Model Predictive Control in automotive systems R. Scattolini, A. Miotti Dipartimento di Elettronica e Informazione 2 Outline • Gasoline engines • Diesel engines • Hybrid fuel cell vehicles Riccardo Scattolini Dip. di Elettronica e Informazione 3 Gasoline engines • System description • Engine model and validation (VW Lupo) • Design of the engine static maps • Design of a predictive control scheme • State and unknown parameters observers • Feedback linearization + MPC • Conclusions Riccardo Scattolini Dip. di Elettronica e Informazione 4 Air path scheme Throttle EGR VVT AIR FLOW METER Measurable variable ECU SPEED SENSOR PRESSURE SENSOR Riccardo Scattolini Dip. di Elettronica e Informazione Actuators 5 A multivariable system Brake pedal Driver ECU Accelerator Advance Throttle EGR VVT Fuel Torque Air supply system Vehicle dynamics Engine Manifold pressure Input air flow Riccardo Scattolini Gear Engine speed Vehicle speed Lambda sensor Emissions [NOX , CO, HC] Dip. di Elettronica e Informazione 6 System characteristics • Multivariable system • Strongly non linear • Heavily coupled • Few measurements available on-board • No measurements of performance variables (torque, emissions) Riccardo Scattolini Dip. di Elettronica e Informazione Dynamic model and assumptions 7 Lumped-parameter, time-based, nonlinear, Mean Value Model (MVM) Uniform thermodynamic properties; Homogeneous mixtures of air and combustion (ideal) gas; Stoichiometric combustion of air and fuel; Heat transfer effects neglected; Flow through restrictions modeled as isentropic compressible flow. Riccardo Scattolini Dip. di Elettronica e Informazione 8 Throttle Algebric Model wth is the flow through throttle Measured by means of an air flow meter From experimental data the parameter kAth (α α) has to be identified (also as function of N). Problem: The downstream pressure pth is unknown Riccardo Scattolini Dip. di Elettronica e Informazione pth=pman 9 Intake manifold wair : from throttle equation wegr: from EGR model weng: flow coming in the engine 3 state variables wair mair wegr megr Tman weng xegr: egr percentage coming in engine Assumption: Ideal gas law m air = wair − weng Mass equations Tman = Energy equation megr mair , m egr = wair − weng mair + meng mair + meng Rman (c pair wairTair + c pegr wegrTegr Vmancvman − c pair wengTman (1 − xegr ) − c pegr wengTman xegr ) Riccardo Scattolini Dip. di Elettronica e Informazione 10 Static maps • volumetric efficiency; • EGR valve; • torque; • emissions; • engine temperature. Riccardo Scattolini Dip. di Elettronica e Informazione 11 Vehicle dynamics Transmission ratio shaft/wheels : τt = τc τp Re : Effective wheel radius M : Mass of the vehicle Jr : Inertia of e wheel Jat is the total momentum of inertia Power at shaft Riccardo Scattolini Engine losses Road Load Dip. di Elettronica e Informazione 12 Air path validation (1) Manifold pressure [Pa] Intake manifold pressure Air flow [kg/h] Riccardo Scattolini Dip. di Elettronica e Informazione 13 Validation of the vehicle model Engine speed [rpm] Vehicle speed [km/h] Riccardo Scattolini Dip. di Elettronica e Informazione 14 Mathematical model The model, ignoring some additional dynamics and transport delays, takes the form x = f ( x, u ) y = h ( x, u ) where N Torque Tman α NO x , y= x = mair , u = VVT HC megr EGR CO Main problems: some state and output variables are not measured. Many static functions are derived from data and do not have an explicit mathematical form. Riccardo Scattolini Dip. di Elettronica e Informazione Design of an industrial control scheme driver: pedal request αo Static engine map Torque request Γ o 15 u Static control maps N Engine Computed with the simulator Built with the simulator by solving a suitable optimization problem Riccardo Scattolini Dip. di Elettronica e Informazione Design of the static control maps 16 For any point (Γ 0,N) on a prescribed grid, the engine simulator has been used to solve the following (static) optimization problem 0 2 min λ1 (Γ − Γ ) + λ2 NOx + λ3CO + λ4 HC α , EGR ,VVT N=N 0 ≤ EGR ≤ 250 0.85α 0 ≤ α ≤ 1.15α 0 0 ≤ VVT ≤ 40 0 Riccardo Scattolini Dip. di Elettronica e Informazione 17 Control maps Table and breakpoints data for block: PROVA_VVT_ottimnt/Mappa VV o T Ottimizzazione /farf − nt Throttle α 20 10 0 100 4000 50 15 ←15←−5 ←20 ←−10 ←25 ←30←10 ←70 ←65 ←95 ←35 ←75 ←80 ←60 ←90 ←55 ←50 ←85 ←45 ←40 ←5 10 5 ←−15 ←0 ←−20 ←−25 ←−30 ←−35 ←−40 ←−45 4000 3000 0 100 3000 50 2000 0 Γ 20 1000 o −50 Column breakpoints Riccardo Scattolini 0 Annotations denote column breakpoints 30 Table data ←85 ←80 ←75 ←70 ←65 ←60 ←55 ←50 ←45 ←40 ←35 ←30 ←25 ←20 ←15 ←10 ←−10 ←−5 ←5 ←−15 ←−20 ←0 ←−25 ←−30 ←−35 ←−40 ←−45 40 Annotations denote column breakpoints ←95 ←90 50 Table data EGR Table and breakpoints data for block: PROVA_VVT_ottimnt/Mappa VV T Ottimizzazione /EGR − nt 2000 0 1000 rpm Row breakpoints Column breakpoints −50 0 Row breakpoints Dip. di Elettronica e Informazione Design of an MPC regulator 18 Designed on a linear identified model (N = 2500 rpm, Γ = 30 Nm) MPC regulator Torque request Γ o δu u Static control maps N Riccardo Scattolini Torque Dip. di Elettronica e Informazione Air path Torque Fuel cons. NOx CO HC 19 MPC design State estimator + MPC state feedback control law Ny = 40 (prediction horizon) , Nu = 1 (control horizon) : Performance index J = J1 + J 2 Np [ J1 = ∑ µ1 (Γ o ((h + l )Tc ) − Γ ((h + l )Tc )) l =1 Np 2 [ 2 ] 2 2 J 2 = ∑ µ 2 NOx ((h + l )Tc ) + µ3δα (hTc ) + µ 4δEGR (hTc ) l =1 ] δα min ≤ δα ( hTc ) ≤ δα max Constraints δEGRmin ≤ δEGR ( hTc ) ≤ δEGRmax Riccardo Scattolini Dip. di Elettronica e Informazione 20 Experiments 30 With MPC Without MPC Set point 28 120 With MPC Without MPC Set point 110 100 24 Vehicle speed [Km/h] Vehicle speed [Km/h] 26 22 20 18 90 80 70 16 60 14 50 12 5 10 15 20 25 30 Time [s] 35 40 50 45 Low speed 5 60 70 Time [s] 80 90 High speed With MPC Without MPC 100 With MPC Without MPC 8 6 4 Torque error [Nm] Torque error [Nm] 0 −5 2 0 −2 −4 −10 −6 −8 −15 5 10 15 Riccardo Scattolini 20 25 30 Time [s] 35 40 45 Dip. di Elettronica e Informazione 50 60 70 Time [s] 80 90 100 21 Results Cost on emissions Cost on torque error Static maps MPC weight on torque error MPC weight on torque + emissions Static maps MPC weight on torque error MPC weight on torque + emissions Exp. 1 776.3 781.1 740.3 874.1 27.78 32.98 Exp.2 291.5 289.2 260.6 30 0.6287 5.085 Exp. 3 206.3 202.8 185.1 53.37 3.757 13.06 Exp. 4 1091 1096 1044 1042 56.21 282.6 Riccardo Scattolini Dip. di Elettronica e Informazione 22 State feedback linearization State feedback law Simplified model Constraints on fictitious inputs v Riccardo Scattolini Dip. di Elettronica e Informazione 23 Nonlinear observers STATES ARE NOT MEASURABLE SLIDING MODE NONLINEAR OBSERVER The most uncertainty parameter is the volumetric efficiency NONLINEAR INPUT OBSERVER Riccardo Scattolini Dip. di Elettronica e Informazione 24 Linear MPC + F.L. + nonlinear observer 1/s Torque req. poman Linear MPC Feedback Wth, Wegr linearization pman,,NOx engine Nonlinear state observer Main problem: constraints handling Riccardo Scattolini Dip. di Elettronica e Informazione 25 Pressure transient Perturbed model Riccardo Scattolini Dip. di Elettronica e Informazione 26 Turbocharged Diesel engines • Engine description • Engine model • Model analysis and validation • Control problems • “Classical” control structures • Advanced control design Riccardo Scattolini Dip. di Elettronica e Informazione 27 Air path Intake manifold Exhaust manifold Turbocharger Riccardo Scattolini Dip. di Elettronica e Informazione 28 Dynamic model Dynamic equations Mass balances in the manifolds 2 = w1e −wegr−w2t +wfuel m 1 = w c1 − w1e + w egr m Energy balances 1 (w c1 (T c1 c pair − T1 c vair ) − w 1e T1 R + w egr (T egr c pegr − T1 c vegr )) m 1 c vair 1 T2 = (w1e(Tengcpair − T2cvair) − w2tT2R + wfuel(Tengcpegr − T2cvegr) - wegrT2R - Kconv(T2 - Tamb)) m2cvair T 1 = Turbocharger P − Pcompressor N tc = turbine N tc I tc Pturbine 1− γ p2 γ = w 2t c pegr T2 ηt 1 − p0 Pcompressor Riccardo Scattolini Dip. di Elettronica e Informazione γ −1 p1 γ = w c1c pair Tamb − 1 ηc p0 Dynamic model - 2 29 Variables to be determined: Recirculating gas flow rate (wegr) EGR valve opening (KAegr) Gas flow rate to the engine (w1e) Volumetric efficiency (ηvol) Engine temperature (Teng) Compressor air flow (wc1) Compressor efficiency (ηc) Turbine efficiency (ηt) Static map Turbine flow rate (w2t) Riccardo Scattolini Dip. di Elettronica e Informazione 30 Turbine flow rate Riccardo Scattolini Dip. di Elettronica e Informazione 31 Model characteristics Inputs Engine speed (N) Fuel flow rate (wfuel) EGR VGT Outputs Intake manifold pressure (p1) Compressor air flow rate (wc1) Control variables EGR VGT Riccardo Scattolini Dip. di Elettronica e Informazione 32 Step responses - 1 VGT step variations, EGR constant N=2500 [rpm] N=3000 [rpm] Wfuel=1.6 [g/s] Wfuel=1.6 [g/s] Different magnitudes Change of signo N=2000 [rpm] Wfuel=2.3 [g/s] Riccardo Scattolini Dip. di Elettronica e Informazione 33 Step responses - 2 EGR step variations, VGT constant N=2500 [rpm] N=3000 [rpm] Wfuel=1.6 [g/s] Wfuel=1.6 [g/s] N=2000 [rpm] Wfuel=1 [g/s] Riccardo Scattolini Dip. di Elettronica e Informazione 34 Static gains VGT-MAF VGT-MAP EGR-MAF EGR-MAP Riccardo Scattolini Dip. di Elettronica e Informazione 35 Control design - 1 Feedforward control PI + feedforward (limited operating range - N=2500[rpm] wfuel=1.6[g/s]) H2 + feedforward (limited operating range - N=2500[rpm] wfuel=1.6[g/s]) Feedforward Torque/fuel EGR=0 VGT=constant rpm Riccardo Scattolini Dip. di Elettronica e Informazione 36 Control design - 2 Feedforward + PI control Riccardo Scattolini Dip. di Elettronica e Informazione 37 Nonlinear control design State observer (sliding mode observer + unknown input observer) + Feedback linearization + linear MPC or Nonlinear MPC + interpolation Riccardo Scattolini Dip. di Elettronica e Informazione 38 Nonlinear MPC 1. Solve off-line (MUSCOD) a dynamic optimization problem for a great number of initial conditions in the operating space (torque, rpm) 2. Use the results to find a suitable interpolation (NN – RBF - …) of the state-feedback control law 3. Use it in conjunction with a state observer mapo,,mafo Interpolated EGR, VGT N-MPC Nonlinear state observer Riccardo Scattolini Dip. di Elettronica e Informazione Diesel engine map,,maf 39 Hybrid fuel cell vehicle • A vehicle with a fuel cell stack and a battery • A detailed simulation model has been developed • A low level scheme controls the fuel cell acting on the compressor command and on the anode and cathode valves • The high level MPC controller manages the power fluxes, i.e. the power absorbed by the motor and the one provided by the fuel cell • The main constraints are related to the battery charge (SOC) Riccardo Scattolini Dip. di Elettronica e Informazione 40 Control strategy Power request High level control iBatt iFC Low level control Riccardo Scattolini Dip. di Elettronica e Informazione Pmot = PFC + PBatt 41 High level control Constraints: min max δPmot ≤ δPmot (k ) ≤ δPmot min max δI FC ≤ δI FC (k ) ≤ δI FC SOCmin ≤ SOC (k ) ≤ SOCmax Pmot Power Request FCCurrent Pmot = PFC + PBatt Riccardo Scattolini Dip. di Elettronica e Informazione 42 High level control - 3 System to be controlled Pmot FC System Power + IFC SOC Battery Performance index: 2 2 (k ) + r2 I FC (k ) J = ∑ q1 (Power o (k ) Power (k )) + q2 (SOC o (k ) SOC (k )) + r1 Pmot N 1 [ 2 i =0 min max δPmot ≤ δPmot (k ) ≤ δPmot Constraints: Riccardo Scattolini min max δI FC ≤ δI FC (k ) ≤ δI FC SOCmin ≤ SOC (k ) ≤ SOCmax Dip. di Elettronica e Informazione 2 ] 43 High level control - 2 Sampling time: 0.05 s Two tunings: • Low use of the battery • High use of the battery Riccardo Scattolini Dip. di Elettronica e Informazione 44 Simulations - 1 Battery – high use Battery – low use Pmot = PFC + PBatt Riccardo Scattolini Dip. di Elettronica e Informazione 45 Simulations - 2 Battery – high use Battery – low use Pmot = PFC + PBatt Riccardo Scattolini Dip. di Elettronica e Informazione