The unpolarized cross section dσ = dσ dΩ dΩ ε 1 G 2 (Q2 ) + τ G 2 (Q2 ) ε M (1+τ ) E Mott = 1+ 2(1+τ ) tan 2 −1 θ e ,τ = Q 2 2 +τ G 2 σ = ε G 2 R E M 4M 2 Q2 fixed N. Rosenbluth (1950) ε A.Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Il Nuovo Cimento XXIV, 170 (1962) →Holds for 1γ exchange only Ferrara,24-V-2011 Egle TOMASI-GUSTAFSSON CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 1 Polarization experiments - Jlab A.I. Akhiezer and M.P. Rekalo, 1967 Gep collaboration: R=µGEp/GMp 1) Large precision/sign 2) Assume "standard" dipole function for GMp 3) Observe linear deviation from dipole for GEp - QCD scaling not reached - Zero crossing of Gep? contradiction between polarized and unpolarized measurements Ferrara,24-V-2011 Egle TOMASI-GUSTAFSSON A.J.R. Puckett et al, PRL (2010) CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 2 Model independent statements In presence of 2γγ exchange : - Non linearity in the Rosenbluth fit and Charge asymmetry in the crossed channel - Non vanishing odd polarization observables - Different cross section for electron/positron – proton elastic(inelastic) scattering M. P. Rekalo, E. T.-G. , EPJA (2004), Nucl. Phys. A (2003) Ferrara,24-V-2011 Egle TOMASI-GUSTAFSSON CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 3 Linearity of the Rosenbluth fit Egle TOMASI-GUSTAFSSON Ferrara,24-V-2011 CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 4 Parametrization of 2γ-contribution for e+p F (Q 2 , ε ) → f (Q ) = (a) 2 1 + ε (a) 2 f (Q ) 1− ε C 2 γ GD [1 + Q 2 [GeV] 2 /ma2 ]2 From the data: deviation from linearity << 1%! E. T.-G., G. Gakh, Phys. Rev. C 72, 015209 (2005) Egle TOMASI-GUSTAFSSON Ferrara,24-V-2011 CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 5 Radiative Corrections RC to the cross section: − large (may reach 40%) − ε and Q2 dependent − calculated at first order Q2=1.75 GeV2 Q2=3.75 GeV2 Q2=5 GeV2 May change the slope of σR (and even the sign !!!) E. T.-G., G. Gakh, PRC 72, 015209 (2005) Egle TOMASI-GUSTAFSSON 12-XII-2008 CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 6 GPD (includes inelastic) : dominated by two-gamma correction and correction to GE A.Afanasev,Phys.Rev.D72:013008(2005) GMp Hadronic (elastic) dominated by correction to GMP. Blunden, Phys.Rev.C72:034612(2005) Ferrara,24-V-2011 Egle TOMASI-GUSTAFSSON CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 7 Polarization ratio (ε-dependence) • DATA: No evidence of ε-dependence at 1% level •MODELS: large correction (opposite sign) at small ε •SF method: ε-independent corrections •Theory: corrections to the Born approximation at Q2= 2.5 GeV2 Y. Bystritskiy, E.A. Kuraev and E.T.-G, Phys.Rev.C75: 015207 (2007) P. Blunden et al., Phys. Rev. C72:034612 (2005) A. Afanasev et al., Phys. Rev. D72:013008 (2005) N.Kivel and M.Vanderhaeghen, Phys. Rev. Lett.103:092004 (2009). Ferrara,24-V-2011 Egle TOMASI-GUSTAFSSON CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 8 Annihilation channel Egle TOMASI-GUSTAFSSON Ferrara,24-V-2011 CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 9 Unpolarized cross section Two Photon Exchange: • Induces four new terms • Odd function of θ: • Does not contribute at θ =90° G. Gakh, E.T-G., Nucl. Phys. A761,120 (2005). Ferrara,24-V-2011 Egle TOMASI-GUSTAFSSON CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 10 Symmetry relations • Differential cross section at complementary angles: The SUM cancels the 2γ contribution: The DIFFERENCE enhances the 2γ contribution: Ferrara,24-V-2011 Egle TOMASI-GUSTAFSSON CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 11 Radiative Return (ISR) e+ +e- → p + p + γ 2 E 2 dσ( e + e − → ppγ ) 2m m γ W ( s , x , θ )σ( e + e − → pp )( m ), x = , = = 1− dm d cos θ s s s me α 2 − 2 x + x 2 x 2 W ( s , x ,θ ) = , θ >> . − 2 πx 2 s sin θ B. Aubert ( BABAR Collaboration) Phys Rev. D73, 012005 (2006) Egle TOMASI-GUSTAFSSON Ferrara,24-V-2011 CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 12 1.877÷1.950 1.950÷2.025 2.025÷2.100 2.100÷2.200 2.200÷2.400 2.400÷3.000 Events/0.2 vs. cos θ Angular distribution 2γ−exchange? Egle TOMASI-GUSTAFSSON Ferrara,24-V-2011 CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 13 Mpp=1.877-1.9 A=0.01±0.02 Mpp=2.4-3 E. T.-G., E.A. Kuraev, S. Bakmaev, S. Pacetti, Phys. Lett. B (2008) Ferrara,24-V-2011 Egle TOMASI-GUSTAFSSON CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 14 60000 N N N=a0+a2cosθ sin2θ +a1 cos2θ, a2~2γ 1γ 60000 55000 55000 50000 50000 45000 0 0.2 0.4 0.6 0.8 1 45000 2γ 0 0.02 0.2 0.4 0.6 0.8 cos2θ 60000 cos2θ N N q2=5.4 GeV2 2γ 60000 0.05 55000 55000 50000 50000 45000 0 0.2 0.4 0.6 0.8 1 45000 2γ 0 0.2 0.2 0.4 0.6 0.8 cos2θ Ferrara,24-V-2011 1 Egle TOMASI-GUSTAFSSON 1 cos2θ CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 15 Electron/Positron scattering • What about data: electron positron scattering (elastic or inelastic) in the same experimental conditions? • If R ≠1 is there any other source of asymmetry? • Any evidence of two photon exchange (real part of hard box diagram)? Recent analysis of existing data: J. Arrington PRC69 (2004) 032201: evidence of TPE W.M. Alberico, S.M. Bilenky, C. Giunti,K.M. Graczyk : small TPE D.Y Chen, H.Q. Zhou and Y.B. Dong, PRC 78 (2008) 045208 depending on data selection, TPE parametrization, Radiative Corrections.. ….controversial, Egle TOMASI-GUSTAFSSON Ferrara,24-V-2011 CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 16 Electron/Positron scattering M± = ±M 2 2 Born approximation 1γ =M 1γ 2 2γ exchange: M ± 2 = ± M 1γ + M 2γ Asymmetry 2 = M 1γ ±2 Re M 1γ M 2γ + M 2γ 2 * 2 2 Re M 1 γ M 2 γ σ (e + p) − σ (e − p) A = = 2 σ (e + p ) + σ (e − p ) M 1γ The effect is enhanced in the ratio 4 Re( M 1γ M σ (e + p ) 1 + A R= = ≅ 1+ 2 − σ (e p ) 1 − A M * 2γ ) 1γ Egle TOMASI-GUSTAFSSON Ferrara,24-V-2011 CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 17 World data e+e- scattering 1.4 Yount 62 Browman 65 Anderson 66 Cassiday Bartel Mar 68 Anderson 68 Bouquet Camilleri Jostlein 74 Hartwig Rochester Fancher 1.3 R(e+/e−) 1.2 1.1 1 0.9 0.80 20 40 60 80 100 120 140 N Egle TOMASI-GUSTAFSSON Ferrara,24-V-2011 CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 18 Elastic scattering 1.3 R(e+/e−) 1.2 Mar 68 Yount 62 Browman 65 Anderson 68 Anderson 66 Cassiday Bartel Bouquet 1.4 q2 =1, 3, 5 GeV2 1.3 1.2 1.1 1.1 0.80 ε=0.2, 0.5, 0.8 1 1 0.9 Mar 68 Yount 62 Browman 65 Anderson 68 Anderson 66 Cassiday Bartel Bouquet Hartwig 79 Hartwig 75 Camilleri R(e+/e−) 1.4 0.9 Hartwig 79 Hartwig 75 Camilleri 0.2 0.8 0.4 ∈ 0.6 0.8 1 10−2 10−12 1 q [GeV2] 10 R=(-0.071 ± 0.016 )ε +(1.058 ±0.014) Egle TOMASI-GUSTAFSSON Ferrara,24-V-2011 CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 19 Dipole Approximation and pQCD Dimensional scaling – Fn (Q2)= Cn [1/( 1+Q2/mn) n-1], • mn=nβ2 , <quark momentum squared> • n is the number of constituent quarks – Setting β2 =(0.471±.010) GeV2 (fitting pion data) • pion: Fπ (Q2)= Cπ [1/ (1+Q2/0.471 GeV2)1], • nucleon: FN (Q2)= CN [1/( 1+Q2/0.71 GeV2)2], deuteron: Fd (Q2)= Cd [1/( 1+Q2/1.41GeV2)5] • V. A. Matveev, R. M. Muradian, and A. N. Tavkhelidze (1973), Brodsky and Farrar (1973), Politzer (1974), Chernyak & Zhitnisky (1984), Efremov & Radyuskin (1980)… Ferrara,24-V-2011 Egle TOMASI-GUSTAFSSON CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 20 Systematics Ferrara,24-V-2011 Egle TOMASI-GUSTAFSSON CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 21 Space-like and Time-like E.T-G, Phys. Part. Nucl. Lett. 4, 281 (2007) FM 1 AM 1 FE=εG2E/σred 10% ε=0.8 10−1 AE 10% 10−1 ε=0.5 ε=0.2 10−20 FE 0 5 10 15 20 2 [GeV ] 25 30 q2 1 2 3 Q [GeV2] 4 5 6 2 Ferrara,24-V-2011 Egle TOMASI-GUSTAFSSON CEA DSM IRFU SPhN and CNRS/IN2P3/ IPNO 22