Genomica Funzionale
10-14 Febbraio 2014
Topics covered
-  Metabolic Engineering;
-  Concept of Metabolomics;
-  Metabolomic platforms (LC-MS, GC-MS, NMR, ICP-  Set up of a metabolomic protocol and database;
-  Applications in plant-/food science field;
-  Bioinformatics applied to Metabolomic data.
ENEA “CASACCIA” RESEARCH CENTRE
Location
and group:
1 Senior Research scientist (G. Giuliano)
1 Junior research scientist
7 post-docs
1 PhD students
3 Undergrad. students
Facilities:
Coming soon…
48 pins DNA analyzer
Microarray platform
LTQ Orbitrap mass spectrometer
- 1000bp/sequence
- Custom oligoarrays
- High resolution
- 24 samples/h processing
- GC-MS
-  454
-  Instron
- Simultaneous analysis of - Accurate mass (MS and MSn) up to 4 orders
of magnitude
20-46.000 unigenes
- Targeted and untargeted analysis
Research
activities:
DNA sequencing:
Photobiology:
Carotenoid projects:
Microalgae projects:
- Tomato
- Cryptochromes
- Metabolic engineering
- Inducible systems
- Wheat
- Transcription factors
- Natural mutants
- Biofuels
INTRODUCTION
1.  Nutrition and diet status overview
2.  Nutrient deficiencies
3.  Approaches to fight malnutrition
4.  Biofiortification strategies
…getting a healthy diet…
Mediterranean
Asian
Latin-american
Vegetarian
Nutrition in developing countries and non developing
Worldwide zinc deficiency
Dietary Energy Supply
AVG DES: 1600-2800 cal
Xerophtalmia,
renal/liver diseases etc
Obesity,
Diabete etc
Different populations = different diet/metabolism
The French paradox, by Serge Renaud, 1992
-  Resveratrol?
-  Alcohol?
-  Underestimation?
-  Lipid metabolism/kind issue?
-  Geography and Lifestyle?
Vitamin C deficiencies preferebly affect black people (2002)
Rice
Nutrition facts of worldwide major crops
Wheat
Maize
Potato
Nutritional Indexes
Recommended Dietary Allowance (RDA)
- Based on scientific knowledge
-  Presented by a committee of the Food and Nutrition Board (FNB) of the National Academy of
Sciences (NAS) during World War II (Lydia J. Roberts, Hazel Stiebeling and Helen S. Mitchell)
Carbohydrates
Vitamins D
Hypervitaminosis
Hypervitaminosis A
Metastatic calcification
Yellow skin discoluration
Lipids
Aminoacids
(proteins)
Minerals
Different approaches to fight malnutrition…
…a mutual evolutionary history: unconscious bio-fortification
12.000-11.000 BC
3.000-2.000 BC
Middle east
South America
Sight + Smell + Taste = pollination and seed dispersal
Goff and Klee, 06
(Conscious) fortification/supplementation…
Mineral-deficient soils
Vitamin A deficiency
Mineral Fertilization
Pill supplementation
Endemic Goitre
Rickets
Beriberi
Thiamine-fortified
food
Iodate salt
Vitamin D
supplementation
CopenhagenWhy
Consensus
biofortification?
2008 list of priorities
Example of biofortification approach:
combat vitamin A deficiency through by enriching crops
(e.g. potato) highly consumed in developing countries
Source: WHO data, 2005
Biofortification by classic breeding
Classic breeding
+ IRON
+ ZINC
Why genetic/metabolic engineering for biofortification?
-  Extended gene sources
-  Easier distribution
-  Cost effectiveness
…before starting a metabolic engineering program…
-  In vivo study (Bioefficacy)?
-  Right specie/cultivar
-  Know-how on endogenous/empyric pathway
-  Right promoter/gene (and transit peptide)
…and after getting a bio-GM-fortified food…
-  Stability
-  Did i get what i wanted?
-  Agronomical performances
-  How to cook, distribute etc?
-  Bioavailability
-  Pleiotropic effetcs
How do endogenous pathway work?
Transcription regulation
INPUT
Post-transcriptional
regulation
- G
-  Keq
-  Km
-  Rate-limiting
-  Positive and negative
feedback regulations
Post-translational
regulation
OUTPUT
Metabolic flux analysis
Fluxomics
Trial and error…
Metabolic flux analysis
Flux balance analysis
Wiechert et al., 07
Covert et al., 08
Bio-fortification strategies, via metabolic engineering, for crop
improvement
REGULATIVE
GGPP
PUSH
OPP"
4
CrtB
1
15-cis-phytoene
5
CrtI
SINK
licopene
LCY-e
BLOCK
α-carotene
CrtY
Recycling
2
β-carotene
Metabolic engineering of nutrients
1.  Vitamin A (carotenoids)
2.  B group vitamins
3.  Vitamin C
4.  Vitamin E
5.  Minerals
6.  Flavonoids
The tough work of an antioxidant….
- DNA
- lipids
- proteins
Ascorbate
Dehydroascorbate
…a bit of carotenoid history….
H. W. F. Wackenroder, 1831
J. L. W. Thudichum, 1868
A. Lieben, 1862
R. M. Willsatter, 1910
Carotenoids: chemical structure and characteristics
The conjugated system
15-cisphytoene
lycopene
β-carotene
OH
HO
lutein
Absorbance spectra of
carotenoids/chlorophylls
Carotenoid distribution and their functions in plants
Bacteria
Fungi
Algae
High Plants
ABA
Pollinator attraction
Photoreception and Photoprotection in Photosynthesis
β-apo-13-carotenone (?)
β-ionone
Hormone precursors
Picrocrocin
CHO
β-ionol
Safranal
CHO
R 1O
Biotic stress responses
Predator attraction
Lateral branching
Aroma production
Apocarotenoid distribution and functions in plants/animals
Saffron Bixa White peach Carlactone
β-ionone
Picrocrocin
CHO
β-ionol
Safranal
CHO
R 1O
Biotic stress responses
Predator attraction
Lateral branching
Reduction in tumor cell proliferation
Aroma production
Carotenoids in nutrition
α-carotene"
OH
β-cryptoxanthin"
Brain Cancer
β-carotene"
Macular
degeneration
Provitamin A carotenoids
Vision
Erythema
Mucosal protection
(mouth, nose, throat, lung)
Lung Cancer
Prevention of heart
and vascular diseases
Pancreas Tumor
Prostate Cancer
Bone and teeth formation
Worldwide prevalence
Lycopene
Xanthophylls
Pro-Vitamin A carotenoids
Xerophthalmia
Carotenoids are found in chloroplasts and chromoplasts
Amyloplast
(starch)
Chromoplast
(carotenoids, no chlorophyll)
Chloroplast
(carotenoids
+ chlorophyll)
27
Biosynthesis
ofengineering
carotenoids
andcarotenoids
their derivatives
Metabolic
of plant
GA3P + Pyruvate
DXS
DOXP pathway
DXR
GGPS
- Creation of “Golden” crops
GGPP
OPP"
Ye et al., 00
Paine et al, 05
Early
o
PSY1, PSY2; CrtB
OH
Fraser
et al, 00
HO
o
CHY
Rosati et al.,
00 Astaxanthin
CrtO
DharmapuriCrtW
et al., 02
Bkt1
15-cis-phytoene
PDS, ZDS, CrtISO; CrtI
o
lycopene
LCY-e
Echinenone
Ducreux et al, 04
Diretto et al., 07b
CrtO, CrtW, Bkt1
LCY-b; CrtY
Aluru et al, 08
α-carotene
Mann et al, 00
ε-β-
OH
LUT1
HO
lutein
LUT5,
CHY1, CHY2;
CrtZ
Fujisawa
et al,
08
β-carotene
HO
OH
zeaxanthin ZEP
HO
β-β-
VDE
OH
O
antheraxanthin
ZEP
VDE
O
HO
Shewmaker et al, 99
OH
O
violaxanthin NXS
???
O
OH
OH
HO
neoxanthin
Diretto et al., 07a
Golden Rice (I and II)
bacterial mini-pathway:
Wild-type
Golden rice I
Golden rice II
2 µg/g DW
Ye et al 00
35 µg/g DW
Paine et al 05
phytoene synthase
phytoene desaturase
lycopene β-ciclase
Metabolic complementation
Golden Rice (I and II): what’s next?
2003
2005
2004
Tuber-specific silencing
ü AS-e (Diretto, 06)
ü Total car: 2-fold
ü β-carotene: 14-fold
ü 50 Kg/d -> 50% RDA
ü AS-h (Diretto, 07c)
ü Total car: 4-fold
ü β-carotene: 50-fold
ü 14 Kg/d -> 50% RDA
ü Desirée
ü 0.016 µg/g DW β-carotene
ü 700 Kg/d -> 50% RDA
lycopene
X
LCY-e
LCY-b
δ-carotene
LCY-b
α-carotene
HO
zeinoxanthin
HO
lutein
HO
Lut5
Lut1
Lut5
CHY1
CHY2
β-carotene
zeaxanthin
OH
HOO
antheraxanthin
HOO
violaxanthin
X
ZEP
OH
VDE
OH
ZEP
VDE
O OH
Effect of using different promoters
“35S/Pat” constructs
“All Pat” constructs
Tuber vs leaf carotenoid content
PatI
PatB+I
PatB+I+Y
Leaf
Leaf
35S:I
Pat:B+35S:I
PatB+35S:I+35S:Y
A
Tuber (log)
Tuber (log)
Wt
-
pK-I
+
pK-BI
++
pKYBI
The Golden Potato
120
A
α-xanthophylls
α-carotene
β-xanthophylls
β-carotene
Early
100
80
Carotenoid content
Phytoene synthase
60
phytoene desaturase
40
lycopene β-ciclase
20
0
Wild-type
pK-I
pP-I
B
200
α-xanthophyll synthases
ε-cyclase
β-xanthophyll synthases
CrtY
β-cyclases
CrtB+CrtI
Early
pK-BI
pP-BI
pK-YBI pP-YBI
Transcript levels
53 µg/g DW
Diretto et al 07b
100
0
Golden potato
Wild-type
pK-I
pP-I
pK-BI
pP-BI
pK-YBI
pP-YBI
Diretto et al, 10 (in press)
50% RDA = 250gm FW
Tuber-specific overexpression
OPP
GGPP
CrtB
phytoene
CrtI
lycopene
β-carotene
CrtY
ü Golden Potato (Diretto, 07b)
ü 20-fold Total carotenoids
ü 60 µg/g DW β-carotene
ü 250 g/d -> 50% RDA
Golden rice II:
Wheat
S. phureja:
Potato-CrtB:
β-car: 25ug/gr DW Wheat,β-car:
β-car: 1ug/gr DW
β-car: 10ug/gr DW
maizeTot Car: 24ug/gr DW Tot Car: 36ug/gr DW Tot Car: 37ug/gr DW Tot Car: 4ug/gr DW
Maize-CrtB+CrtI:
β-car: 6ug/gr DW
Tot Car: 47ug/gr DW
Some bonus post-harvest features of “Golden” potatoes
300 d.p.h.
Wildtype
pK-YBI
pP-YBI
β-carotene
Total carotenoids
Tocopherol
Firmness
ABA
Water loss
Sprouting Rate
Scossa et al, (submitted)
Cluster analysis in “golden” tubers
• Lipid biosynthesis
• Phytosterol biosynthesis
•
Scossa et al.,
In preparation
Water
loss
α-carotene
•
Tuber
firmness
•
PSY1
• metabolism
of fatty acids
•
β-carotene
• • Lipoxygenase
Lipoxygenase
•
desaturation of fatty acids
• • Lipoxygenase
carotenoid binding proteins
•
total carotenoids
• Lipoxygenases
Fatty acid and sterol metabolism
Fatty acid
biosynthesis
acp
FA acyl-CoA
synthetase
Acetyl-CoA
Acetyl-acp
Acetoacetyl-acp
FA acyl-CoA
FA acyl-CoA
synthetase
synthetase
Acetoacety-CoA
Stearyl-CoA
HMG-CoA synthase
ω desaturase
Tetradecanoic
Acid
HMG-CoA
HMG-CoA reductase
Hexadecanoic
acid
Octadecanoic
acid
Fatty acid
metabolism
Mevalonate
IPP
DMAPP
GPP
tocopherol
transferase
GGPP
Tocopherols
Squalene
avenasterol
β-sitosterol
PSY
Chlorophylls
Gibberellins
Plastoquinones
Carotenoid
biosynthesis
Phytoene
Lycopene
β-carotene
Oleoyl-CoA
Polyunsatured
fatty acid
LOX
DMAPP
IPP
Phytosterol
biosynthesis
Hexadecanoyl CoA
α-carotene
Xantophylls
End-products
of Fatty acid
metabolism
Polyunsatured
Fatty acid
metabolism
Proposed regulatory network
ω3-desaturase
Fatty acid Acyl-CoA
synthetase
HMG-CoA-reductase
Golden
potato
phytosterols
Lipoxygenase expression
and activity
Polygalacturonases
Xiloglucan hydrolases
Polyunsaturated
fatty acids
Pectinesterase inhibitors
Tuber firmness
Water loss
25
160
140
20
100
shore
Wt
pK- YBI 41
80
pK- YBI 42
pP- YBI 17
Water loss (%)
120
15
Wt
pK-YBI 41
pK-YBI 42
pP-YBI 17
pP-YBI 30
10
pK- YBI 30
60
5
40
20
0
0
0
0
50
100
150
200
Days post-harvest
250
300
350
50
100
150
200
Days post-harvest
250
300
350
Modification of membrane
properties
The “Or” mutation
Wild
type
Or
muta
nt
The “Or” mutation (IV)
Fresh Harvested
Long-term storage
Metabolic engineering of ketocarotenoids
Astaxanthin content > 18%/50% of total
carotenoids in S. tuberosum/S. phureja
(0,6/14ug/gm DW)
Astaxanthin market:
-  200 $/kg
-  200 millions $/year (2015)
Morris et al., 06
Astaxanthin content >70% of total carotenoids
>0.5% on a dry weight basis
Hasunuma et al., 09
…the biofortification you did not expected to obtain…
Carotenoids
(+ Tocopherols)
Romer et al., 02
Polyamines
(+ carotenoids)
Mehta et al., 02
Ethylene(+ Zn and Cu)
Grichko et al., 00
Det1(+ flavonoids)
Davuluri et al., 05
Future perspectives in metabolic engineering field…
Gene pyramiding
1.
Additive effects on the same pathway
2.
Simultaneous manipulation of several pathways
REGULATIVE
GGPP
PUSH
OPP"
4
CrtB
1
15-cis-phytoene
CrtI
SINK
licopene
LCY-e
2
CrtY
BLOCK
α-carotene
(Carotenoid +
Acorbate+
Folate biosynthesis)
β-carotene
(Carotenoid biosynthesis: 1+2+3)
2002
Ferritin + Phytase
Naqvi et al., 09
Conclusions - Plant Metabolic Engineering
-  Several strategies of metabolic engineering
have been carried out
- Enriched biofortified crops are available for most
of vitamins (A, B5, B12, C, E), minerals and flavonoids
What’s is it going on in these metabolically engineered plants?
Scarica

Diretto - Genomica_Funzionale_I_lunedi