrothermal Method”, Mat. Res. Bull., Vol 41/1 pp 38-44 (2006) 16. V. Cannillo, F. Bondioli, L. Lusvarghi, M. Montorsi, M. Avella, M.E. Errico, M. Malinconico, “Modeling of ceramic particles filled polymer-matrix nanocomposites”, Comp. Sci. Tech., 66[7-8], 1030-37 (2006) 17. M. Avella, F. Bondioli, V. Cannillo, E. Di Pace, M.E. Errico, A.M. Ferrari, B. Focher, M. Malinconico, “PCL-based Nanocomposites: Influence of Compatibilization on Properties of PCL-Silica Nanocomposites”, Comp. Sci. Tech., 66[7-8], 886-94 (2006) & S V I L U P P O t 18. F. Bondioli, V. Cannillo, E. Fabbri, M. Messori, “Preparation and characterisation of epoxy resin filled with submicron spherical zirconia particles”, Polimery, 51[11-12], 794-98 (2006) 19. E. Bonometti, M. Castiglioni, P. Michelin Lausarot, C. Leonelli, F. Bondioli, G.C. Pellacani, A.A. Barba, “Amorphous germanium(II) sulfide particles obtained by microwave assisted decomposition of germanium(IV) sulphide”, Materials Research Innovations, 10(2) (2006) 148-168. 20. Siligardi, C.; Wu, J. P.;, Boccaccini, A. R.; “Sintering and Crystallization of Vanadium doped CaO-ZrO2-SiO2 glass-ceramics”, Materials Letters, 2006, 60, 1607–1612. 21. A. Bonamartini Corradi, F. Bondioli, A.M. Ferrari, B. Focher, C. Leonelli, “Synthesis of silica nanoparticles in a continuous-flow microwave reactor”, Powder Technology, 167(1) (2006) 45-48. 22. A. Opalinska, C. Leonelli, W. Lojkowski, R. Pielaszek, E. Grzanka, T. Chudoba, H. Matysiak, T. Wejrzanowski, K. J. Kurzydlowski, “Effect of pressure on synthesis of Pr-doped zirconia powders produced by microwave-driven hydrothermal reaction”, Journal of Nanomaterials - An open access journal, Volume 2006 (2006), Article ID 98769, 8 pages. 23. E. Caponetti; D. Chillura Martino; M.L. Saladino; C. Leonelli, “Preparation of Nd:YAG Nanopowder in a Confined Environment”, Langmuir 23[7] (2007) 3947-3952. 24. C. Leonelli; W. Lojkowski, “Main development directions in the application of microwave irradiation to the synthesis of nanopowders”, Chemistry Today 25[3] (2007) 34,36-38. 25. A. Rizzuti, M. Viviani, A. Corradi, P. Nanni, C. Leonelli, “Microwave-assisted hydrothermal synthesis as a rapid route towards manganite preparation”, Solid State Phenomena 128(Doped Nanopowders) (2007) 21-24. 26. Boccaccini, A. R.; Thomas, B. J. C.; Brusatin, G.; Colombo, P. “Mechanical and Electrical Properties of Hot-pressed Borosilicate Glass Matrix Composites containing Multi-wall Carbon Nanotubes”, Journal of Materials Science, 2007, 42, 2030 – 2036. 27. F. Bondioli, A. Dorigato, P. Fabbri, M. Messori, A. Pegoretti, “High-density polyethylene reinforced with titania nanoparticles”, Polymer Engineering & Science, 48[3] (2008) 448-457 28. F. Bondioli, T. Manfredini, “Le nanopolveri nella funzionalizzazione delle superfici ceramiche”, Ceramica Informazione, 468 Aprile, 231-237 (2008) 29. M.C. Caracoche, J.A. Martinez, P.C. Rivas, F. Andreola, F. Bondioli, A.M. Ferrari, T. Manfredini, “RT degradation of t-Zr(Pr)O2 in acqueous suspension revealed by PAC”, J. Am. Ceram. Soc., 91 [7], 2357-2359 (2008) 30. S. Baldassari, A. Bonamartini Corradi, F. Bondioli, A.M. Ferrari,M. Romagnoli, C. Villa, “DOE analyses on aqueous suspensions of TiO2 nanoparticles”, J Euro Ceram Soc, 28, 2665-2671 (2008) 31. F. Bondioli, A. Bonamartini Corradi, A.M. Ferrari, C. Leonelli, “Synthesis of zirconia nanoparticles in a continuous-flow microwave reactor”, J. Am. Ceram. Soc., 91 [11] 3746-48 (2008) 32. Comes Franchini, M.; Fabbri, P.; Frache, A.; Ori, G.; Messori, M.; Siligardi, C.; Ricci, A., “Bentonite-Based Organoclays as Innovative Flame Retardants Agents for SBS Copolymer”, Journal of Nanoscience and Nanotechnology, 2008, 8, 6316-6324. 33. F. Bondioli, A. Dorigato, M. Messori, A. Pegoretti, “Creep mitigation in high density polyethylene by acicular titania nanoparticles”, J. App. Polymer Sci., in press 34. F. Bondioli, V. Cannillo, A. Corradi, A.M. Ferrari, A. Tewari, “Synthesis and Characterization of Hydroxyapatite Coated Zirconia Nanopowders”, Mat Chem Phys, in press 35. F. Bondioli, R. Taurino, A.M. Ferrari, “Functionalization of ceramic tile surface by sol-gel technique”, Journal of Colloid and Interface Science, in press 36. Manfredini, T.; Montorsi, M.; Ori, G.; Siligardi, G. “Surface Functionalization Halloysite Clay Nanotubes”, submitted to Research Letters in Materials Science. N e w s l e t t e r N ano t e c i t 27 R I C ER C A t & S V I L U P P O 37. Brigatti, M. F.; Manfredini, T.; Montorsi, M.; Ori, G.; Siligardi, C. “CationExchanged Montmorillonites: Preparation and Characterization”, in preparation 38. Boccaccini, A. R.; Cho, J.; Giovanardi, R.; Manfredini, T.; Montorsi, M.; Ori, G.; Siligardi, C., “Preparation and Electrical Properties of Carbon Nanotubes/ Glass-Ceramic Nanocomposites”, in preparation. Contacts Federica Bondioli Università di Modena e Reggio Emilia Dipartimento di Ingegneria dei Materiali e dell’Ambiente Via Vignolese 905 - 41100 Modena, Italia 28 N e w s l e t t e r N ano t e c i t R I C ER C A & S V I L U P P O t Nanotecnologie per il tessile e abbigliamento Piergiorgio Zappelli AIRI/Nanotec IT - Centro Italiano per le nanotecnologie L e nanotecnologie rappresentano una tecnologia con sempre maggiore spazio di applicazione nell’ambito del settore del tessile e abbigliamento, come chiaramente messo in evidenza dal Convegno NanoItalTex 2008, dedicato allo sviluppo delle nanotecnologie per questi settori. L’evento, giunto alla sua quarta edizione, si è confermato come l’appuntamento annuale del settore tessile e abbigliamento per presentare le più recenti innovazioni tecnologiche e gli ultimi sviluppi nelle attività di R&S. Il Convegno è stato organizzato da TexClubTec in collaborazione con AIRI/Nanotec IT, ed ha avuto la partecipazione attiva di esperti sia italiani che internazionali provenienti dal mondo accademico e dall’industria, con lo scopo di delineare un quadro attendibile sullo stato dell’arte della ricerca e delle sue applicazioni, sia di quelle in fase di sviluppo che di quelle già disponibili sul mercato, nonché sulle prospettive future del mercato in una fase delicata di crisi economica. Oltre al tema focale dell’uso delle nanotecnologie nel settore tessile, che si è dimostrato capace di incidere in modo rivoluzionario in diversi settori dell’industria del tessile/abbigliamento, è stato dato spazio anche ad altre tecnologie innovative che possono consentire di rispondere in modo adeguato alle esigenze emergenti dal mercato e di ampliare la gamma delle applicazioni e dei prodotti. A fianco delle tematiche di carattere tecnico/scientifico sono stati affrontati i temi delle strategie di crescita del comparto, e dell’importanza per le aziende della conoscenza degli aspetti sia normativi che brevettuali. Viene ora riportata una breve descrizione delle comunicazioni orali delle diverse sessioni. Strategie di crescita per le aziende Massimiliano Serati (Università Cattaneo di Castellanza - LIUC), ha delineato un quadro sostanzialmente positivo del comparto tessile italiano ed ha anche evidenziato la capacità propulsiva del tessile/abbigliamento verso l’intero settore manifatturiero. I dati più rilevanti presentati dal relatore a supporto della tesi sono i se- guenti: L’Italia è il primo esportatore a livello dell’EU 27 nel tessile, è al primo posto per saldo commerciale (al secondo posto dopo la Cina). L’incidenza dell’export sul fatturato è del 58%, con un miglioramento rispetto al 2002 (48.4%), ed il saldo commerciale con l’estero è di +10.2 MLD €. Rispetto al 2002 le aziende sono diminuite da 71.000 a 58.000 e gli addetti nello stesso periodo sono scesi da 596.000 a 513.000, in ogni caso la dinamica del fatturato è migliore di quella della produzione. Da dati WTO risulta che l’Italia è la prima per competitività nel settore tessile/ abbigliamento. Tra i principali punti di forza del comparto l’autore indica: l’integrazione e la completezza della filiera; la frequente innovazione di processo e di prodotto favorita da fertilizzazione trasversale e da un ciclo triennale di investimenti (2005-2007); la forza del brand Made in Italy; la velocità di reazione alle istanze dei mercati; la elevata competitività internazionale. Per contro, le insidie più evidenti per il tessile italiano risultano essere: il costo delle materie prime e la forza dell’Euro; la stagnazione dei consumi interni (consumi nel tessile del 2007 sono inferiori a quelli del 2002); la concorrenza internazionale predatoria; il nanismo delle imprese. Utilizzando un modello econometrico dinamico multivariato, l’autore ha dimostrato come una stimolazione dei consumi interni (incentivi fiscali, politiche di sostegno) nel settore tessile dell’1% su base annua avrebbe significativi effetti sulla produzione, sull’export, e sull’intero comparto manifatturiero. Eugenio Corti (European Centre for Space Application - ECSA), partendo dall’osservazione che la grande maggioranza delle imprese in Europa sono di dimensioni piccole o micro, ha illustrato una metodologia per sostenerne lo sviluppo. Esaminando la realtà consolidata dei Distretti Industriali è possibile individuarne i vincoli e le contraddizioni, per consentirne il superamento mediante strumenti innovativi. Tra questi vi sono le Reti di Piccole Imprese. Una piccola impresa per svilupparsi deve decidere di individuare, progettare e poi realizzare un specifico progetto innovativo di prodotto o di processo. Dato che una piccola impresa difficilmente possiede tutte le competenze necessarie allo scopo, queste possono essere trovate in altre piccole imprese socie della N e w s l e t t e r N ano t e c i t 29 R I C ER C A t & S V I L U P P O Rete. L’auspicata collaborazione tra imprese sarà tanto maggiore per quanto più è articolata l’offerta di servizi che alcune imprese socie possono offrire ad altre imprese socie, ottenendo così Reti di Coordinamento di Competenze. E’ seguita una tavola rotonda a cui hanno partecipato i due relatori della sessione ed il Presidente di TexClucTec, Andrea Parodi. Smart Textiles Nel settore tessuti intelligenti sono state presentate tre comunicazioni. Guido Chiappa (D’Appolonia), ha discusso circa il potenziale innovativo dell’integrazione tra tessile ed elettronica, illustrandone molti aspetti. Detta integrazione si articola su tre livelli. Si passa dal più basso livello, che è l’applicazione di un dispositivo elettronico su un tessuto/abbigliamento tradizionale, al livello intermedio di integrazione, dove microcircuiti sono inseriti nel tessuto, al più elevato livello di combinazione, in cui tessuti sensorizzati svolgono una molteplicità di funzioni. Danilo De Rossi (Università Pisa), ha parlato della realizzazione di dispositivi indossabili basati su tessuti elettronici, utili nel campo della “motion capture”. Il monitoraggio dei parametri legati ai movimenti umani trova molteplici applicazioni sia in campo medico (nella diagnostica e nella riabilitazione), che nelle applicazioni di computer animation e nei videogames. Gli strumenti attualmente in uso per l’analisi del movimento, di tipo stereofotogrammetrico, magnetico o elettromeccanico, forniscono risultati accurati, ma devono essere usati in locali speciali e vincolanti per il soggetto in esame. Per superare questi problemi sono stati progettati dei “sensing garments” mediante l’integrazione di sensori di un elastomero conduttore con un tessuto elastico. Dato che i sensori hanno proprietà piezoresistive, la deformazione del tessuto può essere correlata ad una variazione della resistenza elettrica del sensore. E’ stato poi anche brevemente illustrato il progetto ALLODERMA, che è finanziato dalla Regione Lombardia, ed ha come destinatari principali le aziende tessili comasche allo scopo di promuoverne la competitività. L’idea progettuale nasce dalla necessità di apportare innovazioni radicali su uno dei device più critici dal punto di vista realizzativo e più interessanti in termini di opportunità di mercato: il guanto per la riproduzione in ambiente virtuale dei movimenti della mano. Verrà sviluppato un tessuto per il materiale costitutivo del guanto che porterà vantaggi in termini di costo, adattamento ai movimenti, vestibilità, leggerezza e comfort. Salvatore Giurdanella, in sostituzione di. Sergio Ferrero (Microla Optoelectronics), ha parlato di sensori innovativi ed elettronica flessibile integrabili nel tessile. La tecnica utilizzata è rappresentata dalla stampa a getto d’inchiostro, che consente la realizzazione di elettronica flessibile su qualunque substrato. Ne sono esempi le connessioni elettriche che collegano porzioni differenti di un capo di vestiario, i dispositivi RFID (Identificazione a Radiofrequenza) antitaccheggio inseriti nel tessuto, le placche 30 N e w s l e t t e r N ano t e c i t di nanogenerazione fotovoltaica (DSSC oppure celle solari interamente polimeriche), oppure la creazione di zone di accumulo di energia mediante inkjetting di materiali polimerici contenenti ioni litio, che agiscono da batteria tampone. Materiali ad alte prestazioni per lo sport Nathalie De Marco (Aquafil), ha illustrato le molteplici proprietà della fibra Dryarn nel campo dell’abbigliamento sportivo. Trattasi di polipropilene in microfibra il quale presenta ottime caratteristiche performanti per leggerezza, termoregolazione, traspirabilità, antiallergenicità, batteriostaticità. La fibra non può essere né tinta né stampata e la colorazione avviene in fase di produzione prima della filatura. I prodotti ottenuti con questa fibra presentano inoltre altre positive caratteristiche: non stiro, asciugatura veloce, facile eliminazione delle macchie, riciclabilità al 100%. Il valore di mercato del prodotto e di circa il 3% di tutti i filati. Aurelio Fassi (Mectex), ha illustrato le proprietà acquisite dai tessuti in fibra sintetica dopo i trattamenti al plasma, ed in particolare ha parlato del loro prodotto bandiera, il costume LZR Racer Speedo. Il capo è ottenuto da un tessuto bielastico, con il 100% di elasticità nei due sensi ed un peso di circa 100g/mq. Il polimero del tessuto è trattato sia con plasma che con uno speciale trattamento idrorepellente. Gli studi effettuati dalla NASA sul prodotto hanno dimostrato che il tessuto offre una resistenza al moto in acqua del 20% inferiore a qualsiasi altro tessuto testato. Dette proprietà sono state convalidate dai successi sportivi nel nuoto: oltre il 90% delle medaglie olimpiche e dei record mondiali più recenti sono stati ottenuti da atleti che indossavano capi prodotti con i loro tessuti. Materiali a memoria di forma Thomas Fischer (DITF Denkendorf), coordinatore del Progetto AVALON, ha eseguito il secondo Roadshow del progetto nel corso del convegno NanoItalTex. L’obiettivo di AVALON è di studiare l’applicabilità nel tessile delle leghe a memoria di forma, al fine di promuovere la creazione di prodotti innovativi ad alto valore aggiunto. tramite l’integrazione di nuovi materiali con proprietà multifunzionali. A tal fine, il progetto ha anche lo scopo di adattare tecniche di lavorazione, di sviluppare modelli finalizzati alla prototipazione virtuale di prodotto, di sviluppare nuove metodologie organizzative di supporto all’innovazione. Al progetto, che terminerà nel maggio 2009, partecipano 31 partner di 10 paesi Europei, di cui 20 sono PMI. A illustrazione dei risultati del progetto sono state presentate due comunicazioni orali (Monero e Rossini) e 18 poster. Alessandra Monero (D’Appolonia), e Ettore Rossini (eXtreme Materials), hanno illustrato le peculiarità delle leghe a memoria di forma (SMA) ed il loro utilizzo in tessuti tecnici. Dette leghe, composte da Ni-Ti, sono caratterizzate da superelasticità e dall’effetto di memoria di forma. Tali proprietà sono apprezzate nella produzione di tessuti ibridi utili in campo bionico per la produzione R I C ER C A di stent ed arterie, e per l’ottenimento di tessuti tecnici speciali capaci di assorbire gli urti e smorzare le vibrazioni, per la realizzazione di attuatori capaci di generare forze di elevato valore senza parti mobili, oltre che di modificare la forma dei manufatti ove sono inseriti. E’ seguita una tavola rotonda a cui hanno partecipato i relatori della sessione ed il Direttore di TexClubTec, Aldo Tempesti. Prodotti performanti per la protezione umana Lieven Tack (Bekintex NV), ha parlato dell’importanza di tessuti antistatici. L’uso di abbigliamento da lavoro antistatico è sempre più diffuso nell’industria petrolifera ed elettronica e presso i vigili del fuoco, per dissipare l’elettricità statica che si accumula ed evitare scariche che in alcuni ambienti potrebbero provocare esplosioni o il danneggiamento di componenti elettronici. Bekintex, che fa parte del gruppo belga Bekaert, è specializzata in tessuti tecnici contenenti fibre metalliche. I prodotti tessili ottenuti hanno proprietà antistatiche, sono elettricamente conduttori e resistenti al calore. Fabio Colombo (Colgra), ha presentato l’airbag per motociclisti. Si tratta di un gilet al cui interno è ripiegato un sistema di airbag. In caso di incidente l’airbag si attiva automaticamente gonfiando delle sacche che proteggono le zone vitali del motociclista. Qui il tessuto tecnico non è più un elemento primario, ma un componente che, assemblato insieme con parti metalliche e plastiche, trasforma un capo di abbigliamento in un dispositivo che può salvare la vita. Il gonfiamento è basato sulla tecnologie della esplosione fredda, che consente la realizzazione di dispositivi molto leggeri, affidabili e ricaricabili. Maurizia Botti (Slam), che vanta una lunga esperienza nel settore dell’abbigliamento nautico ha presentato un nuovo prodotto nel campo dell’abbigliamento specialistico, destinato a chi lavora in condizioni estreme o si espone alla minaccia del fuoco, come pompieri, militari e piloti. Si tratta di un capo underwear prodotto con una fibra ignifuga di aramide, realizzato senza cuciture e di grande elasticità, per garantire un comfort elevato. Materiali e tecnologie per il trattamento superficiale Marco Cerra (Stazione Sperimentale dells Seta), ha presentato i primi risultati di un progetto di funzionalizzazione di fibre cellulosiche con nanodispersioni di polimeri uretanici. Lo scopo del lavoro è quello di modificare alcune peculiarità delle fibre naturali le quali, insieme alle loro molteplici caratteristiche positive, presentano anche degli inconvenienti. Ad esempio, la fibra di cotone presenta una elevata microporosità che richiede elevatissime quantità di acqua per il suo processo. Con l’intervento in oggetto si vuole ridurre questa microporosità, lasciando inalterate la flessibilità, la mano e la capacità di assorbire il colore. Il procedimento prevede la formazione di un prepolimero uretanico a basso peso molecolare, che viene disperso in acqua formando nanoparticelle, in grado di penetrare nelle microporosità delle fibre e fissar- & S V I L U P P O t si, senza formare uno strato superficiale che modificherebbe la mano e l’aspetto della fibra trattata. Gerd Brander (Huntsman - D), ha parlato della funzionalizzazione dei prodotti tessili analizzando i parametri che hanno una influenza sull’intero processo, cioè il tessile di partenza, il prodotto usato nel finissaggio ed il processo di produzione. Molti processi di funzionalizzazione non sono finalizzati al miglioramento di una funzione ma ad un miglioramento del processo, come una più elevata velocità di produzione, un più basso consumo energetico, oppure una riduzione dei rifiuti e delle emissioni. Davide Demango (Clariant), ha presentato e dimostrato le caratteristiche dei tessuti trattati con il finissaggio Nanosphere. Quest’ultimo è stato prodotto da Clariant in collaborazione con Schoeller, imitando le caratteristiche naturali osservate sulle foglie di loto. L’acqua infatti non aderisce alle foglie di queste piante, e le goccioline che scivolano via asportano anche l’eventuale sporco depositato. La tecnologia Nanosphere riproduce una rugosità sulla superficie del tessuto che lo rende idrorepellente ed autopulente. Dirk Hegemann (Empa - CH), ha illustrato il processo di plasma sputtering sviluppato da Empa per il deposito in continuo di film metallici di spessore nanometrico su fibre sintetiche. Le fibre così metallizzate conservano le proprietà tessili originali e possono essere tessute e lavorate a maglia in modo convenzionale. I tessuti metallizzati trovano numerose applicazioni in campo elettrico (tessili antistatici, elettronica indossabile), in campo ottico (tessuti riflettenti) e medico (tessuti antibatterici, elettrodi per ECG e per elettrostimolazione). L’importanza della conoscenza per le aziende La sessione è stata composta da tre comunicazioni vertenti sul processo su base volontaria della elaborazione di una Norma UNI (Ruggero Lensi), sul coordinamento di progetti europei (Athanase Contargyris, IFTH - F) e sul valore della proprietà intellettuale (Claudio Germinario, SIB). Ruggero Lensi (UNI). L’attività di normazione costituisce una modalità innovativa di concepire la democrazia in una visione sociale di condivisione della conoscenza tecnica, a vantaggio dell’intera collettività, in contrapposizione alle logiche di protezionismo. Le fasi di elaborazione di una Norma: Messa alla studio della Norma, Stesura del documento, Inchiesta pubblica, Pubblicazione, richiedono un iter complessivo di 24 - 36 mesi, che possono diventare, in alcune occasioni, anche 40-50. I documenti prodotti da UNI sono di tre tipi: La Norma Tecnica Nazionale (UNI), la Specifica Tecnica Nazionale (UNI/TS), documento che è sottoposto ad un periodo di verifica della sua validità, ed il Rapporto Tecnico Nazionale (UNI/RT) che rappresenta uno stato dell’arte. Athanase Contargyris (IFTH - F), ha illustrato alcuni esempi di coordinamento di progetti europei : il progetto Clevertex, finalizzato alla trasformazione al 2015 del settore tessile/abbigliamento tradizionale in un settore industriale N e w s l e t t e r N ano t e c i t 31 R I C ER C A t & S V I L U P P O indirizzato dalle nuove conoscenze (tessili intelligenti), ed il progetto Safeprotex, che è rivolto a ridurre il rischio di danni fisici per mezzo di un equipaggiamento personale protettivo avanzato che incorpora funzioni multiple da usare da parte di personale sottoposto a condizioni di rischio in operazioni di emergenza. Claudio Germinario (SIB), ha messo in evidenza l’importanza della protezione della proprietà intellettuale mediante brevettazione. Datosi che lo sviluppo economico è legato alla capacità di innovazione, la quale è ottenuta mediante la ricerca, che a sua volta richiede finanziamenti, questi ultimi non vengono ottenuti se i risultati della ricerca non sono protetti. La situazione brevettuale italiana nel settore tessile è addirittura peggiore della già modestissima posizione generale. Delle 2110 domande di brevetto EP o Euro-PCT nel tessile presentate nel 2007, l’Italia ne ha depositato il 2.46% (il valore medio generale italiano è stato nello stesso periodo del 3.12%). L’importanza della protezione brevettuale è particolarmente significativa nel settore nanotecnologico, dato che il passaggio dalla dimensione macro a quella nano permette di ottenere materiali con proprietà completamente nuove. Non viene quindi più applicato il principio della “inerenza”, per cui una proprietà sconosciuta di un prodotto noto su scala macro non può essere brevettata, dato che detta proprietà era insita nel prodotto stesso. Al contrario, una sostanza in scala nano può essere brevettata anche se la stessa sostanza in scala macro è ben nota. Materie prime e tecnologie innovative Luigi Torre, in sostituzione di Josè Kenny (Università Perugia), ha illustrato un procedimento innovativo per la tracciabilità dei prodotti dell’industria tessile, basato su materiali polimerici nanostrutturati decodificabili. Il principio chimico-fisico su cui si basa la tecnologia è la capacità conferita da dosi minime di un materiale organico o inorganico su base nanometrica, di alterare lo specifico spettro elettromagnetico del polimero. La codificazione dell’informazione avviene al momento in cui miscelando la matrice polimerica di base con l’inclusione, vengono prodotti i materiali chiamati MPID (Materiali Plastici Informativi Decodificabili), i quali non sono in alcun modo riproducibili come tali. Per la decodificazione i MPID possono essere letti con un sistema chimico-fisico in grado di fornire uno specifico spettro (IR, UV) seguendo una procedura che trasforma l’informazione in un codice alfanumerico. Paolo Dominioni (Sider Arc), ha presentato la sua azienda che è leader nel mercato dei monofili sintetici per applicazioni tecniche e industriali. Le principali applicazioni sono nei tessuti per filtrazione, serigrafia, tessuti 3D - settore automotive e abbigliamento sportivo, tessuti spalmati, nastri elastici e a strappo, tubi e trecce, medicali. Una produzione di monofili, progettata e realizzata specificamente per il settore dei tessuti tridimensionali (Spacer Fabrics), permette l’ottenimento di materiali innovativi che presentano vantaggi rispetto all’uso delle schiume poliuretaniche. 32 N e w s l e t t e r N ano t e c i t Nel 2006 la Sider Arc ha prodotto circa 2300 tonnellate di monofili, mentre per il 2007 l’obiettivo è stato di 2700 tonnellate, grazie a due stabilimenti, uno a Cornaredo, Italia, e uno a Sighisoara, Romania, per un totale di 14 linee di produzione. Giovanni Baldi (Colorobbia), ha illustrato i tipi di materiali nanostrutturati sviluppati da Colorobbia. I prodotti sono ottenuti mediante sintesi sol-gel ad alta temperatura, ottenendo delle nanodispersioni liquide monomodali (dimensioni tra 10 e 50 nanometri), stabili nel tempo, in solventi acquosi oppure a base alcolica o glicolica. Con tale tecnica sono prodotte nanodispersioni di ossidi (SiO2, TiO2, ZrO2, Fe3O4, CoFe2O4) e di metalli (in particolare Au e Ag). Una peculiarità importante dei nanomateriali è quella della multifunzionalità, come ad esempio nel caso del biossido di titanio, che ha proprietà di schermo UV, caratteristiche antibatteriche e capacità di decomporre gli inquinanti atmosferici. Tali sospensioni liquide di nanocristalli permettono di veicolare le loro caratteristiche chimico-fisiche sulle superfici di materiali molto eterogenei. Ad esempio, nel caso delle fibre tessili, i nanocristalli possono penetrare al loro interno “ceramizzando” il tessuto, cioè portando caratteristiche tipicamente ceramiche su un materiale formato da fibre naturali o polimeriche. Marinella Levi (Politecnico Milano), ha descritto l’uso della tecnologia sol-gel per l’ottenimento di prodotti tessili ad elevate prestazioni. La tecnica prevede l’ottenimento di tessuti con specifiche attività funzionali mediante trattamenti sol-gel, acquosi e non acquosi. La funzionalizzazione è ottenuta per mezzo di rivestimenti, con l’uso di soluzioni inorganiche basate su nanoparticelle di silice modificata e di altri ossidi di metalli (nanosol). La tecnica consente di progettare la modifica simultanea, ed a volte sinergica, di proprietà fisico-meccaniche, ottiche, elettriche e biologiche. I risultati fin qui ottenuti sono così riassumibili: con TiO2 l’applicazione più promettente è nel settore medicale (effetti antimicrobici), sono inoltre di interesse la proprietà di assorbimento delle radiazioni UV; con SiO2 vengono conferite al tessuto ottime caratteristiche idrofobiche, senza particolare influenza sulla “mano”, consentendo di ottenere rivestimenti repellenti allo sporco; con Al2O3 può essere aumentata la resistenza all’abrasione (aumento dell’adesione interfibra). La Conferenza si è avvalsa inoltre del contributo di circa 30 comunicazioni poster, di cui 18 prodotte per illustrare i risultati conseguiti nell’ambito del progetto Avalon. Contatti Piergiorgio Zappelli AIRI/Nanotec IT [email protected] www.nanotec.it R I C ER C A & S V I L U P P O t Le nanotecnologie e lo sviluppo di una specifica normativa tecnica E. Rabino, Presidente della Commissione UNI Nanotecnologie - Business Line Director, Centro Ricerche Fiat S.C.p.A. - www.crf.it G.L. Salerio, Segretario della Commissione UNI Nanotecnologie - Responsabile Uni, Divisione Beni di consumo e materiali - www.uni.com I l settore delle nanotecnologie apre nuove necessità nel campo della normativa tecnica nazionale ed internazionale; processi produttivi innovativi e specifici prodotti sviluppati con l’aiuto delle nanotecnologie richiedono la definizione di norme tecniche appropriate in materia che vanno dalla terminologia e la nomenclatura, alla metrologia generale fino alla definizione degli aspetti di sicurezza e salute da valutare, nonché l’impatto ambientale. Poiché l’industria delle nanotecnologie è in ascesa, risulta urgente iniziare subito una attività di standardizzazione per permettere uno sviluppo del settore compatibile con la salute, la sicurezza e l’ambiente, economicamente conveniente. A livello internazionale si è già iniziato da qualche anno con la costituzione di specifici Comitati Tecnici, rispettivamente a livello ISO (International Standards Organization) con la creazione del TC 229 Nanotecnology destinato a trattare la normativa del mondo non elettrico e a livello IEC (International Electrotechnical Commission) con il TC 113 Nanotecnology for electrical and electronic products and systems, incaricato di studiare la normativa specifica del settore elettrico ed elettrotecnico. Focalizzando l’attenzione sul Comitato Tecnico ISO TC 229, a cui si prevede la partecipazione attiva di 32 Paesi del Mondo per studio delle norme tecniche (compresa l’Italia, con l’UNI, l’Ente Nazionale italiano di Unificazione) , si apre un vasto numero di argomenti che questo nuovo comitato tecnico dovrà trattare/studiare; per raggiungere al meglio i suoi obiettivi il Comitato ISO ha organizzato la sua struttura in Gruppi di Lavoro, ciascuno focalizzato nella definizione di specifiche aree tematiche, come segue: • J - Working Group 1 Terminology and nomenclature (Terminologia e nomenclatura) • J- Working Group 2 Measurement and characterization (Misure e caratterizzazione) • Working Group 3 Health, Safety and Environmental Aspects of Nanotechnologies (Salute, sicurezza e aspetti ambientali delle nanotecnologie) • Working Group 4 Material specifications (Specifiche dei materiali) Per i Working Group 1 e 2 è stato concordato livello internazionale di studiare gli aspetti di terminologia / nomenclatura e di misura e caratterizzazione delle nanotecnologie unendo gli sforzi dei due Comitati Tecnici mondiali ISO/TC 229 e IEC/TC 113; pertanto i due WG sono congiunti. A livello nazionale presso l’UNI si è costituita la Commissione Tecnica Nanotecnologie. Lo scopo della Commissione UNI è quello sviluppare la normazione e l’unificazione nel campo delle micro e nanotecnologie, con specifico riferimento alla classificazione, alla terminologia e nomenclatura, alla metrologia e alla strumentazione, alla riferibilità dei campioni e dei metodi di misura, ai metodi di caratterizzazione. Inoltre la Commissione si deve occupare di normazione degli aspetti connessi alla tutela della salute e sicurezza ambientale, di caratterizzazione dei processi produttivi inerenti alle micro e/o nanotecnologie e deve individuare dei metodi di valutazione di prodotti, dispositivi e sistemi che utilizzano materiali con caratteristiche micro e nanotecnologiche. Infine è stato dato mandato alla Commissione UNI Nanotecnologie di studiare le applicazioni delle micro e nanotecnologie nel campo delle tecnologie biomediche e diagnostiche. Questa Commissione ha il ruolo di seguire direttamente i lavori normativi internazionali dei Comitati ISO e CEN, contribuendo allo sviluppo della normativa mondiale ed europea. Inoltre la Commissione Nanotecnologie mantiene dei rapporti di collaborazione e di scambio di informazioni con il Comitato Tecnico del CEI (Comitato Elettrotecnico Italiano) CT 113 che segue l’attività normativa internazionale sulle nanotecnologie per il mondo elettrico. A livello nazionale la Commissione ha individuato tra i propri membri diversi esperti disponibili a seguire l’evoluzione normativa internazionale, provenienti da aziende, università, laboratori e centri di ricerca ma è necessario aumentare ulteriormente la partecipazione a questi lavori incentivando l’industria e il mondo scientifico ad investire nella standardizzazione delle nanotecnologie. N e w s l e t t e r N ano t e c i t 33 R I C ER C A t & S V I L U P P O Per aumentare l’efficienza della Commissione UNI Nanotecnologie e sono stati costituiti dei Gruppi di Lavoro, di interfaccia ai lavori ISO e CEN. I Gruppi sono: • GL 1 Terminologia • GL 2 Misure, strumentazione e caratterizzazione • GL 3 Salute, sicurezza ed aspetti ambientali • GL4 Prodotti e processi nanotecnologici Ma che cos’è una norma? A cosa servono le norme? Perché usare le norme? Per norma si intende un documento prodotto mediante consenso e approvato da un organismo riconosciuto (Ente di Normazione), il quale fornisce per usi comuni e ripetuti, regole linee guida o caratteristiche relative a determinate attività o ai loro risultati, al fine di ottenere il miglior ordine in un determinato contesto. Le norme sono documenti che definiscono le caratteristiche (dimensionali, prestazionali, ambientali, di sicurezza, di organizzazione ecc.) di un prodotto, processo o servizio, secondo lo stato dell’arte e sono il risultato del lavoro di decine di migliaia di esperti in Italia e nel mondo. La norma deve avere le seguenti caratteristiche: consensualità la norma deve essere approvata con il consenso di coloro che hanno partecipato ai lavori; democraticità tutte le parti economico/sociali interessate possono partecipare ai lavori e, soprattutto, chiunque (se partecipa) è messo in grado di formulare osservazioni nell’iter che precede l’approvazione finale; trasparenza UNI segnala le tappe fondamentali dell’iter di approvazione di un progetto di norma, tenendo il progetto stesso a disposizione degli interessati; volontarietà le norme sono un riferimento che le parti interessate si impongono spontaneamente; Per influire sulla definizione dei contenuti delle norme e non subire requisiti stabiliti dai concorrenti è necessario partecipare attivamente ai lavori normativi presso il proprio Ente di Normazione nazionale, anche per essere informati sui futuri sviluppi, con tempi e costi di adattamento ridotti e quindi con vantaggi competitivi sulla concorrenza. La partecipazione ai lavori UNI nel settore delle nanotecnologie permette di ottenere il necessario aggiornamento sullo “stato dell’arte” dei prodotti/servizi/processi relativi alla propria attività e aiuta a ridurre i costi della ricerca ed i rischi ad essa connessi, confrontando con gli altri partecipanti il proprio know-how. 34 N e w s l e t t e r N ano t e c i t Primi documenti normativi pubblicati: SPECIFICA TECNICA ISO/TS 27687 Terminology and definitions for nano-objects - Nanoparticle, nanofibre and nanoplate La Specifica fornisce una lista di termini e definizioni riguardanti le particelle nel campo delle nanotecnologie;è destinata a facilitare la comunicazione tra organizzazioni/individui/aziende RAPPORTO TECNICO ISO/TR 12885 Health and safety practices in occupational settings relevant to nanotechnologies Il rapporto ISO ha lo scopo di aiutare le aziende, i ricercatori, i lavoratori e tutti gli interessati a prevenire conseguenze avverse per la salute e conseguenze per la sicurezza durante la produzione, la manipolazione, l’uso e lo smaltimento di particelle nano fabbricate. I lavori normativi in corso Numerosi sono i documenti normativi allo studio a livello internazionale e tra questi citiamo ad esempio le norme terminologiche e di nomenclatura (alcune già pubblicate), aspetti legati alla misurazione delle particelle e alla loro caratterizzazione, norme su simboli e informazioni da fornire per l’identificazione delle particelle nano nei prodotti, norme su materiali, norme sui nano tubi, aspetti di sicurezza ambientale sulla diffusione delle particelle nell’ambiente e/o effetti sulla salute umana, norme sulla valutazione dei rischi e sul ciclo vita, metodi di prova ecc. Qui di seguito si fornisce un elenco dettagliato dei principali progetti allo studio: ISO/WD TS 10797 Nanotubes -- Use of transmission electron microscopy (TEM) in walled carbon nanotubes 1ISO/WD TS 10798 Nanotubes -- Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA) in the charaterization of single walled carbon nanotubes 2ISO/CD 10801 Nanotechnologies -- Generation of nanoparticles for inhalation toxicity testing ISO/CD 10808 Nanotechnologies -- Monitoring nanoparticles in inhalation exposure chambers for inhalation toxicity testing 3 4ISO/AWI TS 10812 Nanotechnologies -- Use of Raman spectroscopy in the characterization of singlewalled carbon nanotubes ISO/WD TS 10867 Nanotubes -- Use of NIR-Photoluminescence (NIR-PL) Spectroscopy in the characterization of single-walled carbon nanotubes (SWCNTs) ISO/WD TS 10868 Nanotubes - Use of UV-Vis-NIR absorption spectroscopy in the characterization of single-walled carbon nanotubes (SWCNTs) 7ISO/WD TS 10929 Measurement methods for the characterization of multi-walled carbon nanotubes (MWCNTs) R I C ER C A 68ISO/AWI TS 11251 Nanotechnologies -- Use of evolved gas analysis-gas chromatograph mass spectrometry (EGA-GCMS) in the characterization of single-walled carbon nanotubes (SWCNTs) 9ISO/AWI TS 11308 Nanotechnologies -- Use of thermo gravimetric analysis (TGA) in the purity evaluation of single-walled carbon nanotubes (SWCNT) ISO/WD TS 11751 Terminology and definitions for carbon nanomaterials ISO/AWI TR 11808 Nanotechnologies -- Guidance on nanoparticle measurement methods and their limitations ISO/AWI TR 11811 Nanotechnologies -- Guidance on methods for nanotribology measurements 14ISO/AWI TS 11888 Determination of mesoscopic shape factors of multiwalled carbon nanotubes (MWCNTs) ISO/AWI TS 11931-1 Nanotechnologies -- Nano-calcium carbonate -- Part 1: Characteristics and measurement methods ISO/AWI 11937-1 Nanotechnologies -- Nano-titanium dioxide -- Part 1: Characteristics and measurement methods ISO/AWI 12025 Nanomaterials -- General framework for determining nanoparticle content in nanomaterials by generation of aerosols & S V I L U P P O t Il mondo delle nanotecnologie offre interessanti potenzialità applicative che possono contribuire in misura rilevante al miglioramento della qualità della vita, sia alla competitività dei prodotti. L’industria nazionale, insieme al mondo della ricerca devono essere incentivate a partecipare ai lavori di standardizzazione ed a collaborare all’elaborazione delle norme, confrontando tematiche ed idee e considerando i problemi emergenti per trovare soluzioni sostenibili. Oggi si vive in un contesto mondiale più integrato e competitivo e pertanto risulta strategico partecipare alla creazione di nuove norme piuttosto che limitarsi solamente ad adottarle, sia per mantenere alti i livelli di qualità e funzionalità dei prodotti sia per approfondire la conoscenza delle nuove problematiche di sicurezza, anticipare lo sviluppo di soluzioni adeguate e garantirsi una leadership per il futuro. Contatti Gian Luca Salerio UNI, Responsabile Divisione “Beni di consumo e materiali” Via Sannio 2 - 20135 MILANO tel: +39 0270024414 - fax: +39 0270024369 [email protected] 30ISO/CD 29701 Nanotechnologies -- Endotoxin test on nanomaterial samples for in vitro systems ISO/AWI TS 12144 Nanotechnologies -- Core terms -- Terminology and definitions ISO/WD TR 12802 Nanotechnologies - Terminology and nomenclature - Framework ISO/AWI TS 12805 Nanomaterials - Guidance on specifying nanomaterials 21ISO/AWI TS 12808 Nanotechnology - Terminology for the bio-nano interface ISO/AWI TS 12843 Nanotechnologies - Terminology for medical, health and personal care applications ISO/AWI TS 12901-1 Nanotechnologies -- Guidance on safe handling and disposal of manufactured nanomaterials 25ISO/AWI TS 12921 Nanotechnologies - Terminology and definitions for nanostructured materials ISO/AWI 13013 Nanotechnologies -- Terminology for nanoscale measurement and instrumentation 27ISO/AWI TR 13014 Nanotechnologies - Guidance on physico-chemical characterization of engineered nanoscale materials for toxicologic assessment ISO/AWI TR 13121 Nanotechnologies - Nanomaterial Risk Evaluation Framework N e w s l e t t e r N ano t e c i t 35 N A N O TE C N O L O G I E j & S O C I ET à Nanotechnologies: an image in the process of being defined Claudio G. Cortese, Chiara Ghislieri, Federica Emanuel Department of Psychology – University of Turin Introduction hat idea of nanotechnologies do Italian have today? What feelings and expectations are associated with this topic? Through what channels has the idea been constructed? How can greater knowledge of nanotechnologies and the scope of their use be spread? These are some of the questions which led to the nation-wide qualitative-quantitative survey carried out within the sphere of the Nanomat project, which is very briefly described below. As many sources have indicated [1-2, 9], the study of the social representation of a scientific topic is important in order to foster acceptance on the part of the general public both as it regards marketing and as it regards public and private investments: GMOs and biotechnologies are highly indicative cases in this sense. from the Northern, Central and Southern parts of Italy, 3 interviews with pharmaceutical representatives and 9 interviews with representatives of the small and medium sized companies. The data collected were analysed with paper-and-pencil methods. With regard to nanotechnologies, studies in the United States and Europe have shown that the general public has very limited knowledge about them [5-8]. In Europe, although only 20% of the population believe that nanotechnologies can improve the quality of life, from 1999 to 2005 a general improvement has been observed in the attitude towards technologies (including nanotechnologies) applied to medicine and pharmaceuticals [10]. Cobb and Macoubrie [3] demonstrate above all the fundamental role played by knowledge: it seems to have a positive influence on trust which, in turn, favours the perception of the benefits rather than the risks linked to these technologies. The questionnaire was filled in by a nation-wide sample of 2565 subjects (52% females; 48% males) formed on the basis of ISTAT (the National Statistics Institute) data (available at the website www.istat.it), representative of the whole Italian population [4]. Stratification was carried out according to certain personal identity variables considered significant: gender (male, female), geographic area of residence (North, Centre, South), size of the town of residence (up to 50,000 inhabitants, over 50,000 inhabitants), age (up to 24 years old, from 25 to 44, from 45 to 64, 65 and over). The data were analysed by means of SPSS software. W Research objectives and method The aim of the research was to study in depth the perception of nanotechnologies, collecting data about: the level of the diffusion of knowledge on the subject; the prevalence of fears or hopes; the connection with the more general attitude towards scientific innovation; orientation relative to the most effective information channels. Downstream of a bibliographic review, the data were collected in two phases. The first phase, of a qualitative nature, involved the formation of 1 focus group with experts of the Nanomat project, 12 focus groups with a random sample of 100 subjects recruited 36 N e w s l e t t e r N ano t e c i t The second phase involved the use of a questionnaire containing 66 questions (10 of which regarded personal identity) with answers on the Likert scale with a four-level choice or multiple choice questions, constructed on the lines of descriptions given in literature on the social perception of scientific and technological innovation, with specific reference to literature regarding the perception of nanotechnologies, and the stimuli and questions which emerged in the various qualitative phases carried out previously. Results The qualitative data The focus groups and the interviews with the representatives of the small and medium sized companies showed a certain interest but at the same time superficial knowledge of the subject, gained above all from: television, conversations with acquaintances engaged in the field, newspapers and specialised magazines, the Internet, University courses. Different fields of application were mentioned, often as only hypothetical. Such hypotheses did not only regard the sectors of use, but also the reasons why nanotechnologies would be adopted, and how they tended to be distorted by the influence of possible science fiction reading. The areas most frequently mentioned (with the subjects’ comments N A N O TE C N O L O G I E & S O C I ET à j given in brackets) included the following: ♦Medicine and pharmacology (for clinical analyses and the administration of medicines): “…in surgery […] what struck me, of the things I have read, is precisely the possibility of using nanotechnologies for the internal examination of the organism, of the human body and organs” “… also for the administration of medicines” ♦Cosmetics (to obtain a stronger effect and to limit allergies): “…nanotechnologies are mentioned in the description of certain creams, but I don’t remember very well” “…they are also used for creams, perhaps to make them more tolerable for people with allergies” ♦Computer science, electronics and telecommunications (to construct smaller objects and components): “…they could make smaller mouses, extremely lightweight portable computers, mobile phones, for example, so small that you could put it in your ear” “…in communications systems, I think […] I heard in one news programme that HP was advanced in the use of nanotechnologies” ♦Mechanical and aerospace engineering (to produce lighter “machines”): “…I think I read that they are building lighter aeroplanes with nanotechnologies, which can fly much faster” ♦Energy production (to find alternative and renewable energy sources): “…one could conceive of a machine which reproduces itself automatically. The machine would find energy and with the energy it would create another molecular machine which would go on with its work. When it has enough energy it duplicates itself, and you have zero energy consumption” ♦War industry (to increase destructive power): “…I think they were first developed in the military field and there are also very terrible aspects […] in this case they want to build extremely small automatic instruments […] nanometric microchips with an autonomous function inside the organism. It’s a scenario that the Borgs of Star Trek presented very precisely […] they can also use them to genetically modify a plant, or a person’s metabolism”. proving the quality of life (83.0%), and capable of stimulating the interest of the general public (80.9%). However, there was little agreement from participants on the negative aspects of scientific research, especially as it regards the statement “scientific research creates more problems than it solves” (20.5%). In short, there are two main functions attributed to the adoption of nanotechnologies in the various production sectors: the miniaturisation of products, and the reinforcement of materials. This generally more positive figure is confirmed by the emotions triggered off by the topic: the main reaction is curiosity (48.6%) rather than indifference (15.5%), and in the same way trust (21.9%) prevails over fear (7.1%). The use of nanotechnologies in our country today is considered inexistent or very limited by 73.4% of those asked. The sector in which nanotechnologies are believed to be more present is that of computer sciences (86.9%). Medical care (81.1%) and telecommunications (79.5%) are also sectors in which the use of nanotechnologies are believed to be used. On the other hand, foodstuffs (25.5%) and furniture and furnishings (23.6%) are the sectors in which people suppose them to be less frequently used. With regard to communication tools, the survey showed that people need, on one hand, instruments which offer immediacy and With regard to information on the topic, the survey participants were interested and wished to know more, and at the same time they requested clarity, simplicity and possibility of use: specialist jargon should be used with moderation, although making the subject become excessively banal must also be avoided. The quantitative data The participants’ attitude was on the whole positive to scientific research: there was, in fact, a prevailing image of scientific research aimed at problem solving (84.8% in favour), in pursuit of im- Knowledge of nanotechnologies was shown to be decidedly limited. The 83.2% of those who answered the questionnaire, in fact, stated that they knew “nothing” or “very little” about the subject, demonstrating that in spite of a generally positive and interested attitude towards scientific research, this particular aspect was still little known. Only 2.8% of the sample declared that they knew nanotechnologies well. The check question, which consisted in assessing the accuracy of certain definitions of nanotechnologies, the truth of which had previously been judged by the Nanomat experts, confirmed the figure: the definition considered correct by 100% of the Nanomat experts (“A technique which allows for constructing objects, devices and materials with a dimension of one billionth of a metre”), was the one which received least consensus from those who answered the questionnaire. As it regards the sources, television resulted the main supplier of information (41.3%), followed at some distance by daily newspapers (22.5%) and the Internet (20.5%). In any case, these are sources which give information that is easily accessible and “immediate”, albeit not particularly reliable or precise. In line with the positive attitude towards scientific research, that for nanotechnologies was also favourable on the whole, notwithstanding the scarce knowledge of the subject. As it can be seen from table 1, in fact, there is prevailing agreement with the statements which show the potentials of nanotechnologies, with respect both innovation and the higher quality of the products. On the other hand, there was little agreement with the statements which indicated possible negative consequences for health. N e w s l e t t e r N ano t e c i t 37 N A N O TE C N O L O G I E j & easy access, and on the other hand, more in-depth information and guaranteed scientific reliability of the sources. Television programmes are the information channel preferred by 60.3% of the survey participants, followed at a distance by daily newspapers (37.4%), brochures delivered to people’s homes (36.3%) and internet (31.5%). It is, in any case, significant to observe that only University and scientists are considered to be trustable sources of information on nanotechnologies, while all other sources, including consumer organisations and environmentalist organisations, were considered less reliable (table 2). Comparing the differences between the sub-groups of the participants, the analysis of variance (ANOVA, post-hoc LSD) showed a more positive perception of nanotechnologies on the part of males, of subjects living in North Italy, of subjects in towns with more than 50,000 inhabitants, young adults and adults, those with a high level of education (high school, University), those with educational qualifications in scientific or medical fields, those who work in “education and research”, “health” and “public and private services”, subjects who state that they read a daily newspaper “three or four times a week” or “every day or almost every day”, and those who state that they have a “good” knowledge of nanotechnologies. Conclusions The results of the survey can be summed up as follows: - “we don’t know what nanotechnologies are, but we are not afraid of them”. The level of knowledge in our country is decidedly low, lower than that recorded by similar surveys carried out in the USA and in Europe. However, there is – as yet – no association between nanotechnologies and perception of danger or harm, nor between nanotechnologies and other products or elements considered harmful to health (such as GMOs or fine dusts), which in the same way would have made the perception of nanotechnologies negative; - “we believe they would improve life”. Nanotechnologies are associated with the concrete aspect of obtaining an improvement in many sectors linked to health and to the quality of life directly (medical appliances, pharmaceuticals, surgery techniques, cosmetics, etc.) or indirectly (the production of energy, computer science, communications, the automotive sector, etc.). The possible use in food production and packaging, however, rises some concern; - “we would like to know more”. For precisely the above reasons, the subject of nanotechnologies attracts interest, and many participants to the survey (focus group members, or those who filled in the questionnaire) took advantage of the occasion both to ask for information and to start on their own path in search of information. In other words, there seems to be a “demand for knowledge” of the subject which could be answered by 38 N e w s l e t t e r N ano t e c i t S O C I ET à means of suitable communications campaigns; - “we want easy communications accessible from home”. To reach this potential public, and to obtain a significant audience, importance must be given to the simplicity of the message, since it is a topic which lends itself to conceptual sophistications which can hinder understanding and dampen interest. Since only a small minority of participants appear to be willing to seek actively information, it will also be important to reach the public by the classic means, such as the press, television and internet. In any case, apart from communications addressed to adults, it could be useful to promote campaigns directed towards children and teenagers, who are culturally more ready and open to assimilate information, and who are, at the same time, a vehicle for access to the world of adults; - “we trust those who have no commercial interests”. The source has to be seen as authoritative and unconnected with gain, otherwise the public would tend to suspect that the source wished to hide something or that it was emphatic for second aims. They expect nanotechnologies to improve the quality of life: the list of advantages deriving from the use of nanotechnologies, to be considered truthful, will have to be guaranteed by experts who have no economic interest. Otherwise, in this era of great scepticism, the information would end up by being considered a decoy, if not a real attempt to hide the truth. In terms of communications strategies, the survey showed four stereotypes which at moment represent the major obstacle to correct representation of the subject. A first stereotype regards the artificial nature of nanomaterials: no focus group member was aware of the fact that they exist in nature. It is therefore necessary to underline the fact that materials with nanometric properties are not only created in the laboratory, but are present in our environment and man has lived with them for centuries. A second stereotype regards the fact that nanotechnologies are something which will exist in the future, something found at present only in science fiction. To this regard, it is essential to promote awareness of the fact that today, in the industrial production of certain goods or components of goods, as also in certain processes, nanotechnologies are already used. A third stereotype regards the use of nanotechnologies almost exclusively in the medical and computer fields, while the fourth, which somehow match with the second stereotype, sees nanotechnologies confined to scientists laboratories. It will therefore be important to emphasise that they are applied in many fields that can impact with everyday life, and you don’t have to be a scientific researcher to handle and use them. In the light of these initial indications, the path towards the correct diffusion of information on nanotechnologies is a demanding task: but at the same time, we believe that it is essential and N A N O TE C N O L O G I E can no longer be deferred in order to avoid – in the absence of any active and proper communication – incorrect and unwanted perceptions, experiences and expectations which would be extremely difficult to modify. References 1. Bucchi, M., Neresini, F. (2002). Biotech Remains Unloved by the More Informed. Nature, 416, p. 261. 2. Bucchi, M., Neresini, F. (2005). Biotecnologie e opinione pubblica in Italia. Rapporto conclusivo, www.observa.it. 3. Cobb, M.D., Macoubrie, J. (2004). Public perceptions about nanotechnology: Risks, benefits and trust. Journal of Nanoparticle Research, 6, pp.395– 405. 4. Corbetta, P. (1999). Metodologia e tecnica della ricerca sociale. Bologna: Il Mulino. 5. Currall, S.C., Lane, N., King, E.B., Madera, J., Turner, S. (2006). What drives public acceptance of nanotechnology? Nature Nanotechnology, 1, 153155. 6. European Commission (2001). Eurobarometer Survey on Europeans, & S O C I ET à j Science and Technology. Brussels: European Commission. 7. European Commission (2006). Eurobarometer Survey on Europeans, Science and Technology. Brussels: European Commission. 8. Lee, C.J., Scheufele, D.A., Lewenstein, B.V. (2005). Public attitudes toward emerging technologies. Science Communication, 27, 240–267. 9. Moscovici, S. (1984). The Phenomenon of Social Representations. In Farr, R.M., Moscovici, S. (edited), Social Representations. Cambridge: Cambridge University Press. 10. Siegrist, M., Keller, C., Kastenholz, H., Frey, S., Wiek, A., (2007). Laypeople’s and Experts’ Perception of Nanotechnology Hazards. Risk Analysis, Vol. 27, 1, 59-69 Contacts Claudio Giovanni Cortese Dipartimento di Psicologia – Università di Torino Via Verdi 10 10124 TORINO +39 011 6702027 [email protected] Table 1 Answers to the question “Certain statements are given below. Considering nanotechnologies for each statement, please indicate how far you agree, using a scale of 1 (I hardly agree) to 4 (I absolutely agree)”. Nanotechnologies… Frequency of disagreement (1-2) % of disagreement (1-2) Frequency of disagreement (3-4) % of disagreement (3-4) allow for the creation of new products 528 20.60% 1806 70.4% improve product quality 583 22.70% 1941 75.7% are innovations which improve the quality of life 580 22.60% 1946 75.9% offer solutions to problems which might not be solved otherwise 751 29.30% 1765 68.8% have no negative effect on health 1073 41.80% 1451 56.6% can be used on purpose for harmful actions 1142 44.50% 1377 53.7% are useful for cleaning and to safeguard the environment 1565 62.30% 946 36.9% can damage the traditional economy 1728 67.40% 785 30.6% are dangerous because such minute objects could get out of control 1758 68.50% 751 29.3% are harmful to health 1881 73.30% 614 23.9% are dangerous because nanoparticles can accumulate inside the human body 1890 73.30% 609 23.7% Table 2 Answers to the question “Which of these sources is, in your opinion, most credible in terms of nanotechnologies?”. Frequency of the answers % of participants Universities and scientists 2146 84.7% Industry and entrepreneurs 678 26.7% Public authorities (e.g the Ministry) 644 25.4% Consumers’ organisations 539 21.3% Environmentalists’ organisations 424 16.7% Trade unions 108 4.3% Religious organisation 86 3.4% Political parties 70 2.8% N e w s l e t t e r N ano t e c i t 39 T N O T I Z I E Notizie Investire in cervelli: Siglato un importante accordo tra Mapei e l’Università di Padova Un importante accordo tra Mapei e l’Università di Padova, di durata decennale, è operativo dall’inizio del 2008. Si è in tal modo instaurato un rapporto di collaborazione sistematico e di lungo periodo tra l’Impresa e l’Università. L’accordo prevede il finanziamento da parte di Mapei di una linea di ricerca che i ricercatori universitari del gruppo di Geoscienze, diretto dal professor Gilberto Artioli, svilupperanno congiuntamente con i ricercatori del Centro di Ricerca Corporate Mapei di Milano. Il tutto per un investimento complessivo di circa 8 milioni di euro. L’Università e Mapei sono impegnate a collaborare, ciascuna per la propria competenza, allo sviluppo e alla realizzazione di attività di ricerca nel settore dei materiali cementizi, con particolare riguardo a: • studi e ricerche su progetti specifici di interesse comune; • analisi delle problematiche di ricerca applicative per il conseguimento di risultati scientifici di livello internazionale; • formazione di un adeguato numero di giovani ricercatori con solide basi scientifiche e capacità di svolgere in modo indipendente attività di ricerca nel settore; • attività di divulgazione scientifica; • sviluppo di una rete di contatti di alto livello scientifico con grandi strutture di ricerca ed altri laboratori universitari. Gli impegni di Mapei riguardano in particolare il finanziamento di una cattedra di professore ordinario, di una posizione di ricercatore, di tre borse di dottorato di ricerca triennali e di un programma di “visiting professors” riservato a esponenti della Comunità Scientifica internazionale. Negli ultimi anni le ricerche di base e applicative sui materiali cementizi hanno conosciuto un forte sviluppo, stimolato da esigenze applicative e industriali sempre più mirate e specifiche, e favorito dallo sviluppo parallelo di tecniche di caratterizzazione sempre più sofisticate. In questo contesto, l’Università di Padova e Mapei hanno interesse comune alla costituzione di un Centro di Competenza, focalizzato sullo studio di tali materiali, che realizzi un’integrazione fra il mondo accademico e quello industriale, affinché competenze scientifiche di frontiera possano trovare applicazione in progetti industriali, con il rispetto dei tempi e delle priorità. Una interpretazione completa del sistema cementizio richiede una visione a scale diverse del sistema - da quella atomica a quella del cantiere - e quindi un efficace collegamento fra le proprietà delle scale nanometrica e micrometrica e proprietà macroscopiche. Le finalità principali del programma sono rivolte alla interpretazio40 N e w s l e t t e r N ano t e c i t ne dei parametri macroscopici dei prodotti e dei processi basata sulla comprensione dei meccanismi a scala atomica e molecolare, al trasferimento di conoscenze specifiche di tipo cristallografico e cristallochimico riguardo alle fasi complesse coinvolte nei processi di idratazione, mediante l’utilizzo di tecniche analitiche e di caratterizzazione avanzate. In particolare, nell’ambito dell’analisi dei materiali cementizi, alcune innovazioni recenti hanno permesso di quantificare correttamente le fasi cristalline contenute nei clincker, nei cementi e nei prodotti di reazione mediante metodi di analisi diffrattometrica a profilo completo. Esiste inoltre la possibilità di caratterizzare le cinetiche di reazione in situ in diverse condizioni sperimentali grazie a sorgenti intense (luce di sincrotrone) e penetranti (neutroni). Infine, è possibile studiare con tecniche microscopiche adeguate - quali microscopia elettronica (ESEM), microscopia a scansione di sonda (AFM –STM), tomografia ad alta risoluzione - le interazioni superficiali fluido/cristallo. Molto importanti sono sia l’interpretazione degli effetti indotti dagli additivi organici e inorganici, in grado di controllare la materia alla scala nanometrica, che la capacità di influenzare nella direzione voluta la formazione della nanostruttura del materiale cementizio. La comprensione e la quantificazione di queste modificazioni devono essere basate sullo studio dettagliato dell’effetto, chimico e morfologico, di ciascun additivo sulle specifiche fasi presenti nella pasta cementizia o sulle fasi che si formano durante l’idratazione. Per concludere, le metodologie e le tecniche analitiche che si vogliono utilizzare per ottenere una migliore comprensione dei complessi sistemi cementizi presuppongono un’investigazione a diverse scale, partendo dalla scala atomica e molecolare (microscopia a forza atomica, microscopia elettronica a trasmissione), passando poi alla scala cristallografica (diffrazione ad alta risoluzione con raggi-x da sincrotrone e neutroni, tomografia) per arrivare alla scala macroscopica (reologia dei sistemi, caratterizzazione fisico-meccanica), integrando e correlando quindi i dati alla scala nanometrica con quelli alla scala macroscopica. Il ritorno atteso da Mapei da questo ambizioso programma è l’acquisizione della capacità di progettare e realizzare materiali cementizi di diverso tipo (adesivi, malte, intonaci funzionali, rasature ecc.) “tailor-made” per specifiche applicazioni, con proprietà meccaniche controllate e con fenomeni di degrado conosciuti e controllati e quindi con durata certa. Le conoscenze sviluppate nel programma consentiranno a Mapei di acquisire vantaggi competitivi durevoli nei confronti dei concorrenti. (Amilcare Collina - Responsabile Mapei per i rapporti con la comunità scientifica) R I C ER C A Gruppo di Lavoro Nazionale per l’individuazione di misure di prevenzione protezione connesse con l’esposizione a nanomateriali in ambito lavorativo. Su iniziativa dell’Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro (ISPESL) è stato istituito il Gruppo di Lavoro nazionale per l’individuazione di misure di prevenzione protezione connesse con l’esposizione a nanomateriali in ambito lavorativo che si pone come obiettivi principali: potenziare e consolidare a livello nazionale la collaborazione nell’attività di ricerca sui rischi da esposizione lavorativa a nanomateriali, effettuando una ricognizione dei bisogni, delle priorità e delle possibilità di finanziamento; sviluppare un approccio multidisciplinare alla valutazione del rischio promuovendo attività di ricerca integrate; individuare strumenti idonei per lo sviluppo della comunicazione ed il trasferimento delle conoscenze nel settore. Il Gruppo di Lavoro è composto da ricercatori che a diverso titolo operano nel settore della salute e sicurezza dei nanomateriali in ambiente di lavoro all’interno dell’ISPESL, arricchito dai rappresentanti degli Enti e delle Università che hanno mostrato maggiore sensibilità alla problematica a livello nazionale quali INFN, ISS, FSM e le Università di Trieste, Parma, Milano, Roma Cattolica e Tor Vergata e infine da Nanotec IT quale punto di riferimento nazionale per le nanotecnologie per industria, ricerca pubblica e istituzioni. La riunione di apertura dei lavori del Gruppo svoltasi a Roma lo scorso 12 novembre ha espresso la necessità di effettuare una mappatura delle conoscenze disponibili sull’argomento, delle misure di prevenzione e delle questioni chiave su cui investire nella ricerca; è emersa inoltre la volontà e l’interesse di individuare strumenti idonei per superare il limite di partecipazione da parte delle aziende e dei produttori a questo tipo di iniziative. Nel campo delle nanotecnologie il gap tra il progresso tecnologico e la ricerca in ambito della salute e sicurezza del lavoro è ancora molto ampio. Gli studi relativi agli effetti sulla salute e all’analisi del rischio da esposizione a nanomateriali sono limitati e non esistono metodologie validate per la valutazione del rischio in ambiente di lavoro. Pertanto a fronte dello squilibrio tra le scarse conoscenze sui rischi per la salute connessi con l’utilizzo dei nanomateriali e la diffusione esponenziale che le nanotecnologie avranno nei prossimi anni, è necessario sviluppare la ricerca nel settore con particolare attenzione alla analisi del rischio per i lavoratori esposti, evidenziare le criticità e i bisogni delle politiche di salute a sicurezza dei lavoratori correlati con lo sviluppo delle nanotecnologie, nell’ottica di indirizzare gli sforzi verso un approccio responsabile e sostenibile al loro utilizzo. (Fabio Boccuni, ISPESL) Riferimenti Fabio Boccuni Istituto Superiore Prevenzione e Sicurezza sul Lavoro (ISPESL) [email protected] & S VN I OL TU I PZ PI OE tT FramingNano project publishing the first deliverables The FP7 project FramingNano is a Support Action within the FP7 program, funded for two years, with a total budget of 0.7M€ and including 6 partners from 6 European States. The objective of FramingNano is to support the establishment of a multi-stakeholders dialogue on NS&T regulation and governance involving the scientific, institutional and industrial communities as well as the broad public, and foster the development of a shared frame of knowledge, objectives and actions leading to a constructive and practicable regulatory solutions (Governance Plan) for a responsible development of NS&T at European level (and beyond. AIRI/Nanotec IT is the Coordinator, other partners include: The Innovation Society (CH), The Institute of Nanotechnology (UK), National Institute for Public Health & the Environment (The Netherlands), Fondation EurActiv (Belgium), Technology Centre (Czech Republic). The FramingNano project started in May 2008 . The first phase, the analysis of existing and proposed regulatory and governance frameworks for nanotechnologies, is now concluded, while the consultation of stakeholders (second phase) is beginning. The last phase, the design of the Governance Plan, will start in Summer 2009. Several actions are in progress or completed: •Mapping Study on Regulation & Governance of Nanotechnologies A detailed study providing a picture of the recent development regarding regulation and governance of NS&T in Europe and worldwide, identifying relevant NS&T stakeholders organisations and making an assessment of these information has been published in January 2009. The report gives an insight on the international debate on risks and concerns related to nanotechnologies (EHS issues and ELSI), and provides an ample overview of the different regulatory approaches proposed or already developed to deal with these issues: the existing regulatory situation in relation with nanomaterials and nanotechnology applications, the authorities involved, national/international initiatives, standardisation activities and voluntary measures specifically devoted to nanotechnologies. Finally, initiatives and positions on these issues of different kind of stakeholders (policy makers, businesses, researchers, civil society organisations) are presented, reporting the position of more than 25 organisations and social groups worldwide. The report can be downloaded for free from www.framingnano.eu • FramingNano multistakeholder workshop A Workshop on the future regulation and governance of Nanotechnologies took place in Brussels on Thursday 26 February N e w s l e t t e r N ano t e c i t 41 T N O T I Z I E 2009. Following keynote presentations on key environmental, health and safety (EHS) issues, key ethical, legal and social issues (ELSI), and industry needs by top-level experts, there will be three interactive workshop sessions on EHS, ELSI and possible governance models, where attendees will be encouraged to provide input and contributions concerning their positions on the future governance of nanotechnology. • Delphi consultation Interested stakeholders are invited to participate to the project consultation, completing an electronic questionnaire. The study is designed to facilitate interested stakeholders in reporting their positions and views on those key issues and factors that should form the basis for shaping future EU governance and regulatory policy concerning nanotechnology This information will be vital in ensuring that future dialogue and proposals for governance and regulatory frameworks reflect the input of the various active stakeholders. All stakeholders with an interested in contributing to the study are cordially invited to complete the questionnaire at http://www.framingnano.eu/questionnaire • FramingNano newsletter and website A complete and updated website dedicated to regulation & governance of Nanotechnologies is running since July, with news, reports, events and details on the project activities. The first two issues of the project Newsletter can be downloaded from the project website. References www.framingnano.eu ObservatoryNano project gears-up The FP7 project ObservatoryNANO is a Support Action within the FP7 program, funded for four years, with a total budget of 4 M€ and including 16 partners from 10 European States. Its mission is “to create a European Observatory on Nanotechnologies to present reliable, complete and responsible science-based and economic expert analysis, across different technology sectors, establish dialogue with decision makers and others regarding the benefits and opportunities, balanced against barriers and risks, and allow them to take action to ensure that scientific and technological developments are realized as socioeconomic benefits. AIRI/Nanotec IT is among the partners, its role mainly regarding technology assessment of nanotechnology in the textile sector and monitoring of development of regulation and standards related to nanotechnology. The ObservatoryNano project started in April 2008 and several actions are now in progress: 42 N e w s l e t t e r N ano t e c i t • Technology sector reports Partners are preparing a series of reports regarding the economical and technological development of nanotechnologies Ten broad technology sectors, each presented as a number of subsectors, are being analysed. They are: aerospace, automotive, and transport; agrifood; chemistry and materials; construction; energy; environment; health, medicine and nanobio; ICT; security; textiles. The draft of these reports are used as inputs for the experts’ consultation phase and the discussion that will take place during the first project symposium. • ObservatoryNano experts’ consultation on nanotechnologies development The project is engaging with the expert community through a series of structured discussions to map opinion on nanotechnology developments and implications. The process is iterative, allowing refinement and consensus taking. Two electronics questionnaires are available in the project website, dedicated to scientific and economic impacts of nanotechnologies in the ten broad technology sectors on which the technology analysis phase is geared. Experts from different scientific, technical, and economic fields are being invited to complete sections of this questionnaire appropriate to their expertise • Symposium The first project Symposium “Shaping European Nanotechnology” will be held in Duesseldorf (Maritim Hotel), March 10-11th, 2009. • Website A complete, user-friendly website, collecting all data and information produced by the project is already running, even though most of the information will be uploaded after the symposia and the publication of the first technology reports. References www.observatorynano.eu Nanochallenge 2008 premia la nano-scrittura di ThunderNIL e il super polimero di Chimatech Sono stati assegnati a Padova lo scorso novembre i 2 premi da 300.000 Euro al termine della finale di Nanochallenge and Polymerchallenge 2008, vincono due team italiani: ThunderNiL per la categoria nano e Chismatech per la categoria polimeri. Sono italiani i due team vincitori della quarta edizione di Nanochallenge and Polymerchallenge, la business plan competition internazionale organizzata dal Distretto Italiano per le Nanotecnologie Veneto Nanotech in collaborazione con Imast, il Distretto campano per i materiali polimerici avanzati. L’edizione 2008 è stata supportata da aziende del settore privato interessa- R I C ER C A te alle applicazioni delle tecnologie. Tra queste Dainese e GearWorld del Gruppo Carraro, Alenia Aeronautica, Basf, Bracco, Carel, Eurotech, PriceWaterhouse Coopers e Lux Research. «E’ stata una scelta estremamente difficile e sofferta – ha commentato il professor Renato Bozio, prorettore alla ricerca dell’Università di Padova e presidente della giuria internazionale di scienziati, manager e imprenditori che ha valutato i progetti – visto il livello delle proposte che anche quest’anno provenivano da tutto il mondo. Un elemento che conferma la forte attrattività di questa manifestazione, che ormai viene considerata un appuntamento fisso per tutti quei ricercatori che intendono fare il salto nel mondo dell’imprenditoria». Alla finale di quest’anno hanno partecipato i14 team di varia provenienza selezionati fra 40 proposte ricevute da tutto il mondo. Tanti gli scienziati e i rappresentanti del mondo aziendale italiani e stranieri che si sono sfidati a Palazzo del Bo dell’Università di Padova in una due giorni ricca di interventi, presentazioni, domande, confronti, dimostrazioni. Un lavoro che però non si ferma qui: sono infatti già stati programmati da Veneto Nanotech una serie di incontri con i maggiori investitori italiani e internazionali, a cui saranno presentare le migliori idee di business presentate durante la finale di Nanochallenge and Polymerchallenge, al fine di reperire ulteriori risorse per finanziare il maggior numero di start-up e sostenere la creazione di nuova tecnologia. Nella categoria nanotecnologie si è imposta ThunderNIL, una start up nata all’interno del laboratorio TASC - Tecnologie Avanzate e nano SCienza - Unità Operativa CNR-INFM di Trieste, con un progetto che punta a rivoluzionare la produzione di molti dei dispositivi elettronici e ottici di uso quotidiano. L’idea si basa su una stampa ultraveloce su larghe aree che permette di incidere tracce dello spessore di pochi manometri. «Potremo realizzare – spiega uno dei fondatori Maurizio Tormen – superfici nanostrutturate con risoluzione e velocità di scrittura diverse migliaia di volte migliori delle presenti tecnologie, riducendo i costi di produzione e migliorando le prestazioni dei dispositivi. Ad esempio in un normale DVD sarà contenuto un volume di informazioni mille volte superiore, oppure potranno essere prodotte celle solari più efficienti e con un riduzione di costi che contribuiranno alla loro diffusione su larga scala». ThunderNIL dispone di prototipi coperti da brevetti internazionali per l’industrializzazione. Le applicazioni riguardano principalmente dispositivi per l’archiviazione dei dati ad alta densità, componenti ottiche per LED e fotocamere digitali, chip usa e getta per l’analisi del DNA e delle proteine, componenti ottiche per il fotovoltaico. I fondatori provengono dal CNR INFM di Trieste, dal laboratorio TASC e dall’Università di Padova e ora potranno avviare l’azienda all’interno del Distretto Veneto Nanotech, utilizzando dei macchinari indispensabili per la loro tecnologia. Nella categoria materiali polimerici il podio è stato conquistato da Chismatech, una start-up nata a Catania, grazie a tre giovani ricercatori che da anni lavorano nel settore dei materiali avan- & S VN I OL TU I PZ PI OE tT zati . Chismatech ha sviluppato un super polimero con elevate proprietà meccaniche e termiche. Le novità di questo materiale, che viene definito auxetico, ottenute grazie ad un processo produttivo innovativo, sono nella forma e nella composizione. In pratica, grazie ad una struttura che sostituisce il tradizionale nido d’ape dei sandwich di poliuretano con un un’innovativa struttura “a triangoli”, i ricercatori catanesi sono riusciti ad ottenere una “plastica” che si plasma con grande facilità, ma non si deforma, con proprietà di assorbimento del suono e con elevate capacità di resistenza meccanica. Molto ampie le applicazioni: per la costruzione di navi, treni e aeromobilii, per la produzione di energia eolica, fino ad un utilizzo più comune come quello possibile nell’edilizia e nelle costruzioni, e nel mercato di riferimento delle schiume a base poliuretanica. Ciascuno dei due team vincitori, premiati lo scorso 28 novembre a Padova, ha ricevuto un premio da 300.000 Euro di cui 200.000 cash e 100.000 in servizi (incubazione, spazi per uffici, accesso ai laboratori di Veneto Nanotech e di IMAST, servizi di supporto legale, commerciale, marketing e promozionale) al fine di favorire la nascita e lo sviluppo rispettivamente in Veneto e Campania delle società ad alto contenuto tecnologico. I vincitori delle precedenti edizioni sono stati: 2005 - Singular ID società costituita dall’Institute of Materials Research and Engineer della National University di Singapore insediatasi a Padova, che impiega le nanotecnologie per l’etichettatura magnetica nella lotta alla contraffazione dei prodotti ed acquisita nel dicembre 2007 dal gruppo farmaceutico indiano Bilcare per 15 milioni di Euro; 2006 - Eurosen società formata da un gruppo di ricercatori slovacchi dell’Università di Bratislava che ha sviluppato laboratori portatili con sensori elettrochimici e biosensori innovativi per l’analisi di parametri enologici, applicabili anche ad alimenti e bevande operativo a Venezia; 2007 categoria Nanotecnologie - Ananas Nanotech, già spin off dell’Università di Padova che ha scoperto e messo a punto una tecnologia innovativa per la produzione di nanoparticelle (60-200 nanometri) altamente definite, multifunzionali, biocompatibili e biodegradabili, applicabili in immunodiagnostica e nel rilascio dei farmaci; 2007 categoria materiali polimerici – HYPUCEM - Hybrid composite foams for lightweight and high performance elements in civil and industrial buildings - società con sede a Napoli nata da alcuni ricercatori del CNR e dell’Università Federico II che ha sviluppato schiume ibride e composite per componenti leggeri e dalle elevate performance isolanti per il settore dell’edilizia, delle costruzioni civili e industriali. Già confermata la prossima edizione di Nanochallenge and Polymerchallenge, che riaprirà il bando da febbraio 2009. (Elisabetta Talarico, Veneto Nanotech) Riferimenti Elisabetta Talarico Veneto Nanotech Tel 049 7705500 Email [email protected] www.nanochallenge.com N e w s l e t t e r N ano t e c i t 43 T N O T I Z I E NANOMAT project: Piedmont on screen The Nanomat project started two years ago, after more than a year of planning. In this period nanotechnologies gained an increasing interest for innovation of industrial products and processes, and a common topic for the managers of the more innovative companies of the Piedmont Region, also thanks to the work undergone by the Nanomat project. Some figures related to Nanomat are worth to mention: • more than 200 companies have taken part in the events programmed in one and a half years; • in more than 30 different projects (demonstrative, regional CIPE [Interdepartmental Committee for Economic Programming], national, European) there has been joint participation on the part of companies in Piedmont and Nanomat research centres; • more than 100 scientific articles have been published in prestigious international magazines or presented at international congresses by Nanomat partners; • 2 patents on the technologies developed have been applied for and other patent applications are being prepared in collaboration with the companies which are project partners. These are important numbers, especially because they have been generated by a project which has had an unusually short term for programmes of such impact. In addition to all this, Nanomat has formed the Nanotechnologies Club, which represents the result which sums up the Nanomat objectives; it is an association of companies involved and interested in the field of nanotechnologies and nanomaterials. The Club aims to organise training and the diffusion of information and projects, maintaining constant relations between the Piedmont companies and the regional research centres which are working on nanotechnologies and on the development of new materials and production processes. The Club – open to every type of company – was suggested by ASP (Associazione Sviluppo Piemonte – The Development Association of Piedmont) in collaboration with the Turin Industrial Union and the AMMA (The Association of Metallurgical, Mechanical and Similar Industries), but it will extend its cooperation to other entrepreneurial association of the Region. Apart from the several scientific and industrial activities prompted by the project, there has been also important auxiliary activities. One is the research on the social perception of nanotechnologies, the central point of which has been a national survey carried out on a representative sample of 2,500 Italian citizens. The survey indicated the situation as regards knowledge of nanotechnologies in Italy: almost 90% of the Italian population has no familiarity with nanotechnologies, but they would all like to know more about them and receive information from experts via 44 N e w s l e t t e r N ano t e c i t the most widespread communications means. This involves an important commitment for the scientific community and the business world, which can be performed with effective communication actions, such as, for example, events open to the public (an article dedicated to this research is included in this Newsletter). Communication activities have been the aim of ASP, the leader of the Nanomat project, which has organised wide-reaching events such as the Nanowor(l)d performance, an event for the theatre especially commissioned for Nanomat; or the launch of the competition on the use of laser in design on materials such as fabrics, ceramics and cardboard for packaging. Another research carried out for Nanomat was a national survey on the type, importance and effectiveness of the technological transfer channels used by the small and medium sized Italian companies in the nanotech compartment, from which it can be understood that the results of the research carried out in the universities and in the research centres have an important role to play in industrial innovation. Considering the conclusion of these two years’ activity, one can say that public investment has generated a virtuous cycle which has allowed the research centres and companies to carry forward technological transfer in a sector – that of nanotechnologies – which, although still in the pioneering stage, has already taken on great importance in industrial innovation. The target Nanomat is now pursuing is to establish stable collaboration between companies and research centres, in order to constantly foster and encourage the said virtuous circle. (Giuseppe Caputo, Nanomat project) References Dr. Giuseppe Caputo ASP - Progetto Nanomat Technical Manager Villa Gualino, Viale Settimio Severo 65 - Torino, Italy Phone: +390116608425 - Fax: +390116608426 [email protected] R I C ER C A CNR-TASC coordina la piattaforma europea Nanoscience Foundries and Fine Analysis Il campo in cui si sono riscontrati i maggiori benefici della miniaturizzazione è notoriamente quello della microelettronica, che ha perseguito costantemente l’incremento esponenziale delle prestazioni e la riduzione dei costi e dei consumi dei dispositivi. Negli ultimi anni però sono andate via via espandendosi tecnologie che spingono la miniaturizzazione fino a livello atomico o molecolare in nuovi campi di applicazione. La varietà e vastità dei settori in cui stanno entrando prepotentemente le micro e nanotecnologie (micromeccanica e microfluidica, sensoristica, fotonica, medicina e diagnostica medica, genomica e proteomica, alimentazione, energetica, materiali e rivestimenti) dimostra che si sta preparando il terreno per replicare in nuovi campi i successi ottenuti nell’elettronica grazie alla miniaturizzazione. Nei settori nanotecnologici emergenti gli approcci inizialmente utilizzati sono stati quelli tipici dell’elettronica (si pensi ai primi circuiti microfluidici fabbricati in silicio e sigillati con tecniche di wafer bonding). Tuttavia, approcci fabbricativi innovativi (quali per esempio la nanoimprint lithography, la soft lithography e il microcontact printing), nonché materiali nuovi (silicio nanoporoso, nanoparticelle colloidali, polimeri e copolimeri speciali, molecole autoassemblanti su superfici ecc.) sono venuti ad ampliare la “toolbox” già ampia delle tecniche tradizionali, con cui il nanotecnologo può affrontare le nuove sfide di innovazione tecnologica. I benefici del down-sizing del prodotto e delle tecnologie per realizzarlo sono evidenti sia in termini di costi che di competitività. Se poi si associa anche il fatto che una tipica catena di nanofabbricazione si addice per una molteplicità di realizzazioni in settori anche molto diversificati, si evince pure un elevato grado di versatilità nel modificare il prodotto o il processo. Di converso sta prendendo piede la possibilità di nano-strutturare anche prodotti necessariamente di dimensioni macroscopiche, quali materiali per infrastrutture e impiantistica, modificando a livello nanometrico la loro struttura per ottenere migliori prestazioni o effetti di funzionalizzazione (per cui le proprietà chimico fisiche cambiano in funzione di uno o più parametri esterni). Al fine di rilanciare un forte impatto sistemico sul tessuto produttivo delle scienze e delle tecnologie che si spingono fino alla scala atomica, nasce il progetto europeo NFFA: Nanoscience Foundries and Fine Analysis. E’ un progetto di FP7 (settimo programma quadro), inserito nella voce CAPACITIES (infrastrutture di ricerca) e si tratta in particolare di un DESIGN STUDY, ovvero della DEFINIZIONE di una struttura di ricerca distribuita di interesse pan-europeo dedicata alle tecnologie di micro-nano-fabbricazione congiunte alle metodologie dell’analisi fine della materia. Il progetto è coordinato dal Laboratorio Nazionale TASC del CNR-INFM e vede la partecipazione di Austria, Svizzera, Spagna e Inghilterra. La missione strategica del progetto NFFA può essere riassunta in tre punti salienti: • Officina molecolare: interfaccia tra il mondo produttivo & S VN I OL TU I PZ PI OE tT e le grandi infrastrutture di ricerca. Il concetto di officina molecolare esprime l’azione di integrare maggiormente con il territorio le attività delle grandi facility scientifiche (quali sincrotroni e sorgenti di neutroni), che tipicamente sono dei grandi strumenti per la caratterizzazione e l’analisi che servono per “capire”, affiancando loro delle facility che servano per “fare” (quindi fabbricazione, manipolazione e sintesi che hanno una maggiore connessione con il settore produttivo). Il concetto di poter “capire” a livello atomico ed in tempo reale quello che si riesce a “fare” con la nanofabbricazione, costituisce un valore aggiunto non facilmente riscontrabile. • Piattaforma tecnica comune: protocolli, metrologie e data repository per la manifattura spinta fino alla precisione atomica. Una technical liaison al servizio dei distretti tecnologici e delle industrie per la prototipazione miniaturizzata e lo sviluppo di nuovi processi produttivi, con particolare riguardo all’up scaling per la nanostrutturazione su ampie superfici ad elevata produttività. • Istituto Tecnologico per la formazione superiore, anche a livello di scuole superiori e licei, di persone che abbiano un’elevata professionalità per rispondere alle esigenze del mercato del lavoro nelle nuove tecnologie. Al fine di mantenere una stretta connessione del progetto NFFA con il sistema produttivo fin dall’inizio, ovvero nella fase di DESIGN STUDY, e quindi di permettere di realizzare un progetto con un elevato impatto sul sistema produttivo italiano, è stato attivato sul sito http://NFFA.TASC.INFM.IT un questionario aperto a tutti gli operatori nel settore delle micro e nanotecnologie con il quale si intende raccogliere le esigenze di un bacino di utenza che si auspica possa essere il più ampio ed eterogeneo possibile. Riferimenti Roberto Gotter, PhD Laboratorio Nazionale TASC-INFM-CNR AREA Science Park, SS 14 Km 163,5 I-34012 Basovizza, Trieste (Italy) Email [email protected] Smart textiles: the Systex project Systex is a “Coordination action for enhancing the breakthrough of intelligent textile systems (e-textiles and wearable microsystems)” within the FP7 EU program, in the cooperation area (ICT theme – Micro/nanosystems), with an overall budget of about 800.000 euro and lasting from May 2008 to April 2011. The 12 Partners of the project are from Belgium, Italy, France, The Netherlands, Germany. Italian partners are; the Interdepartmental Research Centre “E.Piaggio“, University of Pisa, The CNR-INFM, National Institute of physics of Matter – National Research Council Centre “S3”and Smartex Srl. SYSTEX aims at developing a framework for current and future actions in research, education and technology transfer in the field of e-textiles and wearable micro systems / electronics in Europe N e w s l e t t e r N ano t e c i t 45 T N O T I Z I E to support the textile industry in the most efficient and effective way to transform into a dynamic, innovative, knowledge-driven competitive and sustainable sector. E-textiles, also called intelligent, interactive or smart textiles or textile systems are expected to be a new generation of textile products that can help the textile industry in its transformation into a competitive knowledge driven industry. They are electronic systems based on or embedded in textile substrates, adding wearability and comfort to devices and systems made for signal acquisition, transmission and processing. An example could be wearable health monitoring systems. Basically these systems include sensing and actuation, data processing, communication and energy supply. E-textiles and wearable electronics are expected to be one of the answers to these threats and hence will play a significant role in the future European textile and clothing sector. But also on societal level they will contribute significantly. In particular application areas like health, sports and protection their benefits are enormous, leading to improved health care and safety, combining increased performance and cost savings. Several projects in smart textiles and wearable electronics have been carried out or are under execution within national as well as European programmes. Also in the US and Asian countries small and large projects are being undertaken. Co-ordination is limited and only takes place on an international level. E-textiles and wearable electronics are complex systems that combine knowledge from many disciplines with the specific requirements of textile and clothes and this is a huge challenge. Intelligent stand alone suits must be considered as systems consisting of a set of components and this system approach is rather new to textiles. However without a system approach successful developments cannot be achieved. In addition individual components/devices are often available but when they are brought together in one system for one particular application often the overall result does not meet the requirements. Similarly, solutions found for one particular application may not fully meet the requirements for other applications. Another challenge is the gap between Microsystems (often large to very large companies) and textiles (consisting of more than 90% of SME’s). Many materials and systems are available as well as devices for sensing and actuation, but they are not compatible with a textile nor with the textile production process. They could be transformed into a textile compatible structure or even in a full textile structure, but for this understanding on how the devices work must be combined with knowledge on textile materials, structures and processes and this turns out to be the obstacle. Organic electronics is an emerging field that merges electronics and polymeric materials, but textiles are still hardly involved in this. SYSTEX wants to coordinate the activities of these actions and 46 N e w s l e t t e r N ano t e c i t offer complementary actions to reinforce their overall result. Actions that will be taken include preparation of an agenda for research and development, dissemination of available and missing knowledge and experience an online free database), communication with all stakeholders ranging from policy makers to the end users (wide public). Apart from information, special efforts will be made to exchange materials as well. This includes collecting demonstrators but also prototypes for inter project exchange. In particular, the analysis of the available and ongoing research activities in e-textiles and wearable micro systems and the respective results will be edited in the an online interactive database. All stakeholders can become members of this coordination action, with the main purpose of sharing information and knowledge on the sector. The Consortium is currently calling for members at different level of the value chain (medical, means of transport&logistic, active sports & Healthcare, Protective). Partners of the project are 1. Universiteit Gent – Belgium (Coordinator) 2. Smartex S.R.L. – Italy 3. Commissariat a l’Energie Atomique – France 4. Universita di Pisa – Italy 5. Consiglio Nazionale delle Ricerche – Italy 6. Interuniversitair Micro-Electronica Centrum VZW – Belgium 7. Philips Electronics Nederland B.V. – The Netherlands 8. Multitel ASBL – Belgium 9. Institut Francais du Textile et de l’Habillement – France 10. Anne de Moor BVBA – Belgium 11. Hofmann ISA – Germany 12. Stichting Plastic Electronics Foundation – The Netherlands References Anna Smaniotto Interdepartmental Research Centre “E.Piaggio”, School of Engineering University of Pisa, Via Diotisalvi, 2, Pisa [email protected] Lina Rambausek (project coordinator) Universiteit Gent Vakgroep Textielkunde, Technologiepark 907 9052 Zwijnaarde, Belgium tel +32 9 2645409 - fax + 32 9 2645831 [email protected] www.systex.org The Dutch Nanotechnology Action Plan The Dutch government has launched its Nanotechnology Action Plan, dealing with research and innovation; managing risks; ethical aspects, societal dialogue and communication; and legal aspects. The Netherlands is the third biggest investor, as a percentage of GDP in nanotechnology, after Israel and Singapore according to R I C ER C A the Dutch Ministry of Economic Affairs. The Netherlands also has a number of powerful industrial players, which puts it in a good starting position for the purpose of being able to profit from the expected global growth of products made possible through nanotechnology. This Action Plan is aimed at those matters pertaining to nanotechnology that specifically require further examination, to which end the Cabinet View will be further developed in terms of concrete action and proposals. At the same time, the Cabinet is aware that there is a great deal of uncertainty around nanotechnology and that policies should evolve accordingly. For that reason, the action plan should be regarded as “work in progress”. Progress reports will appear every year detailing action that has been taken, and its effects. The Dutch Action Plan focuses on varies types of actions. In relation to risks the most significant actions are: • Scientific research should help increase insights into the risks associated with nanotechnology. The Cabinet has asked the Netherlands Nanotechnology Initiative (NNI) to present a proposal for the nanotechnology research agenda. The Dutch government will make its position known with regard to the research agenda no later than mid-2009. At least 15% of the research agenda will be reserved for risk research for a minimum of five years. • The National Institute for Public Health and the Environment (RIVM) has already begun an assessment of the potential risks of the technology (Knowledge and Information point Risks Nanotechnology, KIR nano) and the first assessment has been published in autumn 2008. • A broad societal committee will be formed advising the government on ethical aspects, societal dialogue and communication. • Participation in OECD sponsorship programmes. • A dialogue with relevant parties, initiated by the Dutch Department of Housing, Spatial Planning and the Environment. In terms of the current legal position on the technology, the Dutch government has concluded that at present no new legislation is needed to govern nanotechnology. The Commission is in agreement with the Dutch government that current legislation is adequate. Nevertheless risk research is needed to clarify lack of knowledge about potential risks. (Piergiorgio Zappelli, AIRI/Nanotec IT) & S VN I OL TU I PZ PI OE tT Elisabetta Borsella (ENEA, FIM). Attualmente nel campo delle Nanoscienze e Nanotecnologie, grazie alle attività di R&S, si stanno registrando progressi in un’ampia gamma di settori, tra cui quelli concernenti la salute, la società dell’informazione, l’energia, i trasporti, la sicurezza e lo spazio. Alcuni prodotti derivanti dall’uso delle nanotecnologie (cosmetici, rivestimenti ecc.) sono già sul mercato, ma in molti altri settori si è ancora allo stadio della ricerca di base e si possono solo ipotizzare “market relevant applications”. Il divario attualmente esistente fra le enormi prospettive a livello industriale ed il livello di conoscenza dei fenomeni, spesso ancora al livello di base, ha fatto sì che a fronte di ingenti investimenti siano stati redatti dalla Commissione Europea e dalla NSF (National Science Foundation - US) dei documenti strategici (Roadmap) per individuare i prodotti, i sistemi ed i componenti più promettenti nei settori di maggiore interesse. Il volume è basato su una lettura attenta e critica di tali documenti, a cui si rimanda per eventuali approfondimenti. La parte iniziale di questo studio è dedicata all’analisi dei nanomateriali e delle tecnologie di produzione. Per ciascuna tipologia di nanomateriali sono state riassunte le proprietà più interessanti ed indicate le prospettive di applicazione. Nella seconda parte vengono analizzati lo stato dell’arte, le opportunità ed alcuni aspetti critici (quali le barriere socio-economiche da superare ed i rischi tecnologici e di mercato) connessi all’uso dei nanomateriali nei principali settori applicativi: energia, salute, industria aero-spaziale ed automobilistica, tecnologie dell’informazione e delle comunicazioni. La terza parte è dedicata ad un’analisi degli investimenti pubblici e privati a livello mondiale nelle nanotecnologie e ad un quadro attuale e futuro del mercato per le nanotecnologie, basato su indicatori significativi. Le prospettive di crescita sono analizzate per settore e per area geografica. Il quarto capitolo descrive lo scenario italiano, con particolare riguardo all’identificazione dell’apporto della ricerca pubblica e privata allo sviluppo delle Nanoscienze e Nanotecnologie a livello nazionale. Vengono anche quantificate le fonti di finanziamento e tratteggiata la strategia politica (del Ministero della Ricerca e delle Regioni) per incentivare le attività in questo settore. Il volume può essere richiesto direttamente all’ENEA (costo: 15 euro). Riferimenti http://www.enea.it/produzione_scientifica/volumi/V2008_09_Nanoscienze.html N&N: dalla ricerca alle applicazioni: nuovo volume ENEA E’ stato pubblicato da poco nella collana editoriale “FOCUS TECNOLOGIE” del’ENEA, il volume “NANOSCIENZE E NANOTECNOLOGIE - Dalla ricerca alle applicazioni”, autore N e w s l e t t e r N ano t e c i t 47 T N O T I Z I E Seminari&Convegni Italy-USA Bio Nano Business Forum 2008 6-7 novembre 2008, Boston, USA Nei giorni 6-7 novembre, si è tenuto a Boston (USA) il Bio Nano Business Forum che ha coinvolto strutture di ricerca ed imprese Italiane ed Americane impegnate nel campo delle bio e delle nanotecnologie. L’iniziativa è stata promossa dall’Istituto per il Commercio con l’Estero - ICE (Area Beni Strumentali, Tecnologia, Servizi di Roma ed Ufficio ICE di Los Angeles), al fine di stimolare i contatti e favorire le collaborazioni tra i due Paesi in questi settori. Per l’organizzazione del Forum ICE si è avvalsa della collaborazione di AIRI/Nanotec IT e ASSOBIOTEC che hanno contribuito alla formazione della delegazione Italiana ed alla definizione del programma delle attività previste, preparato materiale informativo da inserire nella documentazione da distribuire, illustrato, in una sessione dedicata, la situazione Italiana nei due settori (Elvio Mantovani, AIRI/Nanotec IT, nanotecnologie e Leonardo Viggiani, ASSOBIOTEC, biotecnologie). La delegazione Italiana era piuttosto numerosa e composta sia da rappresentanti del mondo della ricerca che di quello delle imprese. Per le nanotecnologie, erano presenti: Gianfranco Innocenti (Centro Ricerche Fiat-CRF), Laura Boschis (Poli Torino), Cino Matacotta (Scriba Nanotecnologie), Carlo Falessi (Selex SI), Emanuele Barborini (Tethis), Franco Carnagliotto (Trustech), Nicola Trevisan (Veneto Nanotech), Giorgio Fascina ( Xeptagen). Il programma dei due giorni prevedeva, nel primo giorno, un workshop, con interventi da parte di rappresentanti dei due Paesi, seguito da una fase di networking, con incontri “one-to-one” preorganizzati, mentre nel secondo giorno sono state effettuate una serie di visite a strutture di ricerca presenti nell’area di Boston. Nel corso del workshop, articolato in cinque sessioni successive, sono stati affrontati argomenti sia di carattere scientifico che di carattere piu’ generale. In particolare “Biosafety in a Globalised World”; “Patent Consideration in Transatlantic Collaboration”; “Biotechnology and Nanotechnology Development”; “Approaches to Cancer Detection, Drug Development, and Therapy”. ������������������������������������������������������ Tutti I componenti della delegazione Italiana sono intervenuti sono intervenuti al workshop e sono stai coinvolti negli incontri che hanno visto la partecipazione di circa 60 esperti Americani. I risultati sono stati soddisfacenti ed hanno consentititi di attivare nuovi contatti o consolidare preesistenti rapporti. Le visite del secondo giorno erano articolate in una serie di incontri presso alcune prestigiose Università dell’area. In ������������������� particolare hanno riguardato la Boston University (Photonic Center/Incubator, Institute for Technology Enterpreneurship). Harvard University (Center for Nanoscale Systems), University of Massachussetts at Dartmouth (Advanced Technology Manufacturing Center, Technology Venture Center). In conclusione, si può dire che il Forum ha complessivamente 48 N e w s l e t t e r N ano t e c i t raggiunto gli obiettivi prefissati. Gli incontri e le visite sono stati di notevole interesse ed hanno confermato il grande impegno degli USA nelle nanotecnologie e l’eccellenza delle loro strutture in questo campo. Senza dubbio l’entità di questo impegno, almeno in termini di quantità, è di gran lunga più elevato rispetto a quello in Italia. Ciò anche perché esso può contare su un sostegno economico, e in termini programmatici, da parte del Governo Federale (ma in molti casi anche da parte dei singoli Stati) di grande importanza, quale dovrebbe essere adottato anche in Italia. Tuttavia, la qualità delle attività svolte nel Paese è stata riconosciuta e si è riscontrata una ampia disponibilità ad intrattenere rapporti di collaborazione sia a livello di ricerca che di sviluppo applicativo di mutuo interesse e che i partecipanti al Forum, di tutte e due le parti, si sono detti intenzionati a perseguire. (Elvio Mantovani, AIRI/Nanotec IT) Convegno Italo-Svedese sulle nanotecnologie e nanoscienze a Stoccolma 13-14 ottobre 2008, Kista Science City, Stoccolma Si è tenuto presso la sala conferenze dell’Electrum 3, l’“ItalianSwedish Workshop on Nanoscience and Nanotechnology”, promosso dal Dipartimento di Materiali Funzionali del Politecnico di Stoccolma (Royal Institute of Technology-KTH) per la parte svedese e dall’Ufficio Scientifico dell’Ambasciata d’Italia per la parte italiana. Nel corso del convegno, si sono susseguiti quarantuno interventi di alto livello scientifico, da parte di venti scienziati che operano in strutture svedesi e di ventuno colleghi italiani. I relatori dei due paesi si sono alternati per presentare in dettaglio lo stato attuale della ricerca in Svezia e in Italia in ciascun settore. Tutti gli interventi, pur di carattere specialistico, sono iniziati con un’introduzione a carattere più generale volta a illustrare i centri di ricerca che operano in questo settore e gli sviluppi futuri che si prevedono, in modo da gettare le basi per collaborazioni in nuovi progetti. Sono stati toccati tutti i maggiori ambiti scientifici delle nanoscienze e nanotecnologie, dal nanomagnetismo alla fotonica ed elettronica, dai nanomateriali alle applicazioni nel campo della conservazione dei beni culturali, delle biotecnologie, dell’astrofisica e della medicina. Dal confronto tra i due paesi è emerso che, in generale, la ricerca in questo campo in Italia è di altissima qualità, ma notevolmente più dispersa e non collegata direttamente alle applicazioni come in Svezia. Il programma del convegno, la lista dei partecipanti, gli estratti e gli interventi di tutti i relatori sono già disponibili all’indirizzo: Riferimenti http://science.italianembassy.se/Nanosciences2008/nanosciences.php R I C ER C A Convegno “Nanotecnologie, Ambiente e Sicurezza” 20 novembre 2008, Milano Il giorno 20 novembre 2008 si è tenuto il convegno “Nanote cnologie,Ambiente,Sicurezza” organizzato da Legambiente Lombardia in collaborazione con Veneto Nanotech e l’Acquario Civico di Milano. Legambiente fa parte di NanoCap, progetto europeo finanziato dall’Unione Europea a cui partecipano università, sindacati e associazioni ambientaliste provenienti da diversi paesi europei e che si pone l’obiettivo di avviare un dibattito con la società civile sulle Nanotecnologie. Questo convegno è stato un momento di riflessione sull’attuale panorama dei potenziali campi applicativi e dei rischi relativi alla lavorazione, alla diffusione e all’utilizzo di prodotti legati alle nanotecnologie. La prima parte dellla giornata è stata dedicata alla presentazione dello stato dell’arte della diffusione delle nanotecnologie con una panoramica generale dei settori applicativi e delle attuali problematiche che ne ostacolano la crescita. Il dott. Elvio Mantovani (Airi/Nanotec.it) ha illustrato la situazione dello sviluppo della ricerca e degli investimenti sulle nanotecnologie in Italia e nel mondo, e il prof. Paolo Milani (Centro interdisciplinareMateriali e Interfacce Nanostrutturali, Università degli Studi di Milano) ha mostrato l’utilizzo delle nanotecnologie all’interno di processi industriali, con le principali opportunità rispetto alle tecnologie più tradizionali e i limiti del loro sviluppo. Infine, la dott. ssa Iolanda Olivato (Veneto Nanotech) ha portato l’esempio di uno dei maggiori distretti italiani in cui si studiano e si sviluppano le nanotecnologie. Per quanto riguarda, invece, le applicazioni con maggiori vantaggi per l’uomo e l’ambiente, l’attenzione si è soffermata soprattutto sulle tecnologie legate all’energia e alla potenziale riduzione nell’utilizzo di risorse. Il dott. Livio Baldi (Centro di ricerca e sviluppo Numonyx) ha presentato il settore della nanoelettronica, ponendo l’accento sul ruolo della stessa nella riduzione al ricorso di materie prime mentre il prof. Saverio Mannino (Facoltà di Agraria, Università degli Studi Milano) ha invece brevemente illustrato le applicazioni delle nanotecnologie nel settore alimentare. Il prof. Gianfranco Pacchioni (Dipartimento di Scienza dei Materiali – Università degli Studi di Milano-Bicocca), ha illustrato le nanotecnologie energetiche applicate ai catalizzatori e alla produzione di idrogeno, mentre il prof. Stefano Ossicini ( Centro di Fisica e Nanoscienze, Università di Modena e Reggio Emilia)si è concentrato sui materiali nanostrutturati applicati alle tecnologie per il solare e il fotovoltaico, attraverso un confronto di queste stesse tecnologie nel tempo. Nella seconda parte della giornata, l’attenzione si è concentrata sull’analisi dei rischi attraverso una valutazione tossicologica di alcune applicazioni legate alle nanotecnologie e la presentazione di alcuni casi di studio. La prof.ssa Marina Marinovich (Università degli studi di Milano) ha effettuato un’introduzione generale sui potenziali rischi dei prodotti da nanotecnologie, mentre la dott.ssa Laura Manodori (Ricercatore Civen) ha presentato i risultati del monitoraggio di & S VN I OL TU I PZ PI OE tT nanoparticelle effettuato in un ambiente occupazionale. Infine, il prof. Luigi Manzo (Direttore servizio di Tossicologia, Università di Pavia) ha mostrato un caso di studio effettuato sui nanoubi di carbonio con interessanti esiti. In conclusione, è stata trattata la regolamentazione, con la valutazione dei provvedimenti adottati a livello comunitario. Il dott. Andrea Porcari (Airi – Nanotec.it) ha presentato l’attuale panorama della regolamentazione sulle nanotecnologie mentre la dott.ssa Mariassunta Piccinni (Ricercatore Ciga) si è soffermata sulle previsioni normative a livello europeo. E’ possibile scaricare le presentazioni dal seguente sito: www.legambiente.org nella sezione documenti/ convegno Nanotecnologie 2008. Verso uno sviluppo responsabile delle Nanotecnologie L’obiettivo di Legambiente è quello di favorire uno sviluppo sostenibile e consapevole delle Nanotecnologie, da realizzare attraverso un sistema di tracciabilità nel loro intero ciclo di vita, partendo dalla sperimentazione in laboratorio, proseguendo con la produzione industriale e arrivando all’immisione sul mercato e al consumo da parte dei cittadini. E’ importante inoltre investire più risorse nello studio dell’impatto di queste tecnologie sulla salute di lavoratori e consumatori e sull’ambiente. In attesa dei risultati di queste ricerche è necessario regolamentare questo sviluppo, non solo implementando la legislazione già esistente (come voluto dall’unione europea) ma anche adottando specifiche misure che, sulla base del principio di precauzione, limitino al massimo i rischi (soprattutto per quei prodotti sui quali ci sono già motivi giustificati circa potenziali effetti negativi) senza compromettere lo sviluppo di quelle applicazioni positive e meno rischiose. Ed è necessario anche informare i cittadini attraverso un adeguato sistema di etichettatura, rendendoli consapevoli sia dell’effettivo utilizzo di Nanotecnologie, che dei potenziali rischi. I prossimi appuntamenti saranno a marzo, con un incontro insieme ad alcuni esponenti politici per discutere delle scelte e delle misure da adottare per raggiungere uno sviluppo responsabile delle Nanotecnologie e ad aprile con la conferenza finale di NanoCap presso la sede del Parlamento Europeo a Brussels. Riferimenti Lidia Crivellaro Area Rifiuti e Nanotecnologie, Legambiente Lombardia Onlus Via S. Mercadante,4 - 20124 Milano Tel: 02 87 38 64 80 - Fax: 02 87 38 64 87 [email protected] www.legambiente.org - www.nanocap.eu - http:/nanocap.legambiente.org NNC - National Nanomedicine Conference 28 – 29 novembre 2008, Advanced Biotechnology Center (CBA), Genova It is well known that nanoscale objects exhibit physical, chemical and biological properties which are different from those of the corresponding mass materials. These properties, together with N e w s l e t t e r N ano t e c i t 49 T N O T I Z I E their nano-size, the same of naturally occurring biomolecules, promise revolutionary potential applications in clinical practice, that could contribute to improve healthcare in the 21st century. This emerging area of research, Nanomedicine, is the application of Nanotechnology to Medicine. Key issues of Nanomedicine are: miniaturisation of devices, novel nanosized materials, chip-based technologies, imaging techniques, drug delivery, new analytical tools that could quickly bring a better understanding of initiation and progression of disease. The National Nanomedicine Conference, NNC, which was held at the Advanced Biotechnology Center of Genova (CBA), on 28th and 29th of November, 2008, was devoted to explore this new and intruiguing field (http://www.nanomed.unige.it/conferenza/ conference.htm). The Conference was attended by more than 100 partecipants, joining together both young researchers and experts from different fields, such as physics, molecular biology and genetics, engineering, biomedicine, biochemistry. The dense series of contributions was openend by the remarks of Prof. Deferrari, Rector of the University of Genova, Prof. Giannini, Head of the Physics Department and Prof. De Flora, President of the CBA, and closed by Prof. Edoardo Boncinelli (Università Vita-Salute San Raffaele, Milano). The rich list of contributors from public and private research centers included some remarkable invited speaker, such as Professors Enrico Avvedimento (Università Federico II di Napoli), Laura Ballerini (Università di Trieste), Vittorio Bellotti (Università di Pavia), Albert Duschl (Univesità di Salisburg - Austria), Sergio Ferrari (Università di Modena) and Silke Krol (Consorzio di Biomedicina Molecolare - Trieste). The success of this first meeting prompted the ������������������ scientific�������� and ��� organizing committee to reappoint it next year in Pavia (contact person: Maddalena Patrini, Dipartimento di Fisica “A. Volta”, Università degli Studi di Pavia, Tel: +390382987498, [email protected]). The final aim is to let the large and expanding scientific community of Nanomedicine gather, in order to find new strategies, methodological approaches and technological solutions just at the frontier of current knowledge. References Valentina Mussi Nanomed Labs, Advanced Biotechnology Center & Physics Department, University of Genova www.nanomed.unige.it [email protected] Missione Italiana in Giappone 18-24 febbraio 2009, Tokyo – Sendai Si è tenuta in Giappone la ottava edizione del Convegno Nanotech Tokyo 2009 (18-20 febbraio), una delle più grandi esposizioni internazionali sulle nanotecnologie. Impressionanti i numeri della manifestazione, che nel 2008 ha visto la partecipa50 N e w s l e t t e r N ano t e c i t zione, durante i 3 giorni dell’evento, di quasi 50.000 persone, l’organizzazione di più 20 conferenze tematiche ed un’area dove erano disponibili 884 spazi espositivi, dei quali circa il 60% giapponesi ed il restante 40% provenienti da 23 paesi diversi. Le aree tematiche coperte dall’area espositiva e dalle diverse conferenze riguardano la maggior parte delle applicazioni delle nanotecnologie. L’Organizzazione è a carico di un ente no profit, il “Nano Tech Executive Committe”, composto da circa una ventina di esperti provenienti da industria, accademia ed istituzioni governative giapponesi, coordinato dal Prof. Tomoji Kawai dell’Università di Osaka (Institute of Scientific and Industrial Research). L’evento è supportato da numerosissimi enti, istituzionali e non, tra cui diversi Ministeri giapponesi e le Ambasciate di più di 15 paesi. L’Istituto Nazionale per il Commercio Estero (ICE), in collaborazione con AIRI/Nanotec IT, ha organizzato in occasione della partecipazione italiana alla fiera Nano Tech 2009, una Missione di imprese, Enti e centri di ricerca del settore delle nanotecnologie italiano, al fine di favorire lo sviluppo del Partenariato tecnologico tra Italia e Giappone. Il Programma della Missione prevede la presenza di uno stand Italiano (predisposto da ICE) nella parte espositiva nel quale i componenti della delegazione Italiana possono esporre/distribuire materiale informativo e incontrare altri partecipanti all’evento, visite ad Istituti di ricerca e Parchi Scientifici locali; eventi mirati di presentazione e networking, al fine di rafforzare l’immagine del Sistema Italia nonché favorire i rapporti di conoscenza e collaborazione tra imprese ed Istituzioni accademiche e Centri di ricerca italiani e giapponesi. Successivamente al Convegno, è previsto un programma operativo di visita nel Distretto tecnologico di Sendai, capoluogo della Prefettura di Miyagi, che rappresenta uno dei distretti nanotecnologici più importanti del Giappone, sede di diverse Istituzioni pubbliche competenti in materia di innovazione ed investimenti. La visita a Sendai prevede la realizzazione, il giorno 23 febbraio del Forum “Japan- Italy Nanotecnology” che costituisce un logico proseguimento ed approfondimento del Nanotech Forum realizzato nel giugno 2007 sempre a Sendai, a cui seguiranno incontri bilaterali. Il 24 febbraio saranno realizzate visite ad aziende e Centri di ricerca e al Science Park della Tohoku University. Riferimenti www.ics-inc.co.jp/nanotech/en/index.html R I C ER C A Nanotec2009.it Conference 31 marzo-3aprile 2009, Roma Nanotec2009.it: Competitiveness & Innovation for Industrial Growth, International Conference jointly organised by AIRI/ Nanotec IT, the National Research Council (CNR) and Veneto Nanotech, with the collaboration of the Institute for Foreign Trade (ICE), represents the annual National event for nanotechnology. The Conference is based on the success of Nanotec2008. it and it will maintain its focus on application, with extended goals, contents and aims. The most important Italian players and renowned experts from abroad in the field will be present. Nanotec2009.it, with contributions of representatives from research community, industry, financial world and governmental bodies, aims to: • Give a comprehensive picture of nanotechnology activity, perspectives and needs in Italy; • Present the latest developments and trends at world level about research, applications and governance; • Foster a debate amongst representatives of industry, public research, financial community and governmental bodies; • Stimulate cooperation, coordination and support to make more effective the activity in the field. Themes of the Conference are: • Nanotechnology Governance • Health & Medical Devices (Nanomedicine) • Sustainable Development (Energy, Transport, Environment) • ICT, Electronics, and Security • Made in Italy (advanced materials, agrifoods, conservation of cultural heritage, ...) A distinctive feature of Nanotec2009.it will be the Networking Day, at which will be devoted the entire April the 3rd 2009. The day will be organised around a number of presentations and one-to-one meetings aimed to promote research and industrial collaborations, which will see the presence also of representatives from Industry, Research Institutions, and Venture Capitalists coming from China, Japan, USA and Italy. References www.nanotec2009.it Conference on Nanostructured Polymers and Nanocomposites April 15-17, 2009, Paris, France The European Centre for Nanostructured Polymers (ECNP) is a non-profit Consortium Company formed by the “Nanostructured and Functional Polymer-Based Materials and Nanocomposites (Nanofun-Poly)” European Network of Excellence (European Commission, Directorate General Research, 6th FP, Networks of Excellence). & S VN I OL TU I PZ PI OE tT Major aim of ENCP is the coordination and the joint carrying out of activities and operations, principally for the sake and in the interests of the partners of the “NANOFUN-POLY” network, as well as for itself, aimed at the following objectives: • Promotion of excellence in the technological development in Europe, in the priority sectors of the European Research Area (ERA), particularly with regard to polymer nanotechnologies; • Coordination with other ERA participants, within and outside of the European Network of Excellence “NANOFUN-POLY”; • Increase the excellence of members of the NANOFUN-POLY Network through contributions to research, development and innovation in ERA. Within its institutional activities, ECNP organises the “5th International Conference on Nanostructured Polymers And Nanocomposites” Topics of the Conference are: • Chemistry of nanostructured polymers and copolymers • Physics of soft matter in nanostructured polymers: relaxation phenomena, optoelectronic and magnetic properties • Nanostructured blends and copolymers • Nanofillers: carbon nanotubes and nanofibers, hybrids, POSS and metal‐oxo clusters, nanocellulose • Nanostructured coatings and adhesives • Processing of nanostructured polymers and nanocomposites • Advanced characterization techniques • Mathematical modelling • Life Cycle Analysis Detailed information can be found in the ECNP website. References http://www.ecnp.eu.org/ NSTI Nanotech 2009 1-5 maggio 2009, Houston, USA Nei giorni 1-5 maggio 2009 si terrà a Houston (USA) il Convegno annuale del Nano Science and Technology Institute (NSTI Nanotech 2009), uno degli eventi sulle nanotecnologie piu’ importanti a livello mondiale, il quale prevede anche un Trade Show. Come già nelle edizioni precedenti, AIRI/Nanotec IT collabora con L’Istituto Nazionale per il Commercio Estero (ICE) per organizzare la partecipazione Italiana al convegno dove, anche nel 2009, ICE mette a disposizione nell’area espositiva uno stand nel quale la delegazione Italiana può esporre materiale informativo circa le proprie attività nel campo delle nanotecnologie e intrattenere contatti con gli altri partecipanti al Convegno. Durante il periodo del Convegno è prevista anche l’organizzazione di eventi volti a favorire i contatti della delegazione Italiana con rappresentanti del mondo della comunità scientifica (Università e N e w s l e t t e r N ano t e c i t 51 T N O T I Z I E Centri di Ricerca) e imprenditoriale dell’area, nonché una serie di visite alle strutture di ricerca, ma non solo, presenti nella zona. Le analoghe iniziative degli anni passati hanno visto una delegazione italiana piuttosto nutrita e gli eventi organizzati hanno consentito ai suoi componenti di stabilire contatti con realtà ed esperti all’avanguardia nel campo delle tecnologie di notevole interesse. Nell’area di Houston sono presenti strutture prestigiose che operano in settori di punta per l’applicazione delle nanotecnologie, come quello medicale, e la partecipazione al Convegno ed agli eventi organizzati da ICE ed AIRI/Nanotec ITpuo consentire di stabilire/rafforzare i rapporti con queste strutture. AIRI/Nanotec IT si farà diligente per far circolare informazioni relative alla organizzazione della delegazione Italiana. Mentre informazioni costantemente aggiornate dell’evento possono essere trovato sul sito indicato sotto. Riferimenti Andrea Porcari AIRI/Nanotec IT [email protected] http://www.nsti.org/Nanotech2009/ BioInItaly 2009: The Italian Biotech Event May 4-5, 2009, Milano Assobiotec, the Italian biotech industry association, is the organiser of the BioInItaly 2009 event, that will bring together national and international venture capital and Italian companies from all sectors of the biotechnology industry. The event will provide a unique opportunity for investors to monitor the pulse of the dynamic biotech sector in Italy. Investors will have an opportunity to discover some of the exciting developments in the Italian biotech sector in a single meeting. Italian companies, ranging from start-ups and spin-offs to established companies, will present their new business ideas and projects in the fields of biotech and nanobiotech. The projects will be selected by a committee of experts in the biotech field. More than 50 organisations participated to the first edition, coming from France, Switzerland, Germany, United Stated, Finland. The meeting is open to potential investors. Participation is free, but Assobiotec asks that participants register by April 24, 2009 by sending an email including the participants name, organization, address and email address to [email protected]. References Assobiotec Via Giovanni da Procida 11 - 20149 Milano Tel. +39 02 34565306 - Fax +39 02 34565284 [email protected] Internet: http://www.assobiotec.it 52 N e w s l e t t e r N ano t e c i t Euronanoforum 2009 Praga, 2-5 giugno 2009 La Conferenza Euronanoforum 2009 è la quarta edizione di una serie di conferenze sulle nanotecnologie organizzate dalla Commissione Europea. L’evento si svolgerà a giugno 2009 a Praga, in corrispondenza con la Presidenza EU della Repubblica Ceca. L’edizione 2009 ha come tematica le Nanotecnologie per lo sviluppo sostenibile ed affronterà argomenti di notevole importanza quali l’esigenza di riduzione delle emissioni di carbonio e dell’uso di combustibili di origine fossile, la ricerca di nuove soluzione per l’efficienza energetica e dei materiali, il controllo dell’inquinamento, la depurazione delle acque. Oltre alle diverse sessioni call for papers, sono previste nei 4 giorni di Conferenza sessioni plenarie e panels sui seguenti argomenti: • Nanotechnology for sustainable economy • Eco-& Energy-efficient industrial production • Nanotechnology for Energy and the environment • Nanotechnology applications for sustainable health care • Future prospects for industrial nanotechnologies • Integrated, safe and responsible nanotechnology governance in the EU • Panel discussion: Industrial Innovation in Nanotechnology • Panel discussion : The impact of nanotechnology on global environmental and societal challenges E’ prevista la partecipazione di speakers di rilievo a livello internazionale, una importante area espositiva e diversi eventi collaterali. E’ aperta fino al 31 marzo la call for papers. Riferimenti http://www.euronanoforum2009.eu/ Nanoforum 2009 9-11 giugno 2009, Torino Il Centro Congressi Torino Incontra, Via Nino Costa 8 – Torino, ospiterà la quinta edizione di nanoforum, la mostra-convegno dedicata alle micro e nanotecnologie volta a favorire i processi di trasferimento tecnologico tra il mondo della ricerca scientifica e quello imprenditoriale. Nato nel 2005, nanoforum rappresenta quest’anno più che mai un’importante opportunità per conoscere lo stato dell’arte nei principali settori applicativi, comprendere le tendenze del mercato e incontrare alcuni dei maggiori esperti italiani ed internazionali. Nanoforum 2009 comprende: • una mostra specializzata, destinata sia alle Imprese sia ai centri di Ricerca, per poter incontrare tutti i partecipanti • convegni di alto livello, su tematiche importanti, come la medicina, il tessile, i materiali strutturati, l’ambiente, i beni culturali. R I C ER C A Con la presenza di relatori altamente qualificati • un programma di tutorial per chi desidera avvicinarsi al tema • incontri 1to1 • Nanoforum Tour e Nanoforum Week-end, allo scopo di visitare Centri Italiani ad alta specializzazione Nanoforum si presenta come un importante occasione di incontro tra ricerca ed impresa, per promuovere una concreta innovazione. L’edizione 2008 ha visto circa 1000 presenze nei due giorni di evento, provenienti da 15 nazioni diverse (grazie soprattutto alla collaborazione con l’ICE – l’Istituto per il Commercio Estero), 190 incontri 1to1 (organizzati in collaborazione con la Camera di Commercio di Milano) , 22 sessioni di convegno con oltre 100 relatori qualificati. Riferimenti Cristina Gippa Via Rovetta 18, 20127 Milano Tel. +39 02 28311642 & S VN I OL TU I PZ PI OE tT Nanorobotics • Nanomedicine • Nanomagnetics • Nanotoxicology, Health and Environmental Safety. Nanobioscience and Nanobiotechnology • Molecular Electronics, Inorganic Nanowires, Nanocrystals, Quantum Dots • Nanoeconomy and Emerging Nanotech Companies. Modelling and Simulation • Industrial and Commercial Applications Plenary talks, Invited talks and Contributed papers will be given, and tutorials ad workshops will be organized. Suggestions from prospective participants are welcome for specific tutorials and special workshops/sessions. IEEE Nano 2009 will be hosted in the Economy Faculty building of The University of Genoa–Darsena, Via F. Vivaldi 5. References www.medinfo.dist.unige.it/ieeenano2009 IEEE Nano 2009 July 26-30, 2009, Genova IEEE conferences are organized by IEEE (Institute of Electrical and Electronics Engineers), the world’s leading professional association for the advancement of technology. Through its global membership, IEEE is a leading authority on areas ranging from aerospace systems, computers and telecommunications to biomedical engineering, electric power and consumer electronics among others. IEEE members are more than 365,000 in more than 150 countries. Past IEEE Nano conferences have been hosted in Maui (2001), Washington D.C. (2002), S. Francisco (2003), Munich (2004), Nagoya (2005), Cincinnati (2006), Hong Kong (2007), and Arlington (2008). IEEE Nano 2009 aims to bring together researchers, industry workers, entrepreneurs and funding agency leaders, hope that the conference will provide a forum for exchange of ideas, interaction, networking and collaboration for research and development in nanotechnology with special reference to the latest advances in nanotechnology. The technical program covers all major topics in Nanotechnology and will include: • Nanoelectronics • Nanotools and Nanodevices • Nanooptics, Nanophotonics and Nanooptoelectronics • Nanofabrication, Nanomaterials, Ultra-thin film technologies, Nanolithography • Fullerenes, Buckytubes, Nanocarbons, Nanodiamonds and related technologies • Nano/Micro/Macro System Integration, NEMS and ActuatorsN e w s l e t t e r N ano t e c i t 53 T N O T I Z I E Prossimi eventi Feb 18 - Feb 20, 2009 Tokyo, Japan Nanotech 2009 May 3 - May 5, 2009 Houston, USA NSTI Nanotech 2009 Feb 26, 2009 Brussels, Belgium FramingNano workshop: regulation & governance of nanotechnologies May 4 - May 5, 2009 Milano BioInItaly 2009 March 4 - March 6, 2009 Berlin, Germany 6th International Conference on Biomedical Applications of Nanotechnology March 10 - March 11, 2009 Dusseldorf, Germany ObservatoryNANO symposium March 19, 2009 London, UK ObservatoryNano dissemination event March 23 - March 27, 2009 Lausanne, Swtizerland Nanoimpactnet conference 2009 March 27, 2009 Brussels, Belgium Risk bridge project final conference March 31 - April 3, 2009 Roma, Italy Nanotec2009.IT: Competitivness & Innovation for Industrial Growth Apr 2, 2009 Brussels, Belgium Nanocap final conference: Working and living with Nanotechnologies April 15 - April 17, 2009 Paris, France Nanostructured polymers and nanocomposites N e w s l e t t e r N ano t e c Jun 2 - Jun 5, 2009 Prague, Czech Republich EuroNanoforum 2009 Jun 10 - Jun 12, 2009 Torino, Italy Nanoforum 2009 March 11 - March 12, 2009 Roma, Italy Smart Fabrics 2009 54 May 26 - May 27, 2009 Dresden, Germany Nanofair 2009 i t July 26 - July 30, 2009 Genova, Italy IEEE NANO 2009 AVVISO PER I LETTORI MODALITà DI DISTRIBUZIONE DI NANOTEC IT NEWSLETTER Gentile lettore, Newsletter Nanotec IT viene distribuita in forma cartacea (e gratuita) alle organizzazioni iscritte ad AIRI/Nanotec IT ed ai soggetti che collaborano con l’Associazione per la realizzazione di pubblicazioni ed eventi, in particolare tutte le organizzazioni che hanno risposto al Censimento delle nanotecnologie, viene inoltre distribuita durante gli eventi organizzati dal Centro. La rivista è inviata in formato elettronico ad un ampio indirizzario di soggetti a livello italiano ed internazionale, al fine di favorire una più efficace promozione delle nanotecnologie e la conoscenza dell’attività in corso, in particolare a livello italiano. Tutti i numeri della rivista sono infine scaricabili gratuitamente da www.nanotec.it Rimane possibile richiedere eventuali copie su carta mediante il versamento di un contributo per spese di tecniche e di spedizione di 20 Euro all’anno (per dettagli: info@nanotec. it, www.nanotec.it). Nota importante: Nel caso lo riteniate opportuno o vogliate essere inseriti ex-novo nella mailing list della Newsletter vi preghiamo di comunicare il vostro attuale indirizzo e-mail a info@nanotec. it o di contattare i nostri uffici. Pubblicazione notizie ed articoli sulle nanotecnologie: Nanotec IT è interessata a ricevere articoli, notizie ed informazioni in genere su attività di ricerca nel campo delle nanotecnologie da pubblicare su Newsletter Nanotec IT. Quanti volessero sruttare tale opportunità sono pregati di contattare la redazione. Per informazioni Andrea Porcari tel. 068848831, 068546662 - e-mail: [email protected] PUBBLICITà L i s t i n o p r e z z i [ a l n e tt o d i IVA 2 0 % ] è possibile inserire messaggi promozionali sia sulla newsletter che sul sito web www.nanotec.it 1. NANOTEC IT NEWSLETTER Sulla Newsletter sono riportate le notizie più importanti (disponibili anche su www.nanotec.it), quali risultati di ricerche ed applicazioni, eventi, corsi, iniziative di Nanotec IT e degli iscritti, articoli su tendenze e su risultati di ricerche, su politiche della ricerca, su problematiche connesse alla diffusione delle nanotecnologie. Tiratura: n. 1000 copie. Pubblicazione: giugno, novembre. Destinatari (attivi o interessati alle nanotecnologie): industrie, istituti universitari, enti pubblici di ricerca, associazioni industriali e pubbliche amministrazioni. Gli ordini devono pervenire a AIRI/Nanotec IT entro il 20 maggio 2009 per il secondo numero del 2009. Gli iscritti ad AIRI / Nanotec IT usufruiscono di uno sconto del 30% sulla tariffe previste. II e III di copertina - per ogni numero 1 pagina cm 20x29 1/2 “ “ 20x14,5 1/3 “ “ 20x7 1/6 “ “ 10x7 ? ? ? ? IV di copertina - per ogni numero 1 pagina cm 20x29 1/2 “ “ 20x14,5 1/3 “ “ 20x7 1/6 “ “ 10x7 ? 1.000,00 ? 600,00 ? 400,00 ? 250,00 800,00 500,00 350,00 200,00 2. SITO WEB (www.nanotec.it) Banner Dimensioni 150x50 pixel (o equivalenti), risoluzione 200 dpi. 12 mesi 3 mesi ? 1500,00 ? 500,00 A I R I / N ano t e c I T M e mb e r s INDUSTRY - APE RESEARCH - BRACCO IMAGING - CERAMICHE DI SIENA – Gambarelli Group - COLOROBBIA - CRF - FIAT Research Centre - CSM – Centro Sviluppo Materiali - CTG - Group Technical Centre – ItalCementi - DE NORA Tecnologie Elettrochimiche - HITECH 2000 s.r.l. - ELSAG Datamt - ENI - FINMECCANICA - PIRELLI LABS - SAES GETTERS - SELEX COMMUNICATIONS - SELEX SISTEMI INTEGRATI - SERVITEC - STMICROELECTRONICS - TETHIS - SMILAB - VENETO NANOTECH PUBLIC RESEARCH • CNR (National Research Council) - Molecular Design Department:* • CNR(National Research Council) - Materials and Devices Department ** • CNR- ITIA (Institute of Industrial Technologies and Automation • Scuola Superiore S.Anna, CRIM (Centre for Applied Research in Micro and Nano Engineering) • INSTM (Inter- University Consortium for Material Sciences and Technologies) Representing 44 Italian Universities • ENEA (National Agency for New Technologies, Energy, Environment) Advanced Physical Technologies And New Materials (FIM) Department • INFN (National Institute for Nuclear Physics) Frascati National Laboratories • Fondazione Kessler/IRST- Centre for Scientific and Technological Research • Polytechnic of Torino CHILAB (Materials and Microsystems Laboratory) • SINCROTRONE Trieste • University of Modena and Reggio Emilia, Dep. of Material and Environment Engineering * Institutes involved in nanotechnology: ISMAC, ISMN, ISTM (http://www.cnr.it/istituti/Perareetematiche.html) ** Institutes involved in nanotechnology: IMM, IFN, ISM, IPCF, INFM-TASC, INFM-MATIS, INFM-LAMIA, INFM-LUXOR, INFM-LYCRIL, INFM-MDM, INFM-S3, INFM-NEST, INFM-NNL, INFM-SL, INFM-PolyLab (http://www.cnr.it/istituti/Perareetematiche.html) 3º CENSIMENTO D ELLE N A N O TE C N O L O G I E I N I TA L I A AIRI/Nanotec IT ha avviato l’indagine per la realizzazione della terza edizione del Censimento delle Nanotecnologie in Italia. Il Censimento costituisce dal 2004 una importante fonte di riferimento, unica nel suo genere in Italia, per avere informazioni dettagliate sulle organizzazioni, pubbliche e private, con attività di R&S e di produzione nelle nanotecnologie a livello italiano. Con la sua copertura capillare, il Censimento consente di evidenziare capacità, esperienze ed eccellenze presenti in Italia, e favorire cosi’ l’interazione tra i diversi attori del settore, il rafforzamento dell’attenzione del mondo industriale e finanziario, nazionale ed internazionale, l’avvio di iniziative a livello istituzionale atte a sostenere lo sviluppo delle nanotecnoloogie. Tutte le organizzazioni, pubbliche e private, con attività di Ricerca & Sviluppo, progettazione o produzione nel settore delle nanotecnologie interessate a partecipare al Censimento possono mettersi in contatto con AIRI/Nanotec IT. Il questionario sarà disponibile sul sito www.nanotec.it a partire da aprile 2009. Informazioni: Andrea Porcari AIRI/Nanotec IT Tel. 06 8848831 [email protected] Nanotec IT - Centro Italiano per le Nanotecnologie Il centro è stato creato nel 2003 da AIRI, Associazione Italiana per la Ricerca Industriale, per farne un punto di riferimento nazionale per le nanotecnologie per industria, ricerca pubblica, istituzioni governative. La sua missione è quella di promuovere lo sviluppo e l’applicazione delle nanotecnologie in Italia, al fine di accrescere il posizionamento competitivo del Paese. Nanotec IT contribuisce a: Raccogliere e diffondere informazioni sulle nanotecnologie circa risultati e tendenze di R&S, applicazioni, dati e previsioni di mercato, politiche/strategie nazionali Indirizzare/stimolare l’interesse e l’attività delle imprese, grandi e PMI, verso queste tecnologie Sollecitare azioni nazionali atte a promuovere e sostenere le iniziative in questo campo Agevolare contatti e collaborazioni, a livello nazionale ed internazionale, tra ricerca pubblica e imprese, e tra imprese Favorire il trasferimento tecnologico Perseguire uno sviluppo responsabile delle nanotecnologie Nanotec IT- Italian Centre for Nanotechnology- started in 2003 by AIRI- Italian Association for Industrial Research – as an internal division, is a national bridging point connecting industry, public research, and governmental institutions. Its mission is to promote nanotechnology and its applications in Italy to increase through it the competitive position of the Country. The Nanotec IT activity aims to : Stimulate the interest and the commitment in nanotechnology within the Italian enterprises; Inform government, opinion leaders, and the public, to foster correct and timely initiatives for the development of nanotechnology and its applications Favour networking and exchange of information to promote cooperation; Facilitate the use of research results and technology transfer; Contribute to a responsible development of nanotechnology. AIRI- Associazione Italiana per la Ricerca Industriale Nata nel 1974 per promuovere lo sviluppo della ricerca e dell’innovazione industriale e stimolare la collaborazione tra settore privato e pubblico, AIRI rappresenta oggi un essenziale punto di confluenza per più di 120 Soci: Grandi imprese e PMI attive nella ricerca industriale Università, Centri di ricerca pubblici e privati Associazioni industriali, Parchi scientifici, Istituti finanziari che operano a supporto della R&S I Soci raccolgono il 45% circa degli addetti alla ricerca in Italia. Questa larga rappresentatività permette ad AIRI di agire quale interlocutore rilevante per tutti i decisori che sostengono la ricerca industriale come strategia per lo sviluppo tecnologico del Paese. AIRI- Italian Association for Industrial Research Founded in 1974 with the aim of promoting industrial research and enhancing co-operation between private and public sector, today AIRI is the focal point for more than 120 members: Large companies and SMEs operating in R&D Universities, public and private research Centers Industrial associations, Scientific parks and Banks supporting R&D activities Researchers from AIRI members represent about the 45% of the country. Due to this broad representative base, AIRI is a key opinion leader for decision-makers sustaining industrial research as strategy for the technological development of the Country. AIRI/Nanotec IT - Viale Gorizia 25/c, 00198 Roma tel. 068848831 – 068546662, fax 068552949 [email protected]; www.nanotec.it; www.airi.it