Advanced Data Management Technologies
Unit 5 — Case Studies
J. Gamper
Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE
ADMT 2015/16 — Unit 5
J. Gamper
1/47
Outline
1
Inventory Management
2
Order Management
3
OncoNet
4
MEDAN
ADMT 2015/16 — Unit 5
J. Gamper
2/47
Inventory Management
Outline
1
Inventory Management
2
Order Management
3
OncoNet
4
MEDAN
ADMT 2015/16 — Unit 5
J. Gamper
3/47
Inventory Management
Inventory Management
Example (Inventory management)
Consider a large grocery chain with a central warehouse and several retail
stores.
Advanced retail business requires inventory information.
Making sure the right product is in the right store at the right time
minimizes out-of-stocks and reduces overallinventory carrying costs.
The retailer needs the ability to analyze daily quantity-onhand inventory
levels by product and store.
Design dimensional models that support the analysis of inventories for retail
businesses (grocery stores).
ADMT 2015/16 — Unit 5
J. Gamper
4/47
Inventory Management
The Value Chain
The value chain identifies the natural, logical flow of an organization’s
primary activities.
Operational systems provide snapshots at each step with interesting data
and performance metrics.
Retailer Issues
Purchase Order
Deliveries at Retailer Warehouse
Retailer Warehouse Inventory
Deliveries at
Retail Store
Retail Store Inventory
Retail Store
Sales
ADMT 2015/16 — Unit 5
J. Gamper
5/47
Inventory Management
Inventory Models
3 different inventory models
Model 1: Inventory periodic snapshot model
Model 2: Inventory transactions model
Model 3: Inventory accumulating snapshot model
ADMT 2015/16 — Unit 5
J. Gamper
6/47
Inventory Management
Inventory Periodic Snapshot Model/1
Model 1: Inventory Periodic Snapshot: Every day (or at some other regular
time interval) the inventory levels of each product is measured and stored as a
new row in the fact table.
Example: Inventory of retail store
Business process: Analysis of retail store inventory.
Granularity: Daily inventory by product at each individual store.
Dimensions: Date, product, and store.
Facts/measures: Quantity on hand.
Date dimension
DateKey (PK)
FullDateDesc
...
Store Dimension
StoreKey (PK)
StoreName
...
ADMT 2015/16 — Unit 5
Store Inventory Snapshot Facts
DateKey (FK)
ProductKey (FK)
StoreKey (FK)
QuantityOnHand
J. Gamper
Product Dimension
ProductKey (PK)
ProductDesc
...
7/47
Inventory Management
Inventory Periodic Snapshot Model/2
Inventory generates dense snapshot tables.
In contrast, POS Retail Sales table was sparse.
Consequently, inventory fact table is growing fast.
60.000 products x 100 stores = 6 Mio. rows each time.
With a row width of 14 bytes, this is 84 MB each time.
1 year of daily snapshots would be 30 GB.
Reduce snapshot frequencies over time.
Last 60 days of inventory at daily level.
Weekly snapshots for older data.
Instead of 1.095 snapshots in 3 years, only 208 snapshots would be required.
ADMT 2015/16 — Unit 5
J. Gamper
8/47
Inventory Management
Inventory Periodic Snapshot Model/3
The quantity on hand is a semi-additive measure.
Can be summarized across products and stores, but not across time
Different in POS Retail Sales table: Sold entities are counted only once.
All measures that record a static level (inventory, financial account balance,
measures of intensity, e.g., temperature) are inherently non-additive across
time and possibly other dimensions.
Can be aggregated along time dimension by averaging.
A note about SQL AVG function:
Cannot be used to compute the average over time, since it averages over the
number of rows.
Avg inventory over a cluster of 3 products in 4 stores across 7 days would
divide the summed value by 84.
ADMT 2015/16 — Unit 5
J. Gamper
9/47
Inventory Management
Inventory Transactions Model/1
Model 2: Inventory Transactions: Every transaction that affects the
inventory is recorded.
Example: Inventory transactions in the store chain
Receive product.
Place product in to inspection hold.
Release product from inspection hold.
Return product to vendor due to inspection failure.
Place product in bin.
Authorize product for sale.
Pick product for shipment.
Ship product to customer.
Receive product form customer.
Return product to inventory from customer return.
Remove product from inventory.
ADMT 2015/16 — Unit 5
J. Gamper
10/47
Inventory Management
Inventory Transactions Model/2
Star schema of the inventory transaction model.
Date Dimension
DateKey (PK)
FullDateDesc
...
Warhouse Dimension
WarehouseKey (PK)
WarehouseName
WarehouseAddress
WarehouseCity
WarehouseZip
...
Store Inventory Snapshot Facts
DateKey (FK)
ProductKey (FK)
WarehouseKey (FK)
VendorKey (FK)
InventoryTransactionTypeKey (FK)
InventoryTransactionQuantity
Product Dimension
ProductKey (PK)
...
Vendor Dimension
VendorKey (PK)
...
Inventory Transaction Type Dimension
InventoryTransactionTypeKey (PK)
InventoryTransactionTypeDesc
InventoryTransactionTypeGroup
...
Contains most detailed information, e.g.,
How many shipments from a given vendor?
On which products more than one round of inspection?
Reconstruction of exact inventory numbers is possible, but not practical!
Used in combination with other fact table.
ADMT 2015/16 — Unit 5
J. Gamper
11/47
Inventory Management
Inventory Accumulative Snapshot Model/1
Model 3: Inventory Accumulating Snapshot: One row in the fact table for
each shipment of a particular product to the warehouse.
Assumption that the inventory goes through a series of events, e.g.,
receiving, inspection, bin placement, authorization to sell, picking, boxing,
and shipping.
A row tracks the disposition of a shipment through these events in the
warehouse.
Row is updated as the shipment moves through the warehouse until it
leaves the warehouse.
Characterized by many date dimensions and many updates.
ADMT 2015/16 — Unit 5
J. Gamper
12/47
Inventory Management
Inventory Accumulative Snapshot Model/2
Date Received Dimension
DateKey (PK)
...
Date Inspected Dimension
DateKey (PK)
...
Date Placed in Inventory Dimension
DateKey (PK)
...
Date authorized to Sell Dimension
DateKey (PK)
...
Date Picked Dimension
DateKey (PK)
...
Date Boxed Dimension
DateKey (PK)
...
Date Shipped Dimension
DateKey (PK)
...
Date of Last Return Dimension
DateKey (PK)
...
ADMT 2015/16 — Unit 5
Warehouse Inventory Accumulating Facts
Date Received Key (FK)
Date Inspected Key (FK)
Date Placed in Inventory Key (FK)
Date Authorized to Sell key (FK)
Date Picked Key (FK)
Date Boxed Key (FK)
Date Shipped Key (FK)
Date of Last Return Key (FK)
Product Key (FK)
Warehouse Key (FK)
Vendor Key (FK)
Quantity Received
Quantity Inspected
Quantity Returned to Vendor
Quantity Placed in Bin
Quantity Authorized to Sell
Quantity Picked
Quantity Boxed
Quantity Shipped
Quantity Returned by Customer
Quantity Returned to Inventory
Quantity Damaged
Quantity Lost
Unit Cost
Unit List Price
Unit Average Price
Unit Recovery Price
J. Gamper
Product Dimension
ProductKey (PK)
...
Warhouse Dimension
WarehouseKey (PK)
...
Vendor Dimension
VendorKey (PK)
...
13/47
Inventory Management
Value Chain Integration
Integration accross the value chain is important for the analysis.
Allows analysis across the business to better evaluate the overall
performance (not just at the individual department level).
End-to-end perspective high-level management to customer.
This requires the integration and consistent handling/use of data.
Solution: Individual fact tables for processes + shared dimensions.
Shared dimensions are used by different data marts.
POS Retail Sales Transation Facts
...
Store Dimension
StoreKey (PK)
Promotion Dimension
PromotionKey (PK)
Product Dimension
ProductKey (PK)
Retail Inventory Snapshot Facts
...
Vendor Dimension
VendorKey (PK)
Date Dimension
DateKey (PK)
Retail Inventory Snapshot Facts
...
ADMT 2015/16 — Unit 5
J. Gamper
Warhouse Dimension
WarehouseKey (PK)
14/47
Inventory Management
Data Warehouse Bus Architecture
Data Warehouse Bus Architecture is a standard bus interface that
supports the incremental development of a DW.
Based on conformed (similar) dimensions that are shared by the DMs.
Guides the overall design and breaks down the development process into
small chunks (DMs).
DMs can be realized at different times and by different groups.
ADMT 2015/16 — Unit 5
J. Gamper
15/47
Inventory Management
Data Warehouse Bus Matrix/1
Data Warehouse Bus Matrix is a tool to document the bus architecture.
Rows represent business processes (translate into DMs).
Columns represent a suite of standardized, common and shared dimensions.
ADMT 2015/16 — Unit 5
Vendor
Contract
Shipper
X
X
X
Warehouse
X
X
X
X
X
X
Promotion
X
X
X
X
X
X
Store
Product
Business Processes
Retail Sales
Retail Inventory
Retail Deliveries
Warehouse Inventory
Warehouse Deliveries
Purchase Orders
Date
Shared Dimensions
X
X
X
X
X
X
X
X
X
J. Gamper
16/47
Inventory Management
Data Warehouse Bus Matrix/2
Creating the DW bus matrix is one of the most important up-front
deliverables of a DW implementation.
Create a comprehensive list of dimensions before filling in the matrix.
The rows provide a concise overview about the dimensionality of the
individual DMs.
The columns show the interaction between the DMs and the
common/shared dimensions
ADMT 2015/16 — Unit 5
J. Gamper
17/47
Inventory Management
Conformed Dimensions
Conformed Dimensions are either identical or strict mathematical subsets
of the most granular, detailed dimension.
Roll-up dimensions conform to the base-level dimension
Example: The sales process captures data at the product level, while the
forecasting process does it at the brand level
Brand table conforms to the atomic product table as it is a strict subset of
product table
Product Dimension
Product Key (PK)
Product Description
SKU Number
Brand Description
Subcategory Description
Category Description
Department Description
Package Type Description
Package Size
...
ADMT 2015/16 — Unit 5
conforms
Brand Dimension
Brand Key (PK)
Brand Description
Subcategory Description
Category Description
Department Description
J. Gamper
18/47
Order Management
Outline
1
Inventory Management
2
Order Management
3
OncoNet
4
MEDAN
ADMT 2015/16 — Unit 5
J. Gamper
19/47
Order Management
Order Management/1
Order management consists of several critical business processes (order,
shipment, invoiceprocessing, etc.) and measures (sales volume, invoice
revenue, etc.).
Warehouse bus matrix
ADMT 2015/16 — Unit 5
Product
Customer
Deal
Sales Rep
Ship From
Shipper
Business Processes
Quotes
Orders
Shipment
Invoicing
Date
Shared Dimensions
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
J. Gamper
20/47
Order Management
Order Management/2
Star Schema
Order Date Dimension
OrderDateKey (PK)
OrderDate
Order Date Day of Week
...
Requested Ship Date Dimension
Requested Ship Date Key (PK)
Requested Ship Date
...
Product Dimension
ProductKey (PK)
Order Transaction Facts
Order Date Key (FK)
Requested Ship Date Key (FK)
Product Key (FK)
Customer Ship To Key (FK)
Sales Rep Key (FK)
Deal key (FK)
Order Number (DD)
Order Quantity
Gross Order Dollar Amount
Order Deal Discount Dollar Amount
Net Order Dollar Amount
Customer Ship To Dimension
CustomerShipToKey (PK)
...
Sales Rep Dimension
SalesRepKey (PK)
...
Deal Dimension
DealKey (PK)
...
Issues
Should there be a “Ship Date Key” in the fact table?
Can/should Order Date Key and Requested Ship Date Key be foreign keys
to the same dimension table?
ADMT 2015/16 — Unit 5
J. Gamper
21/47
Order Management
Role-Playing
Role-playing in DW occurs when a single dimension appears several times
in the same fact table,
e.g., order date and requested ship date.
Should not be FK to the same dimension table.
SQL would require the two dates to be the same.
We might want to constrain the two dimensions differently.
The underlying dimension may exist as a single physical table, but each of
the roles should be presented in a separate view with different labels.
Date Dimension
DateKey (PK)
Date
Date Day of Week
...
create view
Order Date Dimension
Order Date Key (PK)
Order Date
Order Date Day of Week
...
ADMT 2015/16 — Unit 5
create view
Requested Ship Date Dimension
Requested Ship Date Key (PK)
Requested Ship Date
Requested Ship Date Day of Week
...
J. Gamper
22/47
Order Management
Multiple Hierarchies
Multiple hierarchies often coexist in a dimension table, especially for
customer-oriented dimensions.
Natural geographic hierarchy
Zip Code defines a second hierarchy
Can have different number of levels.
Should all be supported in a DW.
Customer Ship To Dimension
Customer Ship to Key (PK)
Customer Ship To ID
Customer Ship To Name
Customer Ship To Address
Customer Ship To City
Customer Ship To State
Customer Ship To Zip + 4
Customer Ship To Zip Region
Customer Ship To Zip Sectional Center
Customer Bill To Name
Customer Bill To Address Attributes
Customer Credit Rating
Customer URL
...
ADMT 2015/16 — Unit 5
J. Gamper
23/47
Order Management
Fact Normalization
Fact normalization: Normalize the fact table and collapse all measures
into a single measure along with a special fact dimension that identifies the
type of the measure.
Makes only sense if
fact table is sparsely populated and no computations are made between
measures of different type;
e.g., medical tests where different things are measured and data is sparse.
Example: Normalize Order Transaction Fact Table
Fact Dimension table has entries for Order Quantity, Gross Order Dollar
Amount, Order Deal Discount Dollar Amount, Net Order Dollar Amount.
Not normalized
Normalized
Order Transaction Facts
Order Date Key (FK)
Requested Ship Date (FK)
...
Order Quantity
Gross Order Dollar Amount
Order Deal Discount Dollar Amount
Net Order Dollar Amount
Order Transaction Facts
Order Date Key (FK)
Requested Ship Date (FK)
...
Entry Type (FK)
Amount
ADMT 2015/16 — Unit 5
J. Gamper
Fact Dimension
Entry Type Key (PK)
Entry Type
Unit of Measurement
...
24/47
OncoNet
Outline
1
Inventory Management
2
Order Management
3
OncoNet
4
MEDAN
ADMT 2015/16 — Unit 5
J. Gamper
25/47
OncoNet
OncoNet/1
Collaboration with Hospital Meran (BSc thesis of A. Heinisch)
OncoNet is an application for the management of patients undergoing a
cancer therapy.
Cancer therapy follows a treatment plan/protocol.
Event type
Data collection
Data collection
Data collection
Medication
Medication
ADMT 2015/16 — Unit 5
Event description
Ct Thorax
Ct Abdomen
Hemogram
Zofran
Adriblastina
J. Gamper
Date
Day 60, 100, 360, 720
Day 60, 100, 360, 720
Day 110
Day 1
Day 1
26/47
OncoNet
OncoNet/2
Business process: Analysis of cancer therapies.
Queries to answer:
How many patients with normal blood pressure after medication X?
Which dosages of drug A were successful to reduce parameter Y?
etc.
Granularity: Individual events of the chemotherapy.
Includes measurements, examinations, questionnaires, etc.
ADMT 2015/16 — Unit 5
J. Gamper
27/47
OncoNet
OncoNet/3
Patient and Drug Dimension
Patient Dimension
Patient Key (SK)
Patient ID
Patient First Name
Patient Last Name
Patient Gender
Patient Address
Patient ZIP Code
Patient Phone Number
Patient Profession
Patient First Language
Patient Height
Patient Weight
Patient Body Surface Area
Patient Place of Birth
Patient Birthday Date Key
Patient Death Date Key
Patient First Admission Doctor
Patient First Admission Area
Patient Smoking Indicator
Patient Cigarettes per Day
Patient Alcohol Indicator
Patient Alcohol Amount per Day
...
ADMT 2015/16 — Unit 5
Drug Dimension
Drug Key (SK)
Drug ID
Drug Name
Drug Category
Drug Active Substance
Drug Manufacturer
Drug Quantity Unit
Drug Quantity Unit Description
Drug Administration Type
Drug Administration Location
Drug Packaging
Drug Packaging AIC Code
...
J. Gamper
28/47
OncoNet
OncoNet/4
Normalized fact table
Only one measure is used in the fact table.
Type of measure is described in Event Dimension Table and Investigation
Dimension Table.
Chemotherapy Event Facts
Date Key (FK)
Prescribing Date Key (FK)
Relative Date Key (FK)
Patient Key (FK)
Therapy Key (FK)
Drug Key (FK)
Event Key (FK)
Investigation Key (FK)
Numverical Value
Textual Value
ADMT 2015/16 — Unit 5
J. Gamper
29/47
OncoNet
OncoNet/5
Patient Key Patient ID First Name Last Name Gender Language Weight Height . . .
1
345
Hans
Maier
male
German 68
185
...
Date Key Date Type Full Date Day of Week Weekday Ind Month Year . . .
1
Normal
05.06.2012 Tuesday
Weekday
June 2012 . . .
...
Date key Patient Key Therapy Key Event Key Investigation Key Numerical Value . . .
1
1
1
1
1
32,7
...
Therapy Key Therapy ID Therapy Name Therapy Type . . .
1
25436
NHL Chop 14 Profile
...
Investigation Key Group Level Label
1
Haemogram MCH
2
Haemogram HB
3
Haemogram MCV
Unit . . .
1
g/dl
pg
Event Key Event ID Event Name
Event Type
Responsible . . .
1
9372
Urgent Laboratory Laboratory Test Nurse
ADMT 2015/16 — Unit 5
J. Gamper
30/47
MEDAN
Outline
1
Inventory Management
2
Order Management
3
OncoNet
4
MEDAN
ADMT 2015/16 — Unit 5
J. Gamper
31/47
MEDAN
MEDAN
MEDAN
MEdical Data Warehousing and ANalysis.
Collaboration between the Hospital Meran and the FUB.
Objectives
Conduct research and create competences in the field of medical data
warehousing and analysis.
Build a BI/DW solution
Administrative DW
Medical DW
Develop and apply data analysis/mining techniques.
ADMT 2015/16 — Unit 5
J. Gamper
32/47
MEDAN
MEDAN Data Sources
Data sources in a health care environment.
Internal production systems (SQL, Excel, Text files, ...).
External information systems.
ADMT 2015/16 — Unit 5
J. Gamper
33/47
MEDAN
Budgeting Using a Spreadsheet
Example: Budgeting in the controlling department
Complex and error-prone Excel spreadsheets have been used in the past.
Monthly reports are sent to the Province.
ADMT 2015/16 — Unit 5
J. Gamper
34/47
MEDAN
Budgeting Using QlickView/1
A QlickView application to replace Excel.
QlickView is a state-of-the-art data analysis tool.
All data are kept in main memory → fast.
Easy-to-use for small/medium sized applications.
No solution for ETL/data staging.
Direct access to the data sources.
Data integration in QlickView.
No DW in place.
Reporting Controlling Dept
QlikView
Excel
ADMT 2015/16 — Unit 5
...
Oracle
J. Gamper
35/47
MEDAN
Budgeting Using QlickView/2
QlickView application: Actual budget
Big improvement over Excel solution.
ADMT 2015/16 — Unit 5
J. Gamper
36/47
MEDAN
Budgeting Using QlickView/2
QlickView application: Budget over time
ADMT 2015/16 — Unit 5
J. Gamper
37/47
MEDAN
MEDAN DW Solution
Difficult to convince decision makers to build a DW as the core of a BI
solution.
Too much technology-driven (QlikView, . . . ).
QlickView is mainly an analysis tool and cannot replace a DW.
Good for quick and small ad-hoc solutions.
Difficult to do data cleaning and hence to control data quality.
Not scalable for many applications, changing sources, etc.
Since Oracle technology was already in place, we convinced them to use
this technology.
ADMT 2015/16 — Unit 5
J. Gamper
38/47
MEDAN
MEDAN Architecture
Oracle ODI for ETL part and Data Storage.
Oracle DB for the DW.
QlickView and OBI for data analysis.
ADMT 2015/16 — Unit 5
J. Gamper
39/47
MEDAN
MEDAN Bottom Up Approach
Prototype of DM CONT for the Hospital of Meran; consists of 3 cubes:
Hospital Stays
Services
Transfers
Each cube corresponds to a business process.
Deploy DM CONT in the Hospital of Meran, then in other hospitals in
South Tyrol.
Repeat the same cycle for other DMs: DM Personnel, DM Pharmacy, DM
Laboratory, etc.
ADMT 2015/16 — Unit 5
J. Gamper
40/47
MEDAN
Conceptual Model of Hospital Stays
Cittadinanza*
Sigla
Nome*
Nazione
Nome*
Regione
Nome*
Nome*
ASL
Nome*
Comprensorio
Nome*
Comunità comprensoriale
Nome*
Sigla
Provincia
Distretto sanitario
Cittaninanza*
Sigla
Nome*
Nome*
Nazione
Nome*
Regione
Nome*
ASL
Nome*
Each event stores a hospital
stay of a patient.
Similar model for the other
data cubes:
Descrizione*
Tipo
Descrizione*
Sesso
Comune
residenza
Comprensorio
Nome*
nascita
Descrizione*
Stato civile
Descrizione*
Stato assistito
Assistito
Presidio
Reparto
ministeriale
Nome*
Reparto
nascita
decesso
Ricovero
Data
Dimissione
Età a
Età da
Ricoveri
Fascia età*
Età
Nome*
Nome*
Tipo
MDC
Nome*
Services
Transfer
Titolo studio*
CAP
Nome*
DRG
Nosografico
numero trasferimenti
gg degenza
numero accessi dh
gg permesso
gg classe
numero prestazioni laboratorio
numero prestazioni radiologia
tariffa drg_provinciale
tariffa drg_nazionale
peso_drg
Descrizione*
Regime ricovero
Descrizione*
Motivo DH
Descrizione*
Tipo ricovero
Descrizione*
Provenienza
Descrizione*
Modalità dimissione
Descrizione*
Onere degenza
Sigla
Traumatismi
Tipo*
Riscontro autoptico
Descrizione*
Nome*
Tipo proponente
Diagnosi L1
Nome*
Classe
Diagnosi L2
Nome*
Dimissione protetta
Versione ICD9
Descrizione*
Descrizione*
Descrizione*
Descrizione*
Dimissione protetta grado
Diagnosi L3
Shared dimensions are used.
Descrizione*
Cattegoria*
Classe anestesiologica
Descrizione*
Descrizione*
Visita anestesiologica
Sigla
Cattegoria*
Versione ICD9
Descrizione*
Ricovero ripetuto
Nome*
Intervento L1
Nome*
Intervento L2
Nome*
Descrizione*
Ricovero appropriato
Anno
Intervento L3
Quadrimestre
Semestre
Trimestre
Nome*
ASL
Nome*
Comprensorio
Nome*
Area amministrativa
Nome*
Settore
Nome*
Centro di responsabilità
Nome*
Centro di costo
aziendale
Settimana mese
Settimana anno
Descrizione*
Giorno settimana
Giorno mese
Giorno anno
Mese
Descrizione breve*
Descrizione lunga*
Ultimo giorno settimana
Ultimo giorno mese
Ultimo giorno anno
Data
Dimissione
Ricovero
ADMT 2015/16 — Unit 5
J. Gamper
41/47
MEDAN
Conceptual Model of Services and Transfers
Cittadinanza*
Cittadinanza*
Sigla
Sigla
Nome*
Nome*
Nazione
Nazione
Cittaninanza*
Nome*
Nome*
Sigla
Regione
Regione
Nome*
Nome*
Nazione
Nome*
Regione
Nome*
ASL
Nome*
Nome*
Nome*
ASL
Nome*
Comprensorio
Nome*
Comunità comprensoriale
Comprensorio
Nome*
Nome*
Nome*
Sigla
Ora metà
Giorno metà
Descrizione*
Tipo
Descrizione*
Sesso
nascita
Orario 12
Orario 24
nascita
decesso
Data
Orario
Tipo assistito (interno/esterno)
Mese
Descrizione breve*
Nome*
Descrizione lunga*
ASL
Nome*
Ultimo giorno mese
Comprensorio
Nome*
Giorno anno
Ultimo giorno anno
Area amministrativa
Nome*
Settore
Nome*
Centro di responsabilità
Nome*
Ultimo giorno settimana
Data
Gerarchia ministeriale
(p. e. branca)
erogante
Centro di costo
aziendale
richiedente
Prestazione LAB
Descrizione*
Prestazione
ministeriale
Descrizione*
Prestazione RAD
Nome*
Livello 2
Nome*
Descrizione*
Prestazione
interna
Livello 4
Livello 5
decesso
Ricovero
Trasferiemnti
Data
Nosografico
gg degenza
numero prestazioni laboratorio
numero prestazioni radiologia
tariffa drg_provinciale
tariffa drg_nazionale
Descrizione*
Regime ricovero
Descrizione*
Motivo DH
Descrizione*
Nome*
Tipo ricovero
ICD9
Nome*
Provenienza
Importanza
Nome*
Modalità dimissione
Nome*
Onere degenza
Codice Intervento
Descrizione*
Descrizione*
Descrizione*
Descrizione*
Traumatismi
Interventi Scheda Reparto
Descrizione*
Riscontro autoptico
Descrizione*
Tipo proponente
Descrizione*
Nome*
Classe
ICD9
Nome*
Dimissione protetta
Importanza
Nome*
Dimissione protetta grado
Codice Diagnosi
Nome*
Descrizione*
Descrizione*
Classe anestesiologica
Descrizione*
Descrizione*
Visita anestesiologica
Diagnosi Scheda Reparto
Descrizione*
Nome*
Nome*
Nome*
Tariffa Provinciale
Nome*
Tariffa Nazionale
Nome*
Data Dimissione
Nome*
Data Ricovero
Ricovero ripetuto
Centro di costo
provinciale
richiedente
Anno
Quadrimestre
Nome*
Semestre
Trimestre
Settimana mese
ASL
Nome*
Comprensorio
Nome*
Descrizione*
Area amministrativa
Nome*
Giorno settimana
Settore
Nome*
Centro di responsabilità
Nome*
Centro di costo
aziendale
Descrizione*
Ricovero appropriato
Nome*
Scheda Reparto
erogante
nascita
Dimissione
Età
Nome*
Livello 1
Livello 3
Descrizione*
Prestazione AMB
Reparto
Età a
Età da
Fascia età*
Giorno mese
Descrizione*
Stato civile
Descrizione*
Stato assistito
Assistito
Nome*
Nosologico erogante
Descrizione*
Giorno settimana
Descrizione*
Comprensorio
nascita
Presidio
Nosografico richiedente
Descrizione*
Descrizione*
Tipo
Descrizione*
Sesso
Comune
residenza
MDC
Nome*
Codice esame
quantità
importo
Trimestre
Settimana anno
ASL
Nome*
Tipo
Prestazioni
Semestre
Settimana mese
Regione
Nome*
Reparto
ministeriale
Nome*
Titolo studio*
CAP
Nazione
Nome*
Nome*
DRG
Anno
Quadrimestre
Sigla
Nome*
Nome*
Nome*
Descrizione*
Stato civile
Descrizione*
Stato assistito
Assistito
Giorno periodo
Descrizione*
Minuto ora
Minuto giorno
Nome*
Provincia
Distretto sanitario
Nome*
Titolo studio*
CAP
Comune
Ora quarto
Comunità comprensoriale
Sigla
Nome*
Nome*
Reparto
Ora 12
Ora 24
Comprensorio
Nome*
Cittaninanza*
Distretto sanitario
residenza
ASL
Nome*
Provincia
Presidio
Reparto
ministeriale
Nome*
Settimana anno
Giorno mese
Giorno anno
Mese
Descrizione breve*
Descrizione lunga*
Ultimo giorno settimana
Ultimo giorno mese
Ultimo giorno anno
Data
Dimissione
Ricovero
ADMT 2015/16 — Unit 5
J. Gamper
42/47
MEDAN
Logical Model of Hospital Stays
Snowflake schema
F_RICOVERI
D_REPARTI
P * KEY_REPARTO
CODICE_REPARTO
REPA_NOME_IT
REPA_NOME_DE
CODICE_REPARTO_PRESIDIO
REPA_PRES_NOME_IT
REPA_PRES_NOME_DE
CODICE_PRESIDIO
PRES_NOME_IT
PRES_NOME_DE
CODICE_COMPRENSORIO
COMP_NOME_IT
COMP_NOME_DE
CODICE_ASL
ASL_NOME_IT
ASL_NOME_DE
CODICE_REGIONE
REGI_NOME_IT
REGI_NOME_DE
CODICE_NAZIONE
NAZI_NOME_IT
NAZI_NOME_DE
NAZI_CITTADINANZA_IT
NAZI_CITTADINANZA_DE
NAZI_SIGLA
FLAG_STATO
D_REPA_PK
P * KEY_DRG
CODICE_DRG
DRG_NOME_IT
DRG_NOME_DE
TIPO_DRG_SIGLA
TIPO_DRG_NOME_IT
TIPO_DRG_NOME_DE
CODICE_MDC
MDC_NOME_IT
MDC_NOME_DE
FLAG_STATO
D_DRG
NUMBER (10)
VARCHAR2 (5 BYTE)
VARCHAR2 (200 BYTE)
VARCHAR2 (200 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (20 BYTE)
VARCHAR2 (20 BYTE)
VARCHAR2 (5 BYTE)
VARCHAR2 (200 BYTE)
VARCHAR2 (200 BYTE)
VARCHAR2 (1 BYTE)
D_DRG_PK
P * KEY_RICOVERO
NOSOGRAFICO
F
KEY_ASSISTITO
F
KEY_REPARTO_RICOVERO
F
KEY_REPARTO_DIMISSIONE
F
KEY_DATA_RICOVERO
F
KEY_DATA_DIMISSIONE
F
KEY_DRG
F
KEY_CDC_AZIENDALE
F
KEY_GRUPPO_DIAGNOSI
F
KEY_GRUPPO_INTERVENTI
F
KEY_CAMPO_SDO1
F
KEY_CAMPO_SDO2
F
KEY_CAMPO_SDO3
F
KEY_CAMPO_SDO4
KEY_INDICATORI
NUMERO_TRASFERIMENTI
NUMERO_ACCESSI_DH
GG_DEGENZA
GG_PERMESSO
GG_CLASSE
GG_OLTRE_SOGLIA
NUMERO_PRESTAZIONI_LABORATORIO
NUMERO_PRESTAZIONI_RADIOLOGIA
TARIFFA_DRG_PROVINCIALE
TARIFFA_DRG_NAZIONALE
PESO_DRG
TRANS_INIZIO
TRANS_FINE
FLAG_STATO
D_ASSISTITI
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (5)
NUMBER (5)
NUMBER (5)
NUMBER (5)
NUMBER (5)
NUMBER (5)
NUMBER (5)
NUMBER (5)
NUMBER (14,4)
NUMBER (14,4)
NUMBER (8,4)
DATE
DATE
CHAR (1 BYTE)
P * KEY_ASSISTITO
CODICE_ASSISTITO
ASSI_CODI_ASSI_CORR
ASSI_CODI_TIPO
ASSI_TIPO_DESC_IT
ASSI_TIPO_DESC_DE
ASSI_CODI_SESS
ASSI_SESS_DESC_IT
ASSI_SESS_DESC_DE
ASSI_ETA
ASSI_CODI_FASC_ETA
ASSI_FASC_ETA_DESC_IT
ASSI_FASC_ETA_DESC_DE
ASSI_CODI_STAT_CIVI
ASSI_STAT_CIVI_DESC_IT
ASSI_STAT_CIVI_DESC_DE
ASSI_CODI_STAT_ASSI
ASSI_STAT_ASSI_DESC_IT
ASSI_STAT_ASSI_DESC_DE
ASSI_CODI_STAT_ANAG
ASSI_STAT_ANAG_DESC_IT
ASSI_STAT_ANAG_DESC_DE
ASSI_TITO_STUD_IT
ASSI_TITO_STUD_DE
F
KEY_DATA_NASCITA
F
KEY_DATA_DECESSO
F
KEY_COMUNE_NASCITA
F
KEY_COMUNE_RESIDENZA
FLAG_STATO
D_CAMP_SDO1_PK
D_CAMP_SDO2_PK
D_CDC_AZIE_PK
NUMBER (10)
VARCHAR2 (9 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (9 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (9 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (9 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (6 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (6 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (1 BYTE)
D_GRUPPI_DIAGNOSI
P * KEY_GRUPPO_DIAGNOSI
D_GRUP_DIAG_PK
NUMBER (10)
D_BRIDGE_DIAGNOSI
F * KEY_GRUPPO_DIAGNOSI
F * KEY_DIAGNOSI
LIVELLO_DIAGNOSI
PESO_DIAGNOSI
NUMBER (10)
NUMBER (10)
NUMBER (2)
NUMBER (4,4)
D_DIAGNOSI
P * KEY_DIAGNOSI
CODICE_VERSIONE_ICD9
VERS_ICD9_SIGLA
CODICE_DIAG_L3
DIAG_L3_NOME_IT
DIAG_L3_NOME_DE
CODICE_DIAG_L2
DIAG_L2_NOME_IT
DIAG_L2_NOME_DE
CODICE_DIAG_L1
DIAG_L1_NOME_IT
DIAG_L1_NOME_DE
TIPO_NOME_IT
TIPO_NOME_DE
CATEGORIA_NOME_IT
CATEGORIA_NOME_DE
FLAG_STATO
NUMBER (10)
NUMBER (2)
VARCHAR2 (20 BYTE)
VARCHAR2 (5 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (5 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (5 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (1 BYTE)
NUMBER (10)
D_CAMP_SDO3_PK
D_BRIDGE_INTERVENTI
F * KEY_GRUPPO_INTERVENTI
F * KEY_INTERVENTO
LIVELLO_INTERVENTO
PESO_INTERVENTO
NUMBER (10)
NUMBER (10)
NUMBER (2)
NUMBER (4,4)
D_INTERVENTI
P * KEY_INTERVENTO
CODICE_VERSIONE_ICD9
VERS_ICD9_SIGLA
CODICE_INTE_L3
INTE_L3_NOME_IT
INTE_L3_NOME_DE
CODICE_INTE_L2
INTE_L2_NOME_IT
INTE_L2_NOME_DE
CODICE_INTE_L1
INTE_L1_NOME_IT
INTE_L1_NOME_DE
CATEGORIA_NOME_IT
CATEGORIA_NOME_DE
FLAG_STATO
D_INTE_CODI_INTE_IDX
NUMBER (10)
NUMBER (2)
VARCHAR2 (20 BYTE)
VARCHAR2 (5 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (5 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (5 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (300 BYTE)
VARCHAR2 (1 BYTE)
D_COMU_PK
D_CAMPI_SDO3
NUMBER (10)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (1 BYTE)
D_CAMPI_SDO4
P * KEY_CAMPO_SDO4
CODICE_TRAUMATISMI
TRAU_DESCR_IT
TRAU_DESCR_DE
CODICE_RISCONTRO_AUTOPTICO
RISC_AUTO_DESCR_IT
RISC_AUTO_DESCR_DE
CODICE_CLASSE_ANESTETICA
CLAS_ANES_DESCR_IT
CLAS_ANES_DESCR_DE
CODICE_VISITA_ANESTETICA
VISI_ANES_DESCR_IT
VISI_ANES_DESCR_DE
FLAG_STATO
D_CAMP_SDO4_PK
NUMBER (10)
VARCHAR2 (10 BYTE)
VARCHAR2 (70 BYTE)
VARCHAR2 (70 BYTE)
VARCHAR2 (17 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (70 BYTE)
VARCHAR2 (70 BYTE)
VARCHAR2 (15 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (70 BYTE)
VARCHAR2 (70 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (50 BYTE)
VARCHAR2 (50 BYTE)
VARCHAR2 (50 BYTE)
VARCHAR2 (50 BYTE)
VARCHAR2 (12 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (70 BYTE)
VARCHAR2 (70 BYTE)
VARCHAR2 (1 BYTE)
NUMBER (10)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (1 BYTE)
P * KEY_CAMPO_SDO3
CODICE_MODALITA_DIMISSIONE
MODA_DIMI_DESCR_IT
MODA_DIMI_DESCR_DE
CODICE_DIMISSIONE_PROTETTA
DIMI_PROT_DESCR_IT
DIMI_PROT_DESCR_DE
CODICE_DIMI_PROTETTA_GRADO
DIMI_PROT_GRAD_DESCR_IT
DIMI_PROT_GRAD_DESCR_DE
FLAG_STATO
D_GRUPPI_INTERVENTI
P * KEY_GRUPPO_INTERVENTI
D_GRUP_INTE_PK
D_COMUNI
P * KEY_COMUNE
CODICE_COMUNE
COMU_NOME_IT
COMU_NOME_DE
COMU_CAP
CODICE_PROVINCIA
PROV_NOME_IT
PROV_NOME_DE
PROV_SIGLA
CODICE_REGIONE
REGI_NOME_IT
REGI_NOME_DE
CODICE_NAZIONE
NAZI_NOME_IT
NAZI_NOME_DE
NAZI_CITTADINANZA_IT
NAZI_CITTADINANZA_DE
NAZI_SIGLA
CODICE_ASL
ASL_NOME_IT
ASL_NOME_DE
FLAG_STATO
D_CAMPI_SDO2
P * KEY_CAMPO_SDO2
CODICE_REGIME_RICOVERO
REG_RIC_DESCR_IT
REG_RIC_DESCR_DE
CODICE_MOTIVO_DH
MOTI_DH_DESCR_IT
MOTI_DH_DESCR_DE
CODICE_TIPO_RICOVERO
TIPO_RICO_DESCR_IT
TIPO_RICO_DESCR_DE
CODICE_ONERE_DEGENZA
ONER_DEGE_DESCR_IT
ONER_DEGE_DESCR_DE
CODICE_CLASSE
CLAS_DESCR_IT
CLAS_DESCR_DE
FLAG_STATO
NUMBER (10)
DATE
VARCHAR2 (10 BYTE)
VARCHAR2 (11 BYTE)
VARCHAR2 (12 BYTE)
VARCHAR2 (18 BYTE)
VARCHAR2 (19 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (10 BYTE)
NUMBER (1)
NUMBER (2)
NUMBER (3)
NUMBER (1)
NUMBER (1)
NUMBER (1)
NUMBER (1)
NUMBER (2)
VARCHAR2 (3 BYTE)
VARCHAR2 (3 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (10 BYTE)
NUMBER (2)
NUMBER (1)
NUMBER (1)
NUMBER (1)
NUMBER (4)
D_CDC_AZIENDALI
P * KEY_CDC_AZIE
CODICE_CDC
CDC_NOME_IT
CDC_NOME_DE
CODICE_CDR
CDR_NOME_IT
CDR_NOME_DE
CODICE_SETTORE
SETT_NOME_IT
SETT_NOME_DE
CODICE_AREA_AMMINISTRATIVA
AREA_AMMI_NOME_IT
AREA_AMMI_NOME_DE
CODICE_COMPRENSORIO
COMP_NOME_IT
COMP_NOME_DE
CODICE_ASL
ASL_NOME_IT
ASL_NOME_DE
FLAG_STATO
NUMBER (10)
NUMBER (8)
NUMBER (8)
VARCHAR2 (2 BYTE)
VARCHAR2 (60 BYTE)
VARCHAR2 (60 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (20 BYTE)
VARCHAR2 (20 BYTE)
NUMBER (3)
NUMBER (3)
VARCHAR2 (50 BYTE)
VARCHAR2 (50 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (20 BYTE)
VARCHAR2 (20 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (60 BYTE)
VARCHAR2 (60 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (60 BYTE)
VARCHAR2 (60 BYTE)
VARCHAR2 (60 BYTE)
VARCHAR2 (60 BYTE)
NUMBER (10)
NUMBER (10)
NUMBER (10)
NUMBER (10)
VARCHAR2 (1 BYTE)
D_CAMPI_SDO1
D_ASSI_CODI_ASSI_CORR_IDX
P * KEY_CAMPO_SDO1
NUMBER (10)
CODICE_PROVENIENZA
VARCHAR2 (2 BYTE)
PROV_DESCR_IT
VARCHAR2 (100 BYTE)
PROV_DESCR_DE
VARCHAR2 (100 BYTE)
CODICE_TIPO_PROPONENTE
VARCHAR2 (2 BYTE)
TIPO_PROP_DESCR_IT
VARCHAR2 (100 BYTE)
TIPO_PROP_DESCR_DE
VARCHAR2 (100 BYTE)
FLAG_STATO
VARCHAR2 (1 BYTE)
F_RICO_FLAG_STAT_IDX
D_DATE
P * KEY_DATA
DATA
DATA_BREVE
DATA_MEDIA_IT
DATA_MEDIA_DE
DATA_LUNGA_IT
DATA_LUNGA_DE
GIORNO_SETTIMANA_IT
GIORNO_SETTIMANA_DE
GIORNO_SETTIMANA
GIORNO_MESE
GIORNO_ANNO
ULTIMO_GIORNO_SETTIMANA
ULTIMO_GIORNO_MESE
ULTIMO_GIORNO_ANNO
SETTIMANA_MESE
SETTIMANA_ANNO
MESE_BREVE_IT
MESE_BREVE_DE
MESE_LUNGO_IT
MESE_LUNGO_DE
MESE_ANNO
TRIMESTRE
QUADRIMESTRE
SEMESTRE
ANNO
D_DATE_PK
NUMBER (10)
VARCHAR2 (10 BYTE)
VARCHAR2 (90 BYTE)
VARCHAR2 (90 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (90 BYTE)
VARCHAR2 (90 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (90 BYTE)
VARCHAR2 (90 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (90 BYTE)
VARCHAR2 (90 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (70 BYTE)
VARCHAR2 (70 BYTE)
VARCHAR2 (10 BYTE)
VARCHAR2 (50 BYTE)
VARCHAR2 (50 BYTE)
VARCHAR2 (50 BYTE)
VARCHAR2 (50 BYTE)
VARCHAR2 (15 BYTE)
VARCHAR2 (1 BYTE)
NUMBER (10)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (2 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (100 BYTE)
VARCHAR2 (1 BYTE)
D_INDICATORI
P * KEY_INDICATORE
* CODICE_RICOVERO_RIPETUTO
RICO_RIPE_DESCR_IT
RICO_RIPE_DESCR_DE
* CODICE_RICOVERO_APPROPRIATO
RICO_APPR_DESCR_IT
RICO_APPR_DESCR_DE
FLAG_STATO
NUMBER (10)
NUMBER (2)
VARCHAR2 (50 BYTE)
VARCHAR2 (50 BYTE)
NUMBER (2)
VARCHAR2 (50 BYTE)
VARCHAR2 (50 BYTE)
VARCHAR2 (1 BYTE)
D_INDI_PK
D_DIAG_CODI_DIAG_IDX
ADMT 2015/16 — Unit 5
J. Gamper
43/47
MEDAN
Multi-valued Dimensions
Diagnoses and procedures are examples of multi-valued
attributes/dimensions,
i.e., a patient typically has multiple diagnoses (up to > 10).
Solutions
Reserve multiple columns (one for each diagnosis).
Results in many empty cells, i.e., sparse fact table.
Use several facts for a single hospital stay (one for each diagnosis).
Similar to fact normalization for measures.
Increases the number of tuples in fact table.
Multiple columns
Multiple facts
Hospital Stay Facts
Data Hospital Stay Admission (FK)
Data Hospital Stay Discharge (FK)
Health Record Number (FK)
Health Record Year (FK)
Patient Key (FK)
...
Diagnosis Key 1 (FK)
Diagnosis Key 2 (FK)
Diagnosis Key 3 (FK)
...
Hospital Stay Facts
Data Hospital Stay Admission (FK)
Data Hospital Stay Discharge (FK)
Health Record Number (FK)
Health Record Year (FK)
Patient Key (FK)
...
Diagnosis Key (FK)
...
Bridge tables
ADMT 2015/16 — Unit 5
J. Gamper
44/47
MEDAN
Bridge Tables
Bridge tables help to deal with multi-valued dimensions,
i.e., many-to-many relationships.
Bridge table implements two one-to-many relationships.
Bridge table can also be used to represent many-to-many relationships
between dimensional attributes, e.g., between books and authors.
Hospital Stay Facts
Data Hospital Stay Admission (FK)
Data Hospital Stay Discharge (FK)
Health Record Number (FK)
Health Record Year (FK)
Patient Key (FK)
...
Diagnosis Group (FK)
...
Diagnosis Group Dimension
Diagnosis Group Key (PK)
Diagnosis Group Name
...
Diagnosis Group Bridge
Diagnosis Group Key (FK)
Diagnosis Group Key (FK)
Diagnosis Level
Weighting Factor
...
ADMT 2015/16 — Unit 5
J. Gamper
Diagnosis Dimension
Diagnosis Key (FK)
Diagnosis Name
Diagnosis Code
Diagnosis Type
Diagnosis Category
...
45/47
MEDAN
MEDAN Lessons Learned
Developing a BI platform is a process that takes years.
A well-designed and consistent DW is the foundation for BI.
QlikView is a tool for quick analyses; it cannot replace a DW.
Do not put anything in a single data mart.
Use one DM for one business process (set of closely related business queries).
Different opinions on bottom-up vs. top-down, but bottom- up seems to
have more acceptance.
Data modeling is difficult but very important.
Helps to get a conformed view on the business.
e.g., what is an admission/hospital stay?
Different granularity by different users, e.g., Province, Hospital.
Establishing a Business Intelligence Competence Center (BICC) is crucial in
order to
coordinate the whole project,
take important decisions about the data.
ADMT 2015/16 — Unit 5
J. Gamper
46/47
MEDAN
Summary
Different Inventory models: periodic snapshot model, transactions model,
accumulating.
Shared and conformed dimensions are crucial to integrate several DMs
across a value chain.
DW bus architecture is a standard interface to support the incremental
development and successfull integration of separate DMs.
DW bus matrix is a tool to document the DW bus architecture.
Role-playing allows to physically store a dimension only once, but use it
several times in different roles and with different names.
Fact normalization collapses all measures into a single measure together
with a special fact dimension to determine the type of the measure.
Only useful when the fact table is sparse.
Multi-valued dimensions if a dimension occurs more than once in a single
fact, e.g., a patient has typically several diagnoses.
Bridge tables can be used to represent such dimensions
Bridge tables can be used to represent n-to-m relationships between
dimensional attributes (i.e., multiple arcs in DFM)
ADMT 2015/16 — Unit 5
J. Gamper
47/47
Scarica

Unit 5 - Faculty of Computer Science