La realizzazione di questo volume è stata possibile per gentile concessione di LI-COR Bioscences Bi o s c i e n c e s IMAGING INFRAROSSO L'analisi quantitativa dell'espressione proteica INDICE 1. L’uso dell’Infrarosso per una maggiore accuratezza 1 nell'analisi quantitativa dei Western Blot I vantaggi della fluorescenza nel campo della Vicino Infrarosso (NIR, Near InfraRed) Uso della tecnologia ad infrarossi anche in altre applicazioni Referenze 1. Applicazioni 2. Protocolli Applicativi 7 9 Western Blot Analysis In-Cell Western Assay 4. Pubblicazioni 5. Prodotti per Imaging Infrarosso 23 51 Fluorofori compatibili con Odyssey Guida ai prodotti LI-COR 6. Contattare M-Medical 63 Indice L’INFRAROSSO NELL’ANALISI QUANTITATIVA IMAGING INFRAROSSO L'analisi quantitativa dell'espressione proteica L’USO DELL’INFRAROSSO PER UNA MAGGIORE ACCURATEZZA NELL'ANALISI QUANTITATIVA DEI WESTERN BLOT I sistemi di imaging per Western Blot sono spesso descritti come metodi quantitativi. Questa definizione è vera solamente se lo strumento acquisisce l’immagine del blot rispettando precisi requisiti necessari ad un processo quantitativo. I principali requisiti che si rendono necessari a definire un processo di acquisizione di immagine come processo quantitativo sono: Proporzionalità diretta tra segnale generato e quantità di campione presente sul blot Linearità del rapporto proporzionale In altre parole un sistema si può definire quantitativo quando, al raddoppiare della quantità di un campione su un blot, si osserva un aumento proporzionale del segnale. Storicamente il metodo più diffuso per l’identificazione di presenza di un antigene specifico su un blot è la chemiluminescenza, associata sia alle pellicole fotografiche che ai sistemi basati su camere digitali raffreddate (CCD cameras). La responsabilità della grande diffusione di questo metodo è da attribuire alla maggiore sensibilità che il metodo chimico di luminescenza ha saputo garantire. La chemiluminescenza consiste nella generazione di fotoni di luce per reazione chimica di un substrato, catalizzata da un enzima (coniugato all’anticorpo se facciamo riferimento al Western Blotting), per la determinazione di questo segnale si espone una lastra fotografica o la CCD camera (che elabora l'immagine con un software) al blotting sul quale la reazione viene fatta avvenire. La produzione di questa luce per reazione chimica catalizzata è dinamica, ovvero cambia in funzione del tempo. I campioni con quantità di proteina più abbondante producono maggiore luce in un tempo breve, i campioni con minori quantità di proteina possono produrre quantità di luce paragonabili ai campioni più abbondanti, ma in un tempo più lungo. Le immagini devono essere quindi catturate ad un intervallo di tempo ottimizzato dall’inizio della reazione chimica. Questa dipendenza della quantità di segnale prodotto in funzione del tempo compromette significativamente l’accuratezza del saggio quantitativo. Al contrario della chemiluminescenza, l’emissione di fluorescenza è statica; quando un fluoroforo viene eccitato, l’emissione di fluorescenza ad una lunghezza d’onda superiore rispetto l’eccitazione è costante. 1 Questo permette di considerare la rivelazione di fluorescenza un metodo più accurato e preciso per l’analisi quantitativa di proteine. La fluorescenza può essere sfruttata coniugando molecole fluorescenti agli anticorpi usati nel Western Blotting. In passato questo approccio non ha avuto successo per la scarsa sensibilità garantita dall’uso della fluorescenza dello spettro delle radiazioni elettromagnetiche visibili. La tecnologia ad Infrarossi progettata e sviluppata da LI-COR garantisce elevati livelli di sensibilità, conservando i vantaggi quantitativi offerti dalla Fluorescenza. I vantaggi della fluorescenza nel campo della Vicino Infrarosso (NIR, Near InfraRed) Alta sensibilita` Mean Membrane Signal La fluorescenza nel campo del vicino infrarosso garantisce una sensibilità paragonabile o addirittura superiore rispetto alla chemiluminescenza, tenendo conto che la sensibilità della stessa chemiluminescenza dipende dal tipo di substrato e dal metodo di identificazione usato (film o CCD camera). Alle lunghezze d’onda superiori a 680 nm le superfici delle membrane e le biomolecole esprimono un’autofluorescenza nettamente inferiore rispetto alla fluorescenza emessa nel campo del visibile, generando un background molto basso, che si traduce in una sensibilità molto alta. Le membrane di nitrocellulosa e PDVF scansionate nel vicino infrarosso hanno una autofluorescenza enormemente inferiore rispetto all’autofluorescenza misurata nello spettro visibile, come rappresentato in Figura 1. Ne risulta una forte riduzione del background associato alla membrana. La riduzione del background garantito Infrared vs. Visible Wavelength Membrane Fluorescence dall’analisi della fluorescenza ad infrarosso rende questo tipo 3000000 di approccio paragonabile alla PVDF 2500000 chemiluminescenza in termini Nitrocellulose di sensibilità. 2000000 Fig,. 1 Le membrane di PVDF sono state scansionate su Odyssey Infrared Imagin System (LI-COR Bioscience) con intersità = 5 per entrambe le lunghezze d’onda, 700 e 800 nm. 1500000 1000000 500000 Le stesse sono state scansionate a 532 e 635 nm su GenePix 4100° (Molecular Devices). 0 800nm 700nm 532nm 635nm Wavelength 2 L’USO DELL’INFRAROSSO PER UNA MAGGIORE ACCURATEZZA NELL'ANALISI QUANTITATIVA DEI WESTERN BLOT Ampio spettro di linearita` L’uso della fluorescenza permette di ottenere un intervallo di linearità maggiore in un Western Blot rispetto a quello che la chemiluminescenza può dare (1). Questo importante aspetto è ben rappresentato nella Figura 2: con la chemiluminescenza l’uso di un tempo di esposizione (10 minuti) ottimizzato per raccogliere i dati relativi alle bande in cui la quantità di proteina è molto bassa (1 pg), portano ad avere delle bande non analizzabili per quantità di proteine più abbondanti (1000 pg) (Figura 2E). Allo stesso tempo usando tempi di esposizione (30 secondi) ottimizzati per analizzare le proteine più abbondanti, non si ottengono dati per le proteine meno abbondanti (Figura 2B). Quando si analizzano proteine non bene caratterizzate è possibile che la presenza e la quantità di una determinata proteina possa non essere identificata affatto, solamente a causa dell’uso di un tempo di esposizione non ottimizzato. Con la tecnologia ad Infrarossi, grazie alla emissione statica di fluorescenza e all’ampio intervallo di linearità, è possibile analizzare con una singola scansione concentrazioni molto diverse di proteine presenti sullo stesso blot. Fig. 2 Confronto tra un acquisizione di fluorescenza infrarossa e chemiluminescenza di transferrina alle concentrazioni 1000 pg, 32 pg e 1 pg, su membrana di nitrocellulosa. (A) scansione con Odyssey a 800 nm con intensità = 4. (B) chemiluminescenza su film dopo 0 secondi di esposizione. (C) chemiluminescenza su film dopo 1 minuto di esposizione. (D) chemiluminescenza su film dopo 10 secondi di esposizione. 3 Identificazione simultanea di due proteine I meccanismi di trasduzione del segnale intracellulare sono spesso regolati da degli eventi di fosforilazione proteica. Proteine come recettori tirosin-chinasi possono essere fosforilate in seguito al legame con il loro ligando naturale, innescando così meccanismi plurimi di attivazione metabolica e biochimica. Grazie all’uso dello strumento ODYSSEY, alle sue due sorgenti di eccitazione diverse ed ai due sistemi di rilevazione distinti, rispettivamente a 700 e 800 nm, è possibile misurare la quantità di proteina presente in un campione e contemporaneamente la quantità relativa della stessa proteina nella forma fosforilata, nonostante le due abbiano un peso molecolare pressoché identico (Figura 3). Fig. 3 Anti-EGFR e Anti fosfo-EGRF in cellule A431. La figura rappresenta diluizioni seriali 1:2 di lisati cellulari di A431. Nell’immagine (A) è possibile visualizzare lo shift elettroforetico causato della fosforilazione. Questo metodo di quantificazione simultanea aumenta sensibilmente la accuratezza delle analisi quantitative su immunoblotting; un canale di analisi viene usato per misurare la quantità di una determinata proteina di interesse, e l’altro canale viene utilizzato per normalizzare la quantità di proteine totali presenti per ogni campione. La tecnologia a due canali nel campo del vicino infrarosso rende possibile la quantificazione accurata di proteine presenti in quantità molto basse (3), incrementando la precisione grazie alla possibilità di normalizzare sempre i propri dati, caratteristiche molto complicate da ottenere con altri metodi; la chemiluminescenza ha una alta sensibilità, ma non consente di avere linearità e proporzionalità dei dati quantitativi ed inoltre non permette di normalizzare, ad esempio, la quantità di proteina nella forma fosforilata sulla quantità di proteina totale, per assenza di un secondo canale di acquisizione. La impossibilità di effettuare tali normalizzazioni limita l’accuratezza nella quantificazione, soprattutto per quantità molto basse di proteina. 4 L’USO DELL’INFRAROSSO PER UNA MAGGIORE ACCURATEZZA NELL'ANALISI QUANTITATIVA DEI WESTERN BLOT Semplificazione delle procedure Un ulteriore vantaggio della tecnologia ad infrarossi è la semplificazione delle procedure di Western Blot. Substrati, pellicole e camera oscura non sono più necessari. La fluorescenza infrarossa è stabile per mesi e le membrane possono essere scannerizzate diverse volte e dopo diverso tempo senza perdita di segnale. Uso della tecnologia ad infrarossi anche in altre applicazioni Sfruttando le caratteristiche appena elencate, questo tipo di tecnologia si estende ad un ampio spettro di applicazioni che va oltre il Western Blotting. In-Cell Western Assay Questo metodo sviluppato da LI-COR consiste in un saggio di immunocitofluorecenza per quantificare le proteine direttamente in cellule in coltura. Determinare la quantità di proteine direttamente nel loro contesto cellulare incrementa ulteriormente la precisione della quantificazione. Le proteine vengono determinate nelle cellule fissate direttamente nelle micropiastre nelle quali vengono fatte crescere, incrementando il numero di campioni che possono essere analizzati contemporaneamente rispetto ad un Western Blot, eliminando delle fasi critiche che possono alterare l’accuratezza della quantificazione, tra cui la lisi cellulare, la preparazione delle proteine, l’elettroforesi ed il trasferimento delle proteine sulle membrane. In-Cell Western Assay è già ampliamente diffuso ed è stato impiegato per diversi lavori che vanno dallo studio dei meccanismi di trasduzione del segnale intracellulare allo studio dei recettori a sette domini transmembrana accoppiati alle proteine G, dalla neurologia alla oncologia (3,4,5). Una variazione al metodo In-Cell Western è stata applicata allo studio dell’internalizzazione e riciclaggio del recettore dei cannabinoidi CB1, appartenente alla superfamiglia dei recettori a sette domini transmembrana accoppiati alle proteine G(6). In Vivo Imaging L’applicazione della tecnologia ad Infrarossi ha trovato spazio anche in studi di “Imaging In Vivo” applicato a piccoli animali. La bassa fluorescenza dei tessuti a 800 nm permette di usare sonde marcate con fluorofori emittenti a questa lunghezza d’onda, per ottenere immagini di organi o tumori (7). L’”Imaging In Vivo” è importante per ogni ricerca che comprenda l’uso di modelli animali per lo studio di patologie, come ad esempio la malattia di Alzheimer (8). La tecnologia ad Infrarossi è stata utilizzata con ampio successo anche per altre applicazioni quali lo studio morfologico di sezioni di tessuto (9), Protein Arrays (10), ed EMSA assay (11). 5 Referenze 1. Schultz.Geschwender, A., Zhang, Y., Holt, t., McDermitt, D., And Olive 2. 3. 4. 5. 6. 7. 8. 9. D.M. (2004). Quantitative, two-colours western blot detection with infrared fluorescence. http://www.licor.com/bio/PDF/IRquant.pdf Picariello L, Sala SC, Martineti V, Gozzini A, Aragona P, Tognarini I, Paglierani M, Nesi G, Brandi ML, Tonelli F. (2006). A comparison of methods for the analysis of low abundance proteins in desmoid tumor cells. Anal. Biochem. 2006 Jul 15;354(2):205-12. Chen H, Kovar J, Sissons S, Cox K, Matter W, Chadwell F, Luan P, Vlahos CJ, Schutz-Geschwender A, Olive DM. A cell-based immunocytochemical assay for monitoring kinase signaling pathways and drug efficacy. Anal Biochem. 2005 Mar 1;338(1):136-42. Wong SK. A 384-well cell-based phospho-ERK assay for dopamine D2 and D3 receptors. Anal Biochem. 2004 Oct 15;333(2):265-72. Dickey CA, Eriksen J, Kamal A, Burrows F, Kasibhatla S, Eckman CB, Hutton M, Petrucelli L. Development of a high throughput drug screening assay for the detection of changes in tau levels -- proof of concept with HSP90 inhibitors. Miller, J. Tracking G protein-coupled receptor trafficking using Odyssey imaging. http://www.licor.com/bio/PDF/Miller _ GPCR.pdf Houston, J.P., Ke, S., Wang,W., Li, C., Sevick-Muraca, E.M.. Quality analysis of near-infrared fluorescence and conventional gamma images acquire using dual labelled tumor targeting probe. J.Biomed.Optics. 10:054010-1-11. Skoch J, Bacskai B. The LI-COR Odyssey as a near-infrared imaging platform for animal models of Alzheimer’s Disease. http://www.licor.com/bio/PDF/MassGen.pdf Hawes JJ, Brunzell DH, Wynick D, Zachariou V, Picciotto MR. GalR1, but not GalR2 or GalR3, levels are regulated by galanin signaling in the locus coeruleus through a cyclic AMP-dependent mechanism. J Neurochem. 2005 Jun;93(5):1168-76. 10. Yeretssian G, Lecocq M, Lebon G, Hurst HC, Sakanyan V. Competition on nitrocellulose-immobilized antibody arrays: from bacterial protein binding assay to protein profiling in breast cancer cells. Mol Cell Proteomics. 2005 May;4(5):605-17. 11. Geddie ML, O’Loughlin TL, Woods KK, Matsumura I. Rational design of p53, an intrinsically unstructured protein, for the fabrication of novel molecular sensors. J Biol Chem. 2005 Oct 21;280(42):35641-6. Epub 2005 Aug 23. 6 L’USO DELL’INFRAROSSO PER UNA MAGGIORE ACCURATEZZA NELL'ANALISI QUANTITATIVA DEI WESTERN BLOT APPLICAZIONI IMAGING INFRAROSSO L'analisi quantitativa dell'espressione proteica APPLICAZIONI Analisi dell'espressione proteica nel Vicino Infrarosso. Elenco delle applicazioni: Western Blotting quantitativo In-Cell Western Protein Array FLISA (Fluorescence Linked Immuno-Adsorbant Assay) Analisi Morfologica di sezioni di tessuto Imaging in piccoli animali vivi Odyssey può essere sfruttato anche per l’analisi di acidi nucleici attraverso diverse metodologie ed approcci analitici. In particolare, Odyssey può essere utilizzato per: Raccogliere ed analizzare immagini di Staining degli Acidi Nucleici Totali (analisi di restrizione del DNA ed analisi di prodotti di PCR) Northern e Southern Blotting EMSA Analisi di cDNA AFLP con recupero delle bande di cDNA 7 PROTOCOLLI APPLICATIVI IMAGING INFRAROSSO L'analisi quantitativa dell'espressione proteica PROTOCOLLI APPLICATIVI Odyssey Infrared Imaging System è stato sviluppato in principio da LI-COR per l’analisi quantitiva di proteine in Western Blotting. Abbiamo già descritto in precedenza come Odyssey possa essere impiegato per l’identificazione e la quantizzazione di proteine anche in altri contesti, come per esempio l’analisi in colture cellulari o l’analisi in piccoli animali vivi. Questa sessione della Guida illustra i protocolli applicativi ottimizzati da LI-COR per alcune di queste applicazioni. Ulteriori informazioni sui protocolli applicativi e sulle altre applicazioni possono essere consultate alla pagina: http://biosupport.licor.com 9 Protocollo Western Blot Analysis Reagenti necessari Filtri di nitrocellulose o PVDF “Odyssey Blocking Buffer” Anticorpi primari Anticorpi secondari marcati con IR(dyes) Tween20 Tampone di lavaggio PBS Acqua bidistillata Metanolo per PVDF SDS Altri tamponi di bloccaggio se necessari Lista dei Fluorofori IR(dyes) piu` appropriati per l uso su Odyssey FLUOROFORO SENSIBILITÀ CANALE ODYSSEY IRDye 800CW +++ 800 IRDye 800 +++ 800 IRDye 680 +++ 700 IRDye 700DX ++ 700 AlexaFluor 680 +++ 700 AlexaFluor 700 ++ 700 AlexaFluor 647 + 700 ++ 700 + 700 Cy5.5 Cy5 Metodo Sia le membrane in nitrocellulosa che le membrane in PVDF possono essere utilizzate per il blotting di proteine, ma la nitrocellulosa è maggiormente raccomandata se si richiedono performance di sensibilità maggiori, grazie alla sua minore autofluorescenza. La procedura di blotting per Western su Odyssey è la procedura standard e le membrane devono essere maneggiate solo ai bordi con pinzette pulite. 11 Prima del trasferimento delle proteine su membrana procedere con i seguenti passaggi: 1. Bagnare la membrana per diversi minuti in PBS. Se usate PVDF pre- asciugato, lavatelo ancora con 100% metanolo e sciacquatelo due volte con acqua bidistillata prima di procedere all’equilibratura in PBS. NOTA: L’inchiostro di molti tipi di penna può fluorescere su Odyssey. Usare una matita o la penna accessoria di Odyssey per evitare questo inconveniente. 2. Effettuare il blocking dei siti aspecifici di adsorbimento della membrana mediante incubazione in blocking buffer per 1 ora. La membrana deve essere coperta interamente dal buffer. NOTE: Le membrane possono essere bloccate overnight a 4°C. Non usare Tween-20 durante il blocking, questo potrebbe provocare un alto background se usato in questa fase. Odyssey Blocking Buffer è stato ottimizzato per avere le migliori performance di blocking. Latte in polvere o caseina sciolti in PBS possono essere usati sia per il blocking che per le incubazioni degli anticorpi, facendo attenzione però ad usare il latte su PVDF perché potrebbe causare un alto background. Nel caso si preferisca usare la caseina, soluzioni al 0,1 o 0,2 % in PBS sono preferite. Non è richiesta caseina a purezza Hammersten. Blocking a base di latte possono interferire con la detection del segnale se si usano anticorpi anti-goat. Odyssey blocking buffer può essere diluito 1:1 in PBS. Odyssey blocking buffer può essere recuperato e usato diverse volte. Soluzioni di blocking contenenti BSA possono essere impiegate, ma in alcuni casi possono dare livelli di background maggiori. Blocking buffer contenenti BSA sono non generalmente consigliati, ma possono essere usati quando l’anticorpo primario richiede l’uso di BSA come bloccante. 3. Diluire l’anticorpo primario in Odyssey Blocking Buffer. La diluizione otti- male dipende dal tipo di anticorpo primario e deve essere stabilita empiricamente. Una diluizione di partenza suggerita è compresa nel range compreso tra 1:1.000 e 1:5.000. Per ridurre il background aggiungere 0,1-0,2 % di Tween-20 nell’anticorpo primario diluito. La concentrazione ottimale di Tween-20 dipende dall’anticorpo. NOTA: L’analisi di due colori contemporaneamente richiede che gli anticorpi primari siano di due specie diverse. 4. Incubare la membrana (dopo il trasferimento delle proteine dal gel) con l’anticorpo primario per almeno 60 minuti a temperatura ambiente e sotto costante e blanda agitazione (il tempo di incubazione ottimale dipende dal tipo di anticorpo primario). Usare abbastanza soluzione di anticorpo primario per ricoprire completamente la membrana. 12 PROTOCOLLI APPLICATIVI 5. Lavare la membrana 4 volte per 5 minuti ciascuno a temperatura am6. biente in PBS +0,1% Tween-20, sempre sotto costante agitazione, usando una quantità generosa di tampone. Diluire l’anticorpo secondario marcato con il fluoroforo in Odyssey Blocking Buffer. Evitare lunghe esposizioni della provetta contenente gli anticorpi alla luce diretta. La diluizione raccomandata è di 1:15.000 (o un range tra 1:5.000 e 1:25.000). Aggiungere Tween-20 alla diluizione dell’anticorpo secondario se si è fatto per l’anticorpo primario. NOTE: Per l’identificazione di piccole quantità di proteine, provare ad aumentare la concentrazione di secondario a 1:5.000 – 1:10.000. La diluizione dell’anticorpo secondario può essere recuperata dopo l’incubazione e riutilizzata per altri blotting. Se si desidera riutilizzare la diluizione di anticorpo, conservarla al buio a 4°C. Per avere le migliori performance in termini di sensibilità, usare sempre diluizioni fresche appena preparate. L’aggiunta di 0,01% - 0,02% di SDS alla diluizione di anticorpo secondario può ridurre sensibilmente il background della membrana, in particolare di PVDF. Tuttavia NON aggiungere SDS durante il Blocking o alla diluizione di anticorpo primario. 6. Incubare il blotting nella diluizione di anticorpo secondario per 30-60 7. 8. minuti a temperatura ambiente sotto blanda agitazione. Proteggere dalla luce. Lavare la membrana 4 volte per 5 minuti ciascuno a temperatura ambiente in PBS +0,1% Tween-20, sempre sotto costante agitazione, usando una quantità generosa di tampone e proteggendo dalla luce. Riprendere le membrane con PBS per rimuovere completamente Tween-20. Le membrane sono così pronte per essere analizzate con Odyssey. NOTE: Proteggere la membrana dalla luce fino al momento della scansione. Mantenere la membrana umida se si ha in programma di effettuare uno stripping. È possibile far asciugare le membrane prima della lettura con Odyssey. La forza del segnale può aumentare sulla membrana asciutta. Il segnale di fluorescenza sulla membrana dura per diversi mesi ed oltre se conservata al buio. Le membrane possono essere conservate asciutte a temperatura ambiente o in PBS a 4°C. Se il segnale ottenuto dalla scansione è troppo alto o troppo debole, riscannerizzare la membrana con intensità di scansione più basse o più alte rispettivamente. Marcatori di peso molecolare Marcatori di peso molecolare colorati in blu sono visibili su Odyssey a 700 nm. Caricare 1/3 o 1/5 della quantità normalmente impiegata nei western blot. Quantità troppo alte possono dare segnali così forti da interferire con i segnali dei propri campioni. Se vengono utilizzati marker multicolore, alcune bande potrebbero non essere visualizzabili su Odyssey. 13 Consigli per l'ottimizzazione Non esiste una soluzione di blocking universale ottimale per ogni coppia antigene-anticorpo. Alcuni anticorpi primari possono dare segnali molto deboli con alte aspecificità o migliorare le loro performance a seconda del sistema di blocking utilizzato. Nel caso si dovesse incontrare difficoltà nell’identificazione specifica di una banda, il cambiamento della soluzione di blocking può aiutare sensibilmente le performance. Se un anticorpo primario funziona molto bene in chemiluminescenza con un sistema di blocking, usare questo sistema anche per le analisi su Odyssey. Per evitare la presenza di picchi di background sul blotting, usare grandi quantità di acqua bidistillata per lavare ogni vaschetta di incubazione. Non usare vaschette già impiegate per Coomassie Staining. Prima di effettuare una scansione, e al termine di ogni scansione, lavare accuratamente la superficie di scansione di Odyssey. Non avvolgere le membrane nella plastica per le scansioni. Linee guida per la detection contemporanea di due colori Odyssey permette di analizzare due diversi antigeni contemporaneamente sullo stesso blotting usando due anticorpi secondari marcati con due diversi fluorofori (700 e 800 nm). Questo tipo di analisi richiede una scelta molto accurata degli anticorpi primari e secondari. A seguire vengono elencati alcuni pratici consigli per ottimizzare questo tipo di analisi: I due anticorpi primari devono essere stati prodotti in due specie diverse, quindi possono essere riconosciuti da due anticorpi secondari diversi, marcato ciascuno con un fluoroforo diverso, rispettivamente per 700 e 800 nm. Prima di eseguire un esperimento di analisi dei due antigeni in contemporanea, eseguire l’analisi di ciascun antigene separatamente, così da ottimizzare le condizioni d’uso degli anticorpi e ridurre al massimo gli eventi di cross-reattività tra gli anticorpi primari e secondari. Per ridurre al massimo la cross-reattività evitare di usare secondari anti-mouse e anti-rat contemporaneamente. Se possibile, usare anticorpi secondari prodotti nella stessa specie, in modo da evitare che si riconoscano l’uno con l’altro. 14 PROTOCOLLI APPLICATIVI Ottimizzazione di un Western Blot Quando si mette a punto un protocollo di Western Blot usando una nuova coppia di anticorpi primario e secondario, il punto più critico è quello dell’ottimizzazione delle concentrazioni degli anticorpi, in modo da avere i migliori risultati in termini di specificità e di sensibilità. I parametri critici sui quali è possibile intervenire sono: Concentrazione dell’anticorpo primario La concentrazione ottimale dipende molto dal tipo di anticorpo primario e dalla quantità di antigene che si identificherà nel campione. Le quantità suggerite sono 1:500, 1:1.500, 1:5.000 e 1:10.000, oppure può convenire partire dalla stessa concentrazione usata con successo in chemiluminescenza. Concentrazione dell’anticorpo secondario Anche la concentrazione di anticorpo secondario può essere determinata in modo empirico. I valori di concentrazione consigliati sono 1:5.000, 1:10.000 e 1:20.000. In ogni caso la quantità di anticorpo secondario da utilizzare dipende molto dalla quantità di antigene da rilevare. Maggiore è la quantità di antigene presente minore sarà la quantità di anticorpo secondario da utilizzare. Concentrazione dei detergenti nelle diluizioni degli anticorpi L’aggiunta di detergenti alle diluizioni di anticorpi permette di migliorare sensibilmente i valori di background sul blot. La concentrazione ottimale del detergente dipende da anticorpi, tipo di membrana e bloccante usati. È importante ricordare che il legame tra antigene e anticorpo primario non è particolarmente forte e un uso sbagliato dei detergenti potrebbe impedire il corretto riconoscimento anticorpale e ridurre la sensibilità del saggio. Tween-20 Non usare questo detergente durante le fasi di blocking, potrebbe provocare un alto background. Aggiungere Tween-20 alle diluizioni di anticorpi primari e secondari. Usare concentrazioni finali di 0,1%- 0,.2% con membrane di nitrocellulosa e 0,1% su PVDF. Anche le soluzioni di lavaggio possono contenere lo 0,1% di Tween-20. SDS Aggiungere 0,01–0,02 % di SDS alla diluizione dell’anticorpo secondario può aiutare sensibilmente a ridurre il background e ridurre 15 l’aspecificità dell’anticorpo. SDS deve essere usato sempre a basse concentrazioni, per il suo carattere tensioattivo può negativamente intervenire sul riconoscimento antigene-anticorpo. Non aggiungere mai SDS nelle fasi di blocking o alla diluizione dell’anticorpo primario. Non aggiungere SDS alle soluzioni di lavaggio. SDS aiuta a ridurre il background occasionalmente dovuto ai blocking con BSA. Protocollo Acquisizione ed analisi di gel di proteine colorati con Blue-Coomassie Odyssey può essere usato anche per gel documentazione ed analisi di gel di proteine colorati con Blue-Coomassie. I coloranti a base di Blue-Coomassie, sia a base acquosa che a base alcolica, emettono fluorescenza chiara a 700 nm e fluorescenza più labile a 800 nm. La visualizzazione effettuata con Odyssey è centinaia di volte più sensibile della visualizzazione ad occhio nudo, proprio per l’uso delle lunghezze d’onda infrarosse e non visibili percepite dall’occhio umano. I coloranti a base acquosa permetto generalmente di ottenere livelli di sensibilità migliori, performance ulteriormente migliorabili con procedure di “destaining” in acqua overnight. Protocollo In-Cell Western Assay Nella descrizione del metodo verrà usato come esempio l’espressione di fosfoEGFR e fosfo-ERK in cellule A432, in risposta a stimolo con Epidermal Growth Factor. Reagenti Odyssey necessari Anticorpo secondario Anti-Mouse marcato con IRDye™ 800CW Anticorpo secondario Anti-Rabbit marcato con IRDye™ 680CW Odyssey blocking buffer Altri reagenti 1X PBS Reagenti per colture cellulari (siero, DMEM, tripsina e PBS) 20% Tween®-20 Epidermal Growth Factor 37% formaldeide 16 PROTOCOLLI APPLICATIVI 10% Triton®X-100 Micropiastre 96 pozzetti per colture cellulari Anticorpi primari per gli antigeni in esame Semina, stimolazione e determinazione della risposta su cellule A431 1. Coltivare le A431 in fiasche T75 in DMEM e 10% di FCS usando pro2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. cedure standard fino al raggiungimento del 80-90 % della confluenza (circa 1,5x107 cellule). Rimuovere il terreno di crescita, lavare le cellule con PBS sterile e tripsinizzare le cellule. Raccolgliere le cellule, neutralizzare la tripsina e pellettare per centrifugazione. Rimuovere il surnatante sopra il pellet di cellule e risospendere le cellule in terreno. Diluire le cellule fino a 20 ml usando terreno completo e contare le cellule. Diluire le cellule con terreno completo fino a 200.000 cellule/ml. Miscelare delicatamente. Dispensare 200 μl per ogni pozzetto della piastra da 96 (40.000 cellule per pozzetto). Monitorare la crescita fino al raggiungimento della confluenza (tre giorni) Riscaldare DMEM senza siero a 37°C. Rimuovere il terreno da ogni pozzetto mediante aspirazione. Incubare le cellule per 4-16 ore con 200 μl di DMEM preriscaldato. Preparare in un’altra piastra da 96 pozzetti le diluizioni di EGF in 100 μl di DMEM, come da Figura 1. Rimuovere il terreno povero dai pozzetti con le cellule e sostituirlo con le rispettive diluizioni di EGF in DMEM. Incubare a 37°C per 7,5 minuti. Preparare una nuova soluzione di fissaggio: 1 x PBS 37% formaldeide Totale 45 ml 5 ml 50 ml 17 17. Rimuovere il terreno contenente EGF e fissare le cellule immediatamen- 18. te con 150 μl della soluzione di fissaggio, incubare a temperatura ambiente per 20 minuti senza agitazione. La soluzione deve essere pipettata sulle pareti del pozzetto, molto lentamente in modo da impedire il distacco di cellule. Preparare la soluzione di lavaggio con Triton: 1 x PBS 10% Triton x100 Totale 495 ml 5 ml 500 ml 19. Rimuovere la soluzione di fissaggio. 20. Lavare 4 volte con 200 μl di soluzione di lavaggio per 5 minuti in modo da permettere la permeabilizzazione delle cellule. NOTE: Lavare sotto agiitazione, non lasciare mai a secco le cellule durante i lavaggi. 21. Aggiungere ad ogni pozzetto 150 μl di LI-COR® blocking Buffer ed incubare per 1,5 ore a temperatura ambiente sotto moderata agitazione. NOTE: Odyssey Blocking Buffer è stato ottimizzato per avere le migliori performance di blocking. Latte in polvere o caseina sciolti in PBS possono essere usati sia per il blocking che per le incubazioni degli anticorpi, facendo attenzione però ad usare il latte su PVDF perché potrebbe causare un alto background. Nel caso si preferisca usare la caseina, soluzioni al 0.1 o 0.2 % in PBS sono preferite. Non è richiesta caseina a purezza Hammersten. Blocking a base di latte possono interferire con la detection del segnale se si usano anticorpi anti-goat. Soluzioni di blocking contenenti BSA possono essere impiegate, ma in alcuni casi possono dare livelli di background maggiori. Blocking buffer contenenti BSA non sono generalmente consigliati, ma possono essere usati quando l’anticorpo primario richiede l’uso di BSA come bloccante. 22. Diluire gli anticorpi in LI-COR blocking buffer come da protocollo suggerito dal fornitore e seguendo queste combinazioni: Fosfo EGFR tyr 1045 (rabbit) e total EGFR (rabbit) Fosfo EGFR tyr 1045 (rabbit) e total ERK2 (rabbit) Fosfo ERK (mouse) e total ERK1 (rabbit) Fosfo EGFR tyr 1045 (rabbit) e total ERK (mouse) 23. Aggiungere 50 μl di LI-COR Odyssey Blocking Buffer ad una serie di pozzetti che serviranno da controllo di background dovuto all’anticorpo secondario marcato (Figura 1). 18 PROTOCOLLI APPLICATIVI 24. Miscelare bene le soluzioni di anticorpo prima di pipettarle nei pozzetti. 25. Rimuovere il blocking buffer dai pozzetti (esclusi i controlli di back- 26. 27. ground), per aspirazione aggiungere 50 μl della combinazione di anticorpi primari desiderata nei pozzetti rimanenti. Tutto il fondo del pozzetto deve essere ricoperto. Incubare con l’anticorpo primario per 2 ore a temperatura ambiente, sotto agitazione, oppure over night a 4°C senza agitazione. Preparare una soluzione di lavaggio con Tween-20: 1 x PBS 20% Tween-20 Totale 995 ml 5 ml 1000 ml 28. Lavare la piastra con la soluzione di lavaggio contenente Tween-20 29. 30. aggiungendo gentilmente il tampone sulla parete del pozzetto. Usare 200-500 μl per ogni lavaggio, da effettuare sotto gentile agitazione per 5 minuti. Ripetere il lavaggio per 4 volte. Calcolare le quantità di anticorpi secondari per completare la piastra, e diluirli in Odyssey Blocking Buffer. Per ridurre il background aggiungere 0,2 % di Tween-20. Le diluizioni raccomandate sono tra 1:200 e 1:2000. Goat Anti-Rabbit IRDye™680 (1:200) Goat Anti-Mouse IRDye™800 (1:800) 31. Miscelare le due soluzioni, aggiungere 50 μl ad ogni pozzetto ed incu32. 33. 34. bare 60 minuti a temperatura ambiente sotto agitazione. Proteggere la piastra dalla luce durante l’incubazione. Lavare la piastra con la soluzione di lavaggio contenente Tween-20, usando gli accorgimenti dello step di lavaggio precedente. Lavare 4 volte. Rimuovere la soluzione di lavaggio, tamponando la piastra su un foglio di carta assorbente sino ad eliminare completamente qualsiasi residuo di tampone. Effettuare scansioni su Odyssey a 700 nm e 800 nm. 19 Risultati attesi Misurazione e quantizzazione di Fosfo-EGFR normalizzato verso EGFR totale. nm Background Resting 0.2 0.4 0.8 1.6 3.2 6.25 12.5 25 50 100 50 100 Two-color display of both 700 and 800 nm images 700 nm image (phosphorylated ERK) 800 nm image (total ERK) Fosfo-EGFR normalizzato verso EGFR totale A 800 nm è stato acquisito EGFR totale (come normalizzatore), a 700 nm invece è stato acquisito Curva dose-risposta di cellule A431 al Epithelial Growth Factor EGFR fosforilato. Le cellule usate (EGF) misurato con un anticorpo come controllo di background specifico per il recettore all’EGF sono state incubate con fosforilato (EGFR, tyr1045). anticorpi secondari, ma non L’immagine rappresenta i risultati con anticorpi primari. Il grafico su una piastra da 96 pozzetti rappresenta i dati quantitativi scansionata a 700 nm 800 nm. normalizzati, espressi in valore %. Misurazione e quantizzazione di Fosfo-EGFR normalizzato verso ERK totale. nm Background Resting 0.2 Two-color display of both 700 and 800 nm images 700 nm image (phosphorylated EGFR) 800 nm image (total ERK.) 20 PROTOCOLLI APPLICATIVI 0.4 0.8 1.6 3.2 6.25 12.5 25 Fosfo-EGFR normalizzato verso ERK totale A 800 nm è stato acquisito EKR totale (come normalizzatore), a 700 nm invece è stato acquisito Curva dose-risposta di cellule A431 al Epithelial Growth Factor EGFR fosforilato. Le cellule usate (EGF) misurato con un anticorpo come controllo di background specifico per il recettore all’EGF sono state incubate con fosforilato (EGFR, tyr1045). anticorpi secondari, ma non L’immagine rappresenta i risultati con anticorpi primari. Il grafico su una piastra da 96 pozzetti rappresenta i dati quantitativi scansionata a 700 nm 800 nm. normalizzati, espressi in valore %. Misurazione e quantizzazione di Fosfo-ERK normalizzato verso ERK totale. nm Background Resting 0.2 0.4 0.8 1.6 3.2 6.25 12.5 25 50 100 Two-color display of both 700 and 800 nm images 700 nm image (phosphorylated ERK) 800 nm image (total ERK.) Fosfo-ERK normalizzato verso ERK totale A 800 nm è stato acquisito ERK totale (come normalizzatore), a 700 nm invece è stato acquisito Curva dose-risposta di cellule A431 al Epithelial Growth Factor EKR fosforilato. Le cellule usate (EGF) misurato con un anticorpo come controllo di background specifico per ERK fosforilato sono state incubate con (tyr204). L’immagine rappresenta anticorpi secondari, ma non i risultati su una piastra da 96 con anticorpi primari. Il grafico pozzetti scansionata a 700 nm rappresenta i dati quantitativi 800 nm. normalizzati, espressi in valore %. 21 Misurazione e quantizzazione di Fosfo-ERK e Fosfo-EGFR. nm Background Resting 0.2 0.4 0.8 1.6 3.2 6.25 12.5 25 Two-color display of both 700 and 800 nm images 700 nm image (phosphorylated ERK) 800 nm image (total ERK.) Fosfo-ERK e Fosfo-EGFR Curva dose-risposta di cellule A431 al Epithelial Growth Factor (EGF) con misurazione specifica di fosfo-EGFR (tyr1045) e fosfoERK (tyr204) simultanea. A 700 nm è stato acquisito il fosfo-EGFR, mentre a 800 nm è stato acquisito fosfo-ERK. Le cellule usate come controllo di background sono state incubate con anticorpi secondari, ma non con anticorpi primari. 22 PROTOCOLLI APPLICATIVI 50 100 PUBBLICAZIONI IMAGING INFRAROSSO L'analisi quantitativa dell'espressione proteica Near-Infrared Technology & Optical Agents for Molecular Imaging D. Michael Olive, Ph.D. – Molecular Biology Department – LI-COR Biosciences Abstract Optical imaging is a rapidly developing biomedical technology that enables the examination of cellular processes in the context of a living animal. While several optical imaging modalities employing fluorescent proteins or bioluminescent reporter systems have shown utility in life science research, targeted ligands labeled with near infrared emitting fluorochromes have the additional potential to translate to human clinical use. Described here is a brief overview of the optical imaging technologies currently in use with a particular focus on the use of ligand-targeted near infrared fluorochromes as imaging agents. Introduction Optical Imaging consists of several technologies which can be used to noninvasively interrogate an animal model for the progression of a disease, determine the effects of drug candidates on the target pathology, assess the pharmacokinetic behavior of a drug candidate, compare candidate drugs for target binding affinity, and develop biomarkers indicative of disease and treatment outcomes. Optical Imaging is comprised of three approaches which offer the potential for high sensitivity and good spatial resolution. Bioluminescent imaging is an indirect technique based on the expression of firefly luciferase from recombinant plasmids inserted into hybrid cell lines that can be transplanted into animals. In some cases the gene is constitutively expressed and the introduction of luciferin, either injected or inhaled, allows the production of light in the target cells. In a second case, the luciferase gene can be activated by chemical induction of the promoter controlling the gene’s expression with the subsequent generation of light upon contact with luciferin. This approach requires the creation of modified cells, and analysis is limited to cells expressing the luciferase gene. Thus it is not translatable to clinical practice. In a second approach, cells engineered to express fluorescent proteins can be used to mark tumors. The recombinant tumor cells can be implanted into animals and, following excitation with an appropriate light source, the fluorescence from the expressed fluorescent proteins can be detected by means of a CCD camera. The excitation and emission wavelengths of commercially available fluorescent proteins are generally in the visible region of the spectrum. As discussed in this publication, this region can be compromised by tissue autofluorescence and non-specific background. Also, this method requires transgenic cell lines and is thus limited in its ability to detect a variety of potential targets. Similar to bioluminescent imaging, this method cannot translate to the clinic. A more flexible and direct approach employs targeted imaging agents consisting of antibodies, receptor binding ligands, small molecules, or peptides labeled with fluorochromes. The fluorescent labels can be visualized by excitation with an appropriate light source and the emitted photons captured via a CCD camera or other optical detector. For fluorescent imaging, there are generally three parameters which are used to characterize the interaction of photons with tissues. The three processes are light 23 absorption, light scattering, and fluorescent emission. A fundamental consideration in optical imaging is maximizing the depth of tissue penetration. Absorption and scattering of light is largely a function of the wavelength of the excitation source1. In general, light absorption and scattering decreases with increasing wavelength2. Below 700 nm, tissue absorption results in small penetration depths of only a few millimeters1. Thus in the visible region of the spectrum, only superficial assessment of tissue features is possible. The light absorption is due to oxyand deoxyhemoglobin, melanin, lipid, and other compounds found in living tissue2,3,4. These compounds cause tissue autofluorescence throughout the visible spectral range up to approximately 700 nm5,6. Because the absorption coefficient of tissue is considerably smaller in the near infrared region (700 nm-900 nm), light can penetrate more deeply into the tissues to depths of several centimeters3,7,8. A key to enabling optical imaging has been the development of suitable NIR fluorochromes with high molar extinction coefficients, good quantum yields and low non-specific tissue binding. There are several commercially available candidate fluorochromes which can be used for optical imaging, including IRDye® 800CW, IRDye 680, IRDye 700DX, Cy®5.5, and Alexa Fluor® 750. Quantum dots have been used; however, their size often precludes efficient clearance from the circulatory and renal systems and there are questions about their long-term toxicity4. Figure 1. Molar extinction coefficient characteristics of water, hemoglobin and oxygenated hemoglobin. Emission wavelengths are shown for Cy5.5 and IRDye 800CW. 24 PUBBLICAZIONI A number of studies have been published using NIR dyes. Two of the dyes commonly used for optical imaging are Cy5.5 and IRDye 800CW. Cy5.5 has been used in the past primarily due to the lack of other candidate dyes suitable for imaging. Cy5.5 has excitation/emission maxima at 675 nm/694 nm, making it a borderline candidate labeling agent1,3. In contrast, a recently developed fluorochrome, IRDye 800CW, has its excitation/emission maxima at 785 nm/810 nm precisely centered in the region known to give optimal signal to background in optical imaging (see Figure 1)1,8. In a cell based assay system using IRDye 800CW labeled secondary antibodies to assess cell signaling pathways, IRDye 800CW was shown to yield superior signal-to-background ratios and enabled quantification of low levels of protein phosphorylation9. In contrast, the signal to background using Cy5.5-labeled secondary antibodies was too low to allow its use in the assay (data not shown). Further experiments showed that Cy5.5 exhibited a high level of nonspecific binding to cells (data not shown). This observation, coupled to the fact that Cy5.5 is outside the optimal NIR region, makes it less suitable for imaging studies requiring high signal to background. The performance of IRDye 800CW has been compared to radiochemical detection in animal studies. Using gamma scintigraphy and NIR imaging, Houston et al. compared the ability of a cyclopentapeptide duallabeled with111 indium and IRDye 800CW to image ανβ3-integrin positive melanoma xenografts10. The tumor regions were clearly delineated by optical imaging of the IRDye 800CW signal. In contrast, the tumor boundaries could not be identified by scintigraphy due to high noise levels. Figure 2. Tumor imaging with IRDye 800CW-EGF. A SCID mouse bearing an orthotopic prostate tumor was injected with 1 nmole IRDye 800CW-EGF and imaged on an Odyssey Infrared Imaging System. We have successfully used IRDye 800CW conjugated to epidermal growth factor (IRDye 800CW-EGF) as an optical agent for imaging tumor progression11. Figure 2 shows an example of a prostate tumor-bearing SCID mouse injected with IRDye 800CW-labeled EGF. The IRDye 800CW-EGF showed good sensitivity with very low background from autofluorescence or non-specific binding. For animal imaging, targeted NIRlabeled ligands can be used to visualize virtually any pathology without the need for engineered cell lines as required for imaging by bioluminescence or fluorescent proteins. In addition, NIR optical imaging has a further advantage in that it has the potential to translate into the clinic. Several NIR imaging instruments for use on humans are currently under development. De Grand and Frangioni have described a prototype NIR optical imaging system for use with NIR fluorochrome-labeled optical agents in non-invasive intraoperative imaging procedures12. The authors envision the system being eventually used for image-guided cancer resection with real-time assessment of surgical margins, sentinel lymph node mapping, 25 and intraoperative mapping of normal and tumor vasculature. Furthermore, Gurfinkel et al., Hawrysz and Sevick-Muraca, and Chen et al., have described NIR-based imaging instruments directed at the early detection of breast cancer 3,13,14. These instruments potentially could be used for guiding fine needle biopsies and sentinel lymph node monitoring during surgery. References There are several biological barriers that should be taken into consideration when using NIR dye-labeled optical probes. The probe must be able to reach its target in sufficient concentration and with sufficient binding affinity that it can be imaged. In this respect, optical probes are similar to a pharmaceutical agent in that considerations of absorption, distribution, metabolism, excretion, and toxicity need to be evaluated. 4. Frangioni, J. V. 2003. Curr. Opinion. Chem. Biol. 7:626-634. In addition to non-specific binding, trapping, rapid excretion, and metabolic effects, there are delivery barriers to be overcome. For example, the size and characteristics of the dye labeled ligand may prevent it from crossing the bloodbrain barrier. However, the combination of an NIR labeling agent such as IRDye 800CW and NIR-based imaging instruments used for both small animal and clinical imaging has the potential to provide both good spatial resolution and sensitive detection of targeted molecules. In the future, NIR imaging technology should augment current imaging technologies and provide a means of characterizing disease processes and monitoring therapeutic efficacy, enabling earlier detection through the identification of molecular biomarkers in both the research laboratory and the clinic. 26 PUBBLICAZIONI 1. Licha, K. 2002. Topics Curr. Chem. 222:129. 2. Tromberg, B. J., Shah, N., Lanning, R., Cerussi, A., Espinoza, J., Pham, J., Svaasand, L., and Butler, J. 2000. Neoplasia 2:26-40. 3. Hawryz, D. J. and Sevick-Muraca E. M. 2000. Neoplasia 2:388-417. 5. Andersson-Engels, S. and Wilson, B. C. 1992. J. Cell Pharmacol. 3:48-60. 6. Wagnières, G. A., Star, W .M., and Wilson, B. C. 1998. Photochem. Photobiol. 68:603632. 7. Grosenick, D., Wabnitz, H., Rinneberg, H., Moestra, K. T., and Schlag, P. M. 1999. Appl. Optics. 38:2927-2038. 8. Shah, K. and Weissleder. 2005. J. Amer. Soc. Exp. Neurother. 2:215-225. 9. Chen, H., Kovar, J., Sissons, S., Cox, K., Matter, W., Chadwell, F., Luan, P., Vlahos, C., Schutz-Geschwender, A., and Olive, D. M. 2005. Anal. Biochem. 338:136-142. 10. Houston, J. P., Ke, S. Wang, W., Li, C., and Sevick-Muraca, E. M. 2005. J. Biomed. Optics. 10:054010-1-11. 11. Kovar, J. L., Johnson, M. A., Volcheck, W. M., Chen, Jiyan, and Simpson, M. A. 2006. The American Journal of Pathology. 169:14151426. 12. De Grand, A. M. and Frangioni, J. V. 2003. Technol. Cancer Res Treatment. 2:1-10. 13. Gurfinkel, M., Ke, S., Wen, X., Li, C., SevickMuraca, E. M. 2003. Disease Markers. 19:107-121. 14. Chen, Y., Intes, X., and Chance, B. 2005. Biomed. Instru. Technol. 39:75-85. A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models Joy L. Kovar1, Melanie A. Simpson2, Amy Schutz-Geschwender1, and D. Michael Olive1* 1LI-COR Biosciences 2Department of Biochemistry, University of Nebraska Available online at www.sciencedirect.com Originally published in Analytical Biochemistry, Vol. 367, #1, August 1, 2007, Pages 1-12. Abstract Optical imaging is a rapidly developing field of research aimed at non-invasively interrogating animals for disease progression, determining the effects of a drug on a particular pathology, assessing the pharmacokinetic behavior of a drug, or identifying molecular biomarkers of disease. One of the key components of molecular imaging is the development of specific, targeted imaging contrast agents to assess these biological processes. The development of robust fluorochrome-labeled optical agents is a process that is often underestimated in terms of its complexity. Although many studies describe the use of these agents, guidelines for their development and testing are not readily available. This review outlines some of the general principles that are important when developing and using fluorochrome-labeled optical contrast agents for oncology investigations in animals. *Corresponding author: D. Michael Olive Vice President, Science and Technology LI-COR Biosciences 4647 Superior Street Lincoln, NE 68504 Tel: 402-467-0762 Fax: 402-467-0819 Email: [email protected] 27 Page 2 – A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models In the last decade, our increased understanding of the molecular basis of cancer has led to the development of novel targeted strategies for specific inhibition of cancer signaling pathways that control growth, proliferation, apoptosis, and angiogenesis. Several monoclonal antibody-based therapeutics and small molecule drugs have received clearance for use as human therapeutics [1]. However, among these successes are many candidate drugs that have failed in clinical trials despite promising pre-clinical results [2]. The development of targeted therapeutics is expensive and time consuming. In their Critical Path Initiative, the United States Food and Drug Administration emphasized the need for more effective tools to facilitate the rapid development of improved cancer therapeutics. One such tool is the use of targeted molecular optical imaging probes or contrast agents to visualize the underlying processes in cancer. Optical imaging, also known as molecular imaging, is a rapidly developing field of research aimed at non-invasively interrogating animals for disease progression, evaluating the effects of a drug, assessing the pharmacokinetic behavior of a drug, or identifying molecular biomarkers of disease. A prerequisite of molecular imaging is the development of specific, targeted imaging contrast agents to assess these biological processes. Several optical aids have shown great utility in animal studies, including bioluminescence, fluorescent proteins, and fluorochrome-labeled agents. However, only the latter have the advantage of being potentially relevant to human clinical applications. The complexity of developing robust fluorochrome-labeled optical agents is often underestimated. Many studies describe the use of these agents, but guidelines for their development and testing are not readily available. The purpose of this review is to outline some of the considerations for developing and using fluorochrome-labeled optical contrast agents in animals. For simplicity, we have focused on the use of organic fluorochromes as labeling agents. These types of probes are generally the most straightforward to develop and have the greatest potential for translation to human clinical use. Nanoparticles such as quantum dots, while useful for some animal studies, are hampered by clearance issues and toxicity and will not be specifically discussed. However, the principles described here are generally applicable to any fluorescent optical imaging agent. Principles of fluorescence imaging The use of fluorochrome-labeled optical agents such as labeled antibodies, receptor-binding ligands, small molecules, peptides, and activatable probes offers a flexible and direct imaging methodology. The fluorescent labels can be visualized by excitation with an appropriate light source and capture of the emitted photons with a CCD camera or other optical detector. Several commercially available imaging systems enable visualization of these probes in mice. These include systems from LI-COR Biosciences (www.licor.com), CRI (www.cri-inc.com), Kodak (www.kodak.com) and Xenogen (www.xenogen.com). 28 PUBBLICAZIONI In fluorescent imaging, there are generally three parameters used to characterize the interaction of photons with tissues: light absorption, light scattering, and fluorescent emission. One of the most important considerations in optical imaging is maximizing the depth of tissue penetration. Absorption and scattering of light are largely a function of the wavelength of the excitation source [3]. Light is absorbed by endogenous chromophores found in living tissue, including hemoglobin, melanin, and lipid [3-7]. In general, light absorption and scattering decrease with increasing wavelength. Below ~700 nm, these effects result in shallow penetration depths of only a few millimeters [3]. Thus, in the visible region of the spectrum, only superficial assessment of tissue features is possible. Above 900 nm, water absorption can interfere with signal-to-background ratio. Because the absorption coefficient of tissue is considerably lower in the near infrared (NIR) region (700-900 nm), light can penetrate more deeply, to depths of several centimeters [3-6]. Fluorochromes with emissions in the NIR are not hindered by interfering autofluorescence, so they tend to yield the highest signal-to-background. The combination of increased depth of penetration and reduced autofluorescence makes NIR fluorochromes ideally suited for optical imaging in small animals, and potentially in humans as well (Figure 1). Figure 1. Schematic representation of the region of optimal signal-to-background ratio in tissue. Hemoglobin can interfere below 700 nm, while water interferes above 900 nm. The excitation and emission regions for several dyes commonly used in optical imaging are also indicated. Near infrared fluorochromes A key to enabling optical imaging has been the development of suitable NIR fluorochromes. Important criteria for effective optical imaging fluorochromes include: excitation and emission maxima in the NIR between 700-900 nm; high quantum yield [3, 5, 6, 7]; chemical and optical stability; and suitable pharmacological properties including aqueous solubility, low non-specific binding, rapid clearance of the free dye, and low toxicity. The dyes most commonly used for fluorescent optical imaging are listed in Table 1. The cyanine dye Cy5.5 has been used frequently for in vivo imaging. The excitation/emission maxima (675 nm/695 nm) A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models – Page 3 Table 1 Excitation and emission maxima of fluorescent dyes commonly used for optical imaging Fluorophore Cy5.5 Alexa Fluor 680 IRDye 680 Alexa Fluor 700 IRDye 700DX Alexa Fluor 750 Cy7 IRDye 800CW Excitation Max (nm) Emission Max (nm) 675 679 680 702 689 749 749 774 695 702 709 723 700 775 775 805 are close to the NIR region, yielding acceptable signal-tobackground. Other dyes with excitation and emission maxima in this region include IRDye® 700DX, IRDye 680, Alexa Fluor® 700 and Alexa Fluor 680. Although excitation and emission wavelengths of these dyes are maximal in the more favorable red region, they do not give the optimal performance that can be achieved by moving farther into the NIR. Thus they are best used in situations when the highest sensitivity is not required. However, the pthalocyanine dye IRDye 700DX has properties that may make it attractive for imaging. IRDye 700DX is considerably less sensitive to photobleaching than many organic fluorochromes; Peng et al. [8] have shown that IRDye 700DX is 100 times more photostable than Alexa Fluor 680 and Cy5.5. In addition, members of the pthalocyanine dye class have been used for photodynamic therapy in the treatment of several types of cancer [9]. The photodynamic characteristics relevant to tumor therapy require prolonged exposure to the light source and therefore would not interfere with tumor biology during the short exposures used for imaging. Therefore, pthalocyanines have the potential to serve not only as imaging agents but also therapeutics. The most widely used dyes with true NIR character include IRDye 800CW, Cy7, and Alexa Fluor 750. The excitation/emission ranges for these dyes are shown schematically in Figure 1. In particular, IRDye 800CW has excitation/emission maxima of 774 nm/789 nm, which are centered at the optimal wavelength for in vivo imaging. This dye has been shown to be superior in performance to Cy5.5 in terms of signal-to-background [3, 7, 10]. Targets and ligands Many targeted optical probes have been described in the literature. Targets include cell surface receptors, metabolic pathways, hormone receptors, apoptotic markers, and enzymatic activities [11]. High affinity probes may be developed by rational investigation, combinatorial chemical synthesis, or phage display. An effective agent reaches the target at a sufficient concentration and/or is retained there for a sufficient length of time to be visible at the time of imaging. Obstacles such as rapid excretion, metabolism, non- specific binding, and physical barriers to the agent reaching the target must be overcome in order for a targeted optical agent to function robustly. Delivery barriers present the greatest obstacle but can be circumvented. One approach is to take advantage of normal cellular transport and endocytic processes by targeting surface receptors or transport pathways that internalize the optical agent. Growth factor receptors are an example in which the binding of a fluorochrome-labeled agent stimulates internalization via endocytosis. This has the added benefit of amplifying the fluorescent signal, since the fluorochrome will accumulate in the target cells. A second approach is to incorporate a peptide membrane translocation signal into the optical agent such that active transport of the imaging agent across the cell membrane results. Signal peptides such as the HIV tat peptide have been successfully used to transport nanoparticles into cells [12]. Non-specific binding is another critical issue for noninvasive tumor imaging. In vivo, the inability to eliminate unbound ligand can cause low signal-to-background. In addition, non-specific binding or retention of the optical probe will yield false positive results. Careful assessment of the optical agent clearance pattern and verification of specific signal by competition experiments can address this issue. Antibody conjugates Many of the first fluorochrome-conjugated targeted imaging agents were antibodies. For example, indocyanine-conjugated monoclonal antibodies against cells derived from a squamous cell carcinoma have been used to image A431 cell xenografts in nude mice [13]. Detection of the xenografts was sensitive and specific. Cy3, Cy 5, and Cy5.5conjugated monoclonal antibodies have been used to direct SSEA-1 for detection of MH-15 teratocarcinoma xenografts [14]. In this study, fluorescence did concentrate in the tumor, but significant background from the conjugate was observed in the kidneys and bladder. The NIR dye, Cy5.5, appeared to yield the best signal-to-background. Lastly, minibodies directed against the extra-domain B of fibronectin and conjugated to Cy7 have been used to successfully image atherosclerotic plaques in a mouse model [15]. Although antibody conjugates have been successfully used, they have several undesirable features, primarily due to the size of the antibody. Larger molecules, such as antibodies, can elicit an adverse immune response from the host animal, and their long half-life in the blood results in high background fluorescence and long clearance times [16, 17]. In addition, large biomolecules are often taken up preferentially by the liver, precluding imaging of liver-proximal organs [18]. Finally, in order for the contrast agent to effectively penetrate to the target site, it must diffuse from the vasculature to the site of the pathology; larger molecules show very poor diffusion characteristics which may prevent them from reaching the target site [19]. Tumor surface proteins Tumor surface proteins offer diverse possibilities for targeting of optical probes. An excellent example is a recep- 29 Page 4 – A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models tor-binding ligand. Growth factors are a popular choice for optical imaging agents because in addition to high affinity targeting, the ligand and its fluorescent label are often internalized by the normal endocytic pathway, amplifying the signal in the tumor cells. Fluorochrome-labeled epidermal growth factor (EGF) has been a versatile tumor imaging agent because the epidermal growth factor receptor (EGFR) is overexpressed on the surface of many types of tumor cells [20, 21, 22, 23, 24]. In a study measuring the diffusion of small molecules across the extracellular space in rat brains, Thorne et al. [25] showed that EGF labeled with Oregon Green 514 could be used as a reporter. Ke et al. [26] used Cy5.5-labeled EGF to target human breast tumor cells implanted in mice. The EGF-Cy5.5 accumulated specifically in the tumors and uptake was blocked by pretreatment of animals with C225 anti-EGFR monoclonal antibody (cetuximab). Similarly, we have demonstrated the utility of EGF labeled with IRDye 800CW for analysis of orthotopic prostate tumors in mice [27, 28]. IRDye 800CW EGF accumulated specifically in the tumors, and metastatic spread of the primary orthotopic tumor to the para-aortic lymph nodes was detected. EGF is known to stimulate tumor growth, and this is an important concern for its use as an imaging agent. Comparison of tumors excised from animals injected with labeled EGF only at the study endpoint to tumors excised from mice that had been injected at weekly intervals over a six week period demonstrated no stimulation of tumor growth by the fluorochrome-conjugated ligand used in this longitudinal study [27]. Endostatin, a 20 kD fragment of collagen XVIII, is a potent inhibitor of angiogenesis. Using Cy5.5-labeled endostatin, Citrin et al. [29] were able to demonstrate that the labeled optical agent bound specifically to tumor xenografts in C57BL mice suggesting that the anti-angiogenic effect of endostatin is due to its action directly on the tumor cells rather than a general anti-angiogenic effect. The Cy5.5-endostatin bound specifically to the tumor and the signal persisted for up to seven days post-intraperitoneal injection [29]. Apoptosis plays an important role in a number of disease pathologies, particularly cancer. One of the earliest markers of apoptosis is the externalization of phosphatidylserine. Annexin V, a 36 kD protein, exhibits high affinity for phosphatidylserine and has been used to detect apoptosis in vivo. Petrovsky et al. [30] and Ntziachristos et al. [31] demonstrated the utility of Cy5.5-labeled annexin V for detection of apoptosis in a mouse tumor model. This marker may be useful in studying the anti-proliferative effects of chemotherapeutic agents on a variety of cancers. Somatostatin receptors and their ligands have been used as a targeting system for tumor imaging and radiotherapy of cancer for over 15 years. Radiolabeled synthetic analogues of somatostatin have been used to successfully image gastric or pancreatic tumors as well as small cell lung cancer (SCLC) [32, 33]. SCLC is a major cause of death in western countries. The substitution of fluorochrometagged somatostatin and several analogues has enabled 30 PUBBLICAZIONI imaging of human H69 SCLC tumor xenografts in mice using fiber-optic spectrofluorimetry. Thus, near-infrared conjugated peptides may have significant clinical impact on tumor detection by endoscopy, mammography, and intraoperative imaging. Peptides and Small Molecules Because of their small size, convenience of handling and attractive pharmacokinetic properties, peptides are useful agents for in vivo imaging. Peptides targeting integrins, a family of cell surface receptors that broadly regulate tumor growth, metastasis, and angiogenesis, have been successful agents for imaging neovascular density [34-41]. Chen et al. [37] and Achilefu et al. [41] used an NIR peptide conjugate, arginine-glycine-aspartic acid (RGD), targeting αvβ3 integrin, to detect and image tumor xenografts and to monitor angiogenesis. Tumor uptake of the Cy-5.5 RGD peptide was specific and could be blocked by pre-injection with unlabeled RGD. Houston et al. [42] used an RGD peptide doubly labeled with 111indium and IRDye 800CW to directly compare NIR optical imaging with scintigraphy. The authors found the signal-to-background ratio significantly higher for IRDye 800CW than for the radioactive label. In general, small molecule and peptide imaging agents clear the system quickly, translating to a reduction in fluorescent background when imaging. In all cases described above, the agents cleared through the kidneys without pooling in the liver. The small size also greatly reduces the possibility of an adverse immune response. Finally, fluorochrome-labeled small molecules and peptides penetrate to the target efficiently because of their increased ability to diffuse from the vasculature. Activatable probes The last category of fluorescent agents, activatable probes or “molecular beacons” [43, 44], specifically yield a fluorescent signal only when activated by an enzyme target. Most activatable probes are protease substrates. Protease levels are elevated in the extracellular space of many tumors, where they play a role in invasion and metastasis [45-49], and present a physically accessible target. Typically, these probes contain multiple NIR fluorochromes coupled to peptide sequences that can be cleaved by the protease. The proximity of the fluorochromes to each other results in quenching that is relieved upon cleavage by the target protease to generate a fluorescent signal. Use of fluorochrome/quencher pairs separated by the peptide target sequence has also been reported. Proteases that have been targeted by activatable probes include cathepsins, matrix metalloproteinases (MMPs), prostate-specific antigen, thrombin, caspase-3, and interleukin-1β converting enzyme [50]. An example of the signal sensitivity that can be achieved using these agents is the visualization of MMP-2 activity [50, 51, 52]. In vitro, the authors observed an 850% increase in NIR fluorescence intensity when the probe was cleaved and specific activation could be blocked by MMP-2 inhibitors. MMP-2 positive human fibrosarcomas were visualized and differentiated from MMP-2 negative mammary adenocarcinomas using this probe. A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models – Page 5 Developing an Optical Imaging Agent Below, we will discuss some of the critical parameters involved in developing, validating, and using an optical imaging agent. We present an overview of the process as it applies to tumor imaging, using as an example the IRDye 800CW EGF imaging agent we recently developed [27, 28]. Again, although we use this agent as an example, the principles described will be applicable to any dye-conjugate optical agent. Conjugating probes with NIR dyes Development of an optical targeting agent begins with covalent attachment of an NIR dye to the targeting compound. Many dyes are available with an N-hydroxysuccinimidyl (NHS) ester, which is activated for simple onestep coupling to free amines. NHS esterified NIR dyes may be purchased in bulk or in pre-packaged labeling kits. Methods for removal of unreacted dye may include HPLC, FPLC, or dialysis. Purification will be dictated by the molecular weight and chemical properties of the conjugates. For in vivo imaging applications, the dye/protein ratio of the conjugate may affect biological or biochemical activity of the protein, signal-to-background ratio, clearance, and biodistribution [52]. The optimal ratio of coupling is unique to each targeting agent. For example, Ntziachristos et al. [31] found that annexin V labeled with Cy5.5 at a dye/protein ratio of 1 retained its ability to bind phosphatidylserine on the surface of cells induced for apoptosis, while the same molecule labeled at a dye/protein ratio of 2.4 had lost its binding capability. If the optical imaging agent is based on a commercially available reagent such as an antibody or receptor ligand, differences in preparation and purification may impact performance. We conjugated IRDye 800CW to human recombinant EGF from five different commercial sources, at equivalent dye/protein ratios, and evaluated relative signal intensity by In-Cell Western [28]. As shown in Fig. 2, there were considerable differences in the amount of EGF bound to the cells. Variations in signal strength measured in this fashion have the potential to predict probe performance in vivo as we have demonstrated [28]. Testing the performance and specificity of an optical imaging agent in vitro is an important prelude to animal studies. Specificity can be demonstrated on cells in culture or in suspension by blocking the target with an antibody or by competition with the unlabeled agent. In targeting somatostatin receptors, Becker et al. [53] used a flow cytometric assay to quantify binding of the agent. As mentioned previously, Ntziachristos et al. [34] used whole cell competition assays to demonstrate both probe specificity and binding affinity. Another group used a radioactive displacement assay [54]. 125I-labeled echistatin, an integrin-binding ligand, was added to integrin-expressing cell cultures and allowed to bind. The degree of displacement of the radioactive echistatin by Cy7-labeled RGD peptide was used as a measure of specificity and binding affinity. We have used the In-Cell Western (ICW) or cytoblot to evaluate IRDye 800CW EGF for binding and specificity prior to actual testing in mice (27, 55). In this assay, PC3M-LN4 and 22Rv1 human prostate adenocarcinoma cells were cultured in microtiter plates and treated with serial dilutions of labeled EGF (Fig. 3A) to verify high affinity binding of EGFRtargeted dye relative to the low binding of free dye alone (Fig. 3B). Specificity was then established in two ways: by blocking access of EGF to its receptor with the anti-EGFR monoclonal antibody C225 (also known as cetuximab or Erbitux, Fig. 3C); and by competition with unlabeled EGF (Fig. 3D). Fluorescence of the microplate was quantified by NIR imaging, and a DNA stain was used to normalize variations in cell number. Characterization of the targeting agent in a cell-based assay can simplify probe development. While success in a cellbased assay format does not guarantee performance in vivo, failure in this assay is generally predictive of failure in the animal. In addition, the competition assays developed may subsequently be useful for demonstrating specificity in animal experiments. Animal Care and Use All research animals must be handled according to protocols that comply with the animal care and use regulations of the country and institution where the research will be performed. In the United States, these regulations are described in a document compiled by the National Institutes of Health Organization for Lab Animal Welfare, available at http://grants.nih.gov/grants/olaw/GuideBook.pdf. Validation of targeting agent efficacy and specificity in vitro Figure 2. Binding activity of recombinant EGF from different commercial sources. EGF from five sources was conjugated to IRDye 800CW at similar dye/protein ratios and each was evaluated for its ability to bind confluent A431 monolayers by In-Cell Western as we have previously described [27]. 31 Page 6 – A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models Figure 3. Binding specificity of IRDye 800CW EGF for cultured PC3M-LN4 and 22Rv1 cells. Monolayer cells in 96-well microplates were incubated with increasing concentrations of IRDye 800CW EGF (A) or unconjugated, non-reactive IRDye 800CW (B) and normalized with TO-PRO-3 staining. To demonstrate EGF receptor-targeting specificity, cells were incubated with 70 nM IRDye 800CW EGF in the presence of increasing concentrations of either C225 blocking antibody (C), or unlabeled EGF (D). The 800 nm signal, normalized to the 700 nm control, is plotted as the mean ± SD of three replicate wells (27). This figure is reproduced with permission from the American Journal of Pathology. Considerations for tumor model selection An ideal tumor model system exhibits minimal background interference. Although much of the autofluorescence in the animal is ameliorated by imaging at NIR wavelengths, some anatomic regions inherently maintain higher fluorescent signals. For example, natural fluorescence from compounds in the animal’s diet accumulates and can be visualized in the abdominal cavity. Organs involved in clearance of the dye, such as the liver and kidney, may also accumulate signal. Tumors arising in areas remote from these organs are detected with less ambiguity and higher sensitivity. In the case of subcutaneous xenografts, the placement of transplanted tissue in the flank, shoulder, or leg of the animal can minimize these interfering factors. The model system selected will depend on the aims of the study. Transgenic, chemically induced, and spontaneously arising mouse models are available that recapitulate many aspects of the genesis, progression, and clinical course of human cancers. The National Cancer Institute of the United States has organized a Cancer Models Database (caMOD) to facilitate identification of appropriate models for cancer experimental design (https://cancermodels.nci.nih.gov/ camod/login.do;jsessionid=D8B27DC9B409DA8CC37CE041 50EBAABB). 32 PUBBLICAZIONI Three strains of immunodeficient mice are commonly used in tumorigenesis and metastasis research with human cell lines: nude, SCID and Rag1. The nude mouse (athymic; nu/nu) has a disruption in the Foxn1 gene, resulting in an absent or deteriorated thymus gland, diminished T cell numbers, and a severely impaired cellular immune system (56). The resultant hairless phenotype also makes the nude mouse ideal for optical imaging, since animal hair blocks and scatters light. Over time, these animals may regain partial cellular immune function so nude mice may not be the best host for longer-term studies of tumor biology. SCID (severe combined immunodeficiency) mice lack both mature T and B lymphocytes [57], and are an effective alternative to nude mice in cases where the partial immune system of the nude mouse presents a problem. The Rag1 mouse also lacks T and B lymphocytes, and is not able to undergo V(D)J recombination. Thus, it fails to produce T-cell receptors and immunoglobulin molecules for antigen identification [58, 59, 60]. All three mouse models bear phenotypic and background strain characteristics that may impact a research project. Immunocompromised mice require Specific Pathogen Free (SPF) handling to avoid introducing infections. Institutional training is obligatory and includes instruction in the use of infection barriers, sterilized food, water and bedding, dis- A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models – Page 7 infected imaging surfaces, gloved handling and aseptic technique. Reducing optical interference for tumor imaging Chlorophyll, which is often present in animal chow, absorbs at 655 nm and 411 nm, and fluoresces at 673 nm, producing strong signal in the abdominal cavity. For optimal fluorescent imaging performance, purified food formulations that do not contain plant products may be used. Fasting of the animal prior to imaging has been used in some studies, and requires prior approval from the institutional committee governing animal care. The hairless phenotype of the nude mouse makes it an ideal choice for NIR optical imaging, but this model may not always be appropriate for the research objectives. Thus, hair removal in the imaging region may be important for optimal signal detection. Animal hair interferes with imaging by blocking, absorbing, and scattering light. We evaluated this by implanting a tube containing IRDye 800CW in the chest cavity of a deceased SCID mouse, and imaging the animal before and after shaving. Following shaving, fluorescent signal increased by >50% (data not shown). An additional 12% signal was detected when the animal was treated with a depilatory cream (Nair, Church and Dwight Co., Inc.) presumably due to the removal of hair stubble. Establishing tumors in the animal For assays of tumorigenic and metastatic potential using cultured human cells, cells or tissue may be implanted in animals subcutaneously, intravenously, intraperitonally, or orthotopically (i.e.; prostate cells implanted in mouse prostate). These assays are called xenografts, since they involve transplantation of cells, tissue, or organs from one species to another. Depending on the aggressiveness of the cell line, we have established subcutaneous xenografts in mice by injection of 0.5-1 106 cells in ≈100 μL cell suspension. Tumors become palpable within 7-10 days. Orthotopic injections require fewer cells (we have used 1105 cells) and reduced injection volume (10 μL), as the anatomical structure of the prostate is small. Tumors form in 2-3 weeks and metastasize within ≈6 weeks [27, 28]. Although background increases with the amount of probe administered, the signal is also greater at the highest dose. The quantified signal within the tumor, normalized to the mean background in several irrelevant surrounding regions, allowed us to determine that the optimal specific signal occurred at the two highest doses. Figure 4. Dose response for an IRDye 800CW conjugated optical imaging agent targeting tumors in nude mice. Animals were injected with 1x PBS as a negative control (A), or with 2.5 nmol (B), 5.0 nmol (C), and 10 nmol (D) of a tumor targeted IRDye 800CW conjugate. Images were acquired 24 hr post-injection. The route of targeting agent administration can affect its specific uptake and non-specific clearance. Intravenous injection via the tail vein or supraorbital cavity leads to rapid systemic dispersion (Fig.5). This method is appropriate for targeted contrast agents that bind a ubiquitous surface receptor present at a greater concentration on tumor cells. Uptake by the tumor cells is within the time window of agent clearance and potential background from prolonged exposure to the probe is minimized. Performance of an agent that functions by incorporation into bone, however, may be enhanced by intraperitoneal injections, which prolong exposure through slower dispersion (Fig. 5). Probe Dosage and Administration Tumor type may dictate the optical imaging agent selected and its optimal parameters for use. For example, A431 epidermoid carcinoma cells express EGFR at a much higher level than normal cells. However, HeLa ovarian carcinoma cells have low expression of EGFR. If IRDye 800CW EGF is used as an optical probe for both of these cell types, binding of the labeled ligand would be expected to vary dramatically. Figure 5. Impact of administration site on optical imaging agent dispersion in mice. Images were acquired approximately 15 minutes following intraperitoneal (A) or intravenous (B) injection of equivalent amounts of an optical imaging agent into a nude mouse. Evaluation of Dye and Optical Agent Clearance An optimal dosage of the imaging agent will afford the best signal-to-background, clearance, and imaging results. Excessively high doses will clear poorly, while a low dose may not saturate tumor uptake. Figure 4 illustrates a dose response to increasing concentrations of an optical agent. Performing initial imaging time courses following injection of the chosen targeting agent will establish the optimal time point for sensitive tumor analysis. The time course analysis begins with the unconjugated fluorochrome chosen for optical imaging, which should not be appreciably 33 Page 8 – A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models Figure 6. Clearance kinetics of unconjugated IRDye 800CW. A SCID mouse was injected with 1 nmol of IRDye 800CW intravenously and monitored over time for complete clearance of the dye. Imaging times post injection are indicated on each individual image. Pseudocolored fluorescence is superimposed on the white light image of the mouse to illustrate rapid dispersion of the dye followed by complete clearance. Figure 7. Time course for clearance of IRDye 800CW EGF from a non-tumor-bearing mouse. A SCID mouse was injected with 1 nmol of the EGF-conjugated optical agent intravenously and imaged at the indicated time points over a 24 hr period. Analysis of the abdominal region showed that >90% of the fluorescence disappeared in 24 hr, and by 48 hr (not shown) the probe had cleared completely. retained in the animal. An example of measurement of the clearance of IRDye 800CW is shown in Figure 6. Other dyes may have different clearance characteristics. Secondly, a time course of agent clearance from non-tumor-bearing control animals using the intended dose for tumor imaging will yield a blueprint for whole-body nonspecific background to assist interpretation of tumor images. Figure 7 shows the results of a clearance experiment with IRDye 800CW EGF in a tumor-negative mouse. Finally, once it has been determined that the probe does 34 PUBBLICAZIONI not accumulate non-specifically, the time course is repeated with tumor-bearing animals to determine the imaging time at which the signal-to-background is greatest in the tumor. For IRDye 800CW EGF, mice bearing PC3M-LN4 subcutaneous xenografts were imaged over a three-day period. By 24 hr, most of the initial fluorescence was gone from the non-tumor areas (Fig. 8). However, signal-tobackground continued to increase beyond this time point. Optimizing the time of imaging maximizes sensitivity for challenging applications such as detecting metastatic spread of a tumor. A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models – Page 9 Figure 8. Time course for accumulation of IRDye 800CW EGF in a subcutaneous tumor. Images of a nude mouse were collected prior to injection (A), or at 20 min (B), 24 h (C), 48 h (D), and 72 h (E) following intravenous injection of the animal with 1 nmol of IRDye 800CW EGF. Confirming Probe Specificity In Vivo Clearance studies and optimization of timing will minimize non-specific fluorescence, but imaging artifacts may be misinterpreted nonetheless. For example, an apparent tumor detected in the liver upon targeting with an antibody probe that pooled in the liver should be confirmed by a competition test. One method is to pre-inject tumor-bearing animals with an excess (for example, 100-fold) of the unlabeled form of the optical agent. The labeled agent is injected shortly thereafter. Probe specificity is reflected as a decrease in the total fluorescence signal in animals that were pre-injected with the unlabeled agent. Specificity of Cy5.5-labeled EGF was demonstrated in this way by Ke et al. [26]. Even if differential signal is not readily detected in intact animals, imaging analysis of excised whole and sectioned tumors may reveal the competition. We used this approach to assess specificity of IRDye 800CW EGF imaging in prostate tumors [27]. Mice bearing either PC3M-LN4 subcutaneous or orthotopic tumors were injected with IRDye 800CW EGF; some animals were preinjected with C225 anti-EGFR monoclonal antibody. When we injected tumor-bearing animals with the probe and subsequently performed fluorescence imaging of tumor sections, IRDye 800CW EGF was clearly visible not only in the primary tumors, but also in lymph nodes extracted from the animals (Fig. 9). Tumor-bearing animals that were preinjected with C225 exhibited a 33-49% decrease in fluorescent signal, indicating that binding of the labeled ligand was specific for EGFR. An alternative approach to demonstrating specific signal is to quantify targeting agent uptake by both tumor and nontumor tissue. For examining integrin-binding agents, Becker et al. [53] used an RGD peptide doubly labeled with 125I and an indocarbocyanine dye. Radioactive content of the tumor, heart, liver, kidneys, and brain was quantified following imaging of the tumor. Thus, the authors were able to express the uptake of the probe as the percentage of injected dose per gram of tissue. This approach may also be useful for characterization of metabolic probes, for which high doses of unlabeled competitor may be toxic. Figure 9. Demonstration of specific tumor targeting in vivo for the IRDye 800CW EGF optical imaging agent. Tumors and lymph nodes were excised from animals bearing either subcutaneous (A) or orthotopic (B) prostate tumors, as indicated, injected intravenously with IRDye 800CW EGF or pre-injected with C225 anti-EGFR monoclonal antibody prior to dosing with IRDye 800CW EGF. The corresponding table presents IRDye 800CW EGF fluorescence signal per area tissue for vehicle control, optical agent only, and C225 competition for each tumor type (subcutaneous and orthotopic) and lymph nodes from the orthotopic tumor model (images in panel C). Summary and Conclusions Fluorochrome-labeled molecular probes are valuable tools for non-invasive longitudinal study of tumorigenesis and metastasis, preclinical studies of the effects of therapeutic agents, and pharmacokinetic and pharmacodynamic studies of drug-target interactions. Because of this, these probes have significant potential for translation to human clinical use. 35 Page10 – A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models Several applications may expand the clinical utility of fluorochrome-labeled probes. For example, accurate definition of tumor margins is crucial to the therapeutic outcome of many surgical oncology procedures. A multimodal imaging agent consisting of a magnetic iron oxide nanoparticle and Cy5.5 has been used as a preoperative nuclear magnetic resonance contrast agent and intraoperative optical probe to define the tumor margins in a rat gliosarcoma model [61]. Similar intraoperative imaging technology is being developed in the laboratory of Frangioni [62]. These procedures would allow a surgeon to identify and locate the tumor mass by MRI and subsequently remove the tumor accurately with visual guidance from an intraoperative near infrared fluorescent imager. Photodynamic therapy (PDT) is an application that has been used in oncology for over two decades [9]. A photosensitizing agent delivered to malignant tissue is exposed to light, generating cytotoxic singlet oxygen. The result is cell death through the induction of apoptosis, microvascular damage and antitumor immune response. The major class of dyes used for this approach is phthalocyanines such as IRDye 700DX [8]. NIR dyes conjugated to antitumor therapeutics such as Erbitux (anti-EGFR monoclonal antibody), may have similar clinical appeal for simultaneous treatment and monitoring of anti-cancer therapy [63]. Imaging based on expression of luciferase or a fluorescent protein such as GFP have facilitated examination of intracellular signaling events in vivo. Hybrid gene constructs in which either the luciferase or GFP gene is placed under control of an inducible promoter responsive to a signaling pathway of interest have been used to directly assess the effects of anti-tumor agents on the gene regulation in vivo. A similar reporter system that directly images β-galactosidase activity on a far red substrate has been recently reported ([64]. This fluorescent reporter system could provide a means for creating hybrid expression units to examine in vivo gene expression and regulation of a number of important pathways in cancer. NIR-based imaging instrument technologies designed for human clinical use are in various stages of development [62, 65, 66]. Combined with new NIR-labeled biomarkers, these will expand the clinical options available for cancer management in the near future. Several excellent reviews describe the use of targeted markers in animal studies [7, 67]. In this review we have discussed the basic validation of fluorochrome-labeled molecular probes. Although near-infrared optical excitation sources provide deeper tissue penetration, they are not great enough to provide unlimited application for human clinical use. Near-infrared imaging agents may be limited to accessible tissues such as breast tumors, or to intraoperative applications, endoscopy, and photodynamic therapy. However, these applications represent significant benefits for research, diagnosis, and treatment. Continued technological innovation in imaging instrumentation, biomarker discovery, 36 PUBBLICAZIONI and labeling chemistries will foster the clinical use of fluorescent optical imaging. References [1] J. Dancey, E. A. Sausville, Issues and progress for protein kinase inhibitors for cancer treatment, Nat. Rev. Drug. Discov. 2 (2003) 296-313. [2] J. W. Park, R. S. Kerbel, G. J. Kelloff, J. C. Barrett, B. A. Chabner, D.R Parkinson, J. Peck, R.W. Ruddon, C.C. Sigman, D.J. Slamon, Rationale for biomarkers and surrogate endpoints in mechanism driven oncology drug development, Clin. Canc. Res. 10 (2004) 3885-3896. [3] K. Licha, Contrast agents for optical imaging, Curr. Topics Chem. 222 (2002) 1-29. [4] B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy, Neoplasia 2(2000) 26-40. [5] D. J. Hawrysz, E. M. Sevick-Muraca, Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2 (2000) 388-417. [6] M. Gurfinkel, S. Ke, X. Wen, C. Li, E. M. Sevick-Muraca, Nearinfrared fluorescence optical imaging and tomography, Disease Markers 19 (2004) 107-121. [7] J. V. Frangioni, In vivo near-infrared fluorescence imaging, Curr. Opinion. Chem. Biol. 7 (2003) 626-634. [8] X. Peng, D. R. Draney, W. M. Volcheck, G. R. Bashford, D. T. Lamb, D. L. Grone, Y. Zhang, C. M. Johnson, Phthalocyanine dye as an extremely photostable and highly fluorescent near-infrared labeling reagent, Proc. SPIE 6097 (2006) 113-124. [9] P. Harrod-Kim, Tumor ablation with photodynamic therapy: Introduction to mechanism and clinical applications, J. Vascular Interventional Radiol. 17 (2006) 1441-1448. [10] K. E. Adams, S. Ke, K. Sunkuk, Influence of NIR and red fluorescent wavelengths on animal imaging and biological effects of targeting molecules on cancer cells, First AACR International Conference on Molecular Diagnostics in Cancer Therapeutic Development (2006) Abstract A65. [11] G. J. Kelloff, K. A. Krohn, S. M. Larson, R. Weissleder, D. A. Mankoff, J. M. Hoffman, J. M. Link, K. Z. Guyton, W. C. Eckelman, H. I. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, J. Woodcock, The progress and promise of molecular imaging probes in oncologic drug development, Clin. Cancer Res. 11 (2005) 7967-7985. [12] M. Lewin, N. Carlesso, C. H. Tun, X. W. Tang, D. Cory, D. T. Scadden, R. Weissleder, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells, Nat. Biotechnol. 18 (2000) 410-414. [13] S. Folli, P. Westermann, D. Braichotte, A. Pelegrin, G. Wagnieres, H. van den Bergh, J. P. Mach, Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice, Cancer Res. 54 (1994) 26432649. [14] B. Ballou, G. W. Fischer, A. S. Waggoner, D. L. Farkas, J.M. Reiland, R. Jaffe, R. B. Mujumdar, S. R. Mujumdar, T. R. Hakala, Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies, Cancer Immunol. Immunother. 41 (1995) 257-263. [15] C. M. Matter, P. K. Schuler, P. Alessi, P. Meier, R. Ricci, D. Zhang, C. Halin, P. Castellani, L. Zardi, C. K. Hofer, M. Montani, D. Neri, T.F. Luscher, Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin, Circulation Res. 95 (2004) 1225-1233. A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models – Page 11 [16] S. J. Goldsmith, Receptor imaging: competitive or complementary to antibody imaging?, Semin. Nucl. Med. 27 (1997) 85-93. [17] S. Achilefu, J. E. Bugaj, R. B. Dorshow, H. N. Jimenez, R. Rajagopalan, New approach to optical imaging of tumors, Proc. SPIE 4259 (2001) 110-114. [18] S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging, Invest. Radiol. 35 (2000) 479-485. [19] R. K. Jain, Barriers to drug delivery in solid tumors, Sci. Am. 271 (1994) 58-65. [20] M. H. Kraus, N. C. Popescu, S. C. Amsbaugh, C. R. King, Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms, EMBO J. 6 (1987) 605-610. [21] A. Levitzki, EGF receptor as a therapeutic target, Lung Cancer 41 Suppl 1 (2003) S9-14. [22] N. J. Maihle, A. T. Baron, B. A. Barrette, C. H. Boardman, T.A. Christensen, E. M. Cora, J. M. Faupel-Badger, T. Greenwood, S. C. Juneja, J. M. Lafky, H. Lee, J. L. Reiter, K. C. Podratz, EGF/ErbB receptor family in ovarian cancer, Cancer Treat. Res. 107 (2002) 247-258. [23] A. P. Kyritsis, H. Saya, Epidemiology, cytogenetics, and molecular biology of brain tumors, Curr. Opin. Oncol. 5 (1993) 474-480. [24] G. Di Lorenzo, G. Tortora, F. P. D’Armiento, G. De Rosa, S. Staibano, R. Autorino, M. D’Armiento, M. De Laurentiis, S. De Placido, G. Catalano, A. R. Bianco, F. Ciardiello, Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer, Clin. Canc. Res. 8 (2002) 34383444. [25] R. G. Thorne, S. Hrabětová, C. Nicholson, Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging, J. Neuropysiol. 92 (2004) 3471-3481. [26] S. Ke, X. Wen, M. Gurfinkel, C. Charnsangavej, S. Wallace, E. M. Sevick-Muraca, C. Li, Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts, Cancer Res. 63(2003) 7870-7875. [27] J. L. Kovar, M. A. Johnson, W. M. Volchek, J. Chen, M. A. Simpson, Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model, Amer. J. Pathol. 169 (2006) 1415-1426. [28] J. L. Kovar, W. M. Volcheck, J. Chen, M. A. Simpson. Purification method directly influences effectiveness of an epidermal growth factor-coupled targeting agent for noninvasive tumor detection in mice. Anal. Biochem. 361 (2007) 47-54. [29] D. Citrin, T. Scott, M. Sproull, C. Menard, P. J. Tofilon, C. Camphausen, In vivo tumor imaging using a near-infraredlabeled endostatin molecule, Int. J. Radiat. Oncol. Biol. Phys. 58 (2004) 536-541. [30] A. Petrovsky, E. Schellenberger, L. Josephson, R. Weissleder, A. Bogdanov, Near-infrared fluorescent imaging of tumor apoptosis, Canc. Res. 63 (2003) 1936-1942. [31] V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, R. Weissleder, Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate, Proc. Natl. Acad. Sci. USA. 101 (2004) 12294-12299. [32] G. Kostenich, N. Livnah, T. A. Bonasera, T. Yechezkel, Y. Salitra, P. Litman, S. Kimel, A. Orenstein, Targeting small cell lung cancer with fluorescent analogues of somatostatin, Lung Cancer 50 (2005) 319-328. [33] C. Grötzinger, B. Weidenmann, Somatostatin receptor targeting for tumor imaging and therapy, Ann. N. Y. Acad. Sci. 1014 (2004) 258-264. [34] H. Jin, J. Varner, Integrins: roles in cancer development and as treatment targets, Canc. Res. 90 (2004) 561-565. [35] R. E. Nisato, J. C. Tille, S. L. Goodman, M. S. Pepper, αvβ3 and αvβ5 Integrin antagonists inhibit angiogenesis in vitro, Angiogenesis 6 (2003) 105-119. [36] R. A. Cairns, R. Khokha, R. P. Hill, Molecular mechanisms of tumor invasion and metastasis: an integrated view, Curr. Mol. Med. 3 (2003) 659-671. [37] X. Chen, P. S. Conti, R. A. Moats, In vivo near-infrared fluorescence imaging of integrin alpha v beta 3 in brain tumor xenografts, Canc. Res. 64 (2004) 8009-8014. [38] R. Pasqualini, E. Koivunen, E. Ruoslahti, αv Integrins as receptors for tumor targeting by circulating ligands, Nat. Biotechnol. 15 (1997) 542-546. [39] R. Falcioni, A. Antonini, P. Nistico, S. Di Stefano, M. Crescenzi, P. G. Natali, A. Sacchi, α6β4 and α6β1 Integrins associate with Erb-2 in human carcinoma cell lines, Exp. Cell Res. 236 (1997) 76-85. [40] D. A. Cheresh, R. Pytela, M. D. Pierschbacher, F. G. Klier, E. Ruoslahti, R. A. Reisfeld, An arg-gly-asp-directed receptor on the surface of human melanoma cells exists in a divalent cation-dependent functional complex with the sisialoganglioside GD2, J. Cell Biol. 105 (1987) 1163-1173. [41] S. Achilefu, S. Bloch, M. A. Markiewicz, T. Zhong, Y. Ye, R. B. Dorshow, B. Chance, K. Liang, Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression, Proc. Natl. Acad. Sci. USA. 102 (2005) 7976-7981. [42] J. P. Houston, S. Ke, W. Wang, C. Li, E. M. Sevick-Muraca, Quality analysis of in vivo near-infrared fluorescence and conventional gamma images acquired using a dual-labeled tumor-targeting probe, J. Biomed. Optics 10 (2005) 054010045020. [43] S. Tyagi, F. R. Kramer, Molecular beacons: probes that fluoresce upon hybridization, Nat. Biotechnol. 14 (1996) 303-308. [44] S. Tyagi, D. P. Bratu, F. R. Kramer, Multicolor molecular beacons for allele discrimination, Nat. Biotechnol. 16 (1998) 49-53. [45] R. Weissleder, C.-H.Tung, U. Mahmood, A. Bogdanov, In vivo imaging of tumors with protease-activated nearinfrared fluorescent probes, Nat. Biotechnol. 17 (1999) 375-378. [46] D. Keppler, M. Sameni, K. Moin, T. Mikkelsen, C. Diglio, B. Sloane, Tumor progression and angiogenesis: cathepsin B & Co, Biochem. Cell Biol. 74 (1996) 799-810. [47] J. Kim, W. Yu, K. Kovalski, L. Ossowski, Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay, Cell 94 (1998) 353-362. [48] E. Liaudet, D. Deroq, H. Rochefort, M. Garcia, Transfected cathepsin D stimulates high density cancer cell growth by inactivating secreted growth inhibitors, Cell Growth Differ. 6 (1995) 1045-1052. [49] M. Garcia, N. Platet, E. Liaudet, V. Laurent, D. Deroq, J. Brouillet, H. Rochefort, Biological and clinical significance of cathepsin D in breast cancer metastasis, Stem Cells 14 (1995) 642-650. [50] U. Mahmood, R. Weissleder, Near-infrared optical imaging of proteases in cancer, Mol. Cancer Therapeutics 2 (2003) 489-496. [51] C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, C. H. Tung, Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model, Radiology 221 (2001) 523-529. [52] C. Bremer, C. H. Tung, A. Bogdanov, R. Weissleder, Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes, Radiology 222 (2002) 814-818. [53] A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Carsten Grötzinger, Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands, Nat. Biotechnol. 19 (2001) 327-331. 37 [54] W. Yun, C. Weibo, C. Xiaoyuan, Near infrared imaging of tumor integrin αvβ3 expression with Cy7 labeled RGD multimers, Mol. Imaging Bio. 8 (2006) 226-236. [55] H. Chen, J. Kovar, S. Sissons, K. Cox, W. Matter, F. Chadwell, P. Luan, C. J. Vlahos, A. Schutz-Geschwender, D. M. Olive, A cell-based immunocytochemical assay for monitoring kinase signaling pathways and drug efficacy, Anal. Biochem. 338 (2005) 136-142. [56] S. P. Flanagan, “Nude,” a new hairless gene with pleiotropic effects in the mouse, Genet. Res. 8 (1966) 295-309. [57] G. C. Bosma, R. P. Custer, M. J. Bosma, A severe combined immunodeficiency mutant in the mouse, Nature 301 (1993) 527-530. [58] T. Blunt, N. H. Finnie, G. E. Taccioli, G. C. Smith, J. Demengeot, T. M. Gottlieb, R. Mizuta, A. J. Varghese, F. W. Alt, P. A. Jeffo, S. P. Jackson, Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation, Cell 80 (1995) 813-823. [59] P. Mombaerts, J. Iacomini, R. S. Johnson, K. Herrup , S. Tonegawa, V. E. Papaioannou, RAG-1-deficient mice have no mature B and T lymphocytes, Cell 68 (1992) 869-877. [60] Y. Shinkai, G. Rathbun, K. P. Lam, E. M. Oltz, V. Stewart, M. Mendelsohn, J. Charron, M. Datta, F. Young, A. M. Stall, F. W. Alt, RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement, Cell 68 (1992) 855-867. [61] M. F. Kircher, U. Mahmood, R. S. King, R. Weissleder, L. Josephson, A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation, Canc. Res. 63 (2003) 8122-8125. [62] A. M. De Grand, J. V. Frangioni, An operational near infrared fluorescence imaging system prototype for large animal surgery, Technol. Canc. Res. Treatment 2 (2003) 1-9. [63] E. L. Rosenthal, B. D. Kulbersh, R. D. Duncan, W. Zhang, J. S. Magnuson, W. R. Carroll, K. Zinn, In vivo detection of head and neck cancer orthotopic xenografts by immunofluorescence, Laryngoscope 116 (2006) 1636-1641. [64] C.-H. Tung, Q. Zeng, K. Shah, D.-E. Kim, D. Schellingerhout, R. Weissleder. In Vivo Imaging of β-Galactosidase Activity Using Far Red Fluorescent Switch. Canc. Res. (2003) 64 1579-1584. [65] A. B. Thompson, D. J. Hawrysz, E. M. Sevick-Muraca, Near infrared fluorescence contrast-enhanced imaging with area illumination and area detection: the forward imaging problem, J. Appl. Optics. 42 (2003) 4125-4136. [66] Y. Chen, X. Intes, B. Chance, Development of high-sensitivity near infrared fluorescence imaging device for early cancer detection, Biomed. Instrumentation Technol. 39 (2005) 75-85. [67] R. Weissleder, Molecular Imaging in cancer, Science 312 (2006) 1168-1171. LI-COR and IRDye are registered trademarks of LI-COR, Inc. All other trademarks belong to their respective owners. IRDye 800CW and IRDye infrared dyes are covered by U.S. and foreign patents and patents pending. LI-COR is an ISO 9001 registered company. 4647 Superior Street • P.O. Box 4000 • Lincoln, Nebraska 68504 USA Technical Support: 800-645-4260 • North America: 800-645-4267 International: 402-467-0700 • Fax: 402-467-0819 LI-COR GmbH*: +49 (0) 6172 17 17 771 • LI-COR UK Ltd.: +44 (0) 1223 422104 * Serving Germany, Austria, Switzerland, Czech Republic, Hungary, Slovakia 38 PUBBLICAZIONI Proteomics 2007, 7, 1753–1756 1753 DOI 10.1002/pmic.200601007 TECHNICAL BRIEF Differential protein labeling with thiol-reactive infrared DY-680 and DY-780 maleimides and analysis by two-dimensional gel electrophoresis Irène M. Riederer1 and Beat M. Riederer1, 2 1 2 Centre de Neurosciences Psychiatriques, Hôpital Psychiatrique, Prilly, Switzerland Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, Lausanne, Switzerland Differential protein labeling with 2-DE separation is an effective method for distinguishing differences in the protein composition of two or more protein samples. Here, we report on a sensitive infrared-based labeling procedure, adding a novel tool to the many labeling possibilities. Defined amounts of newborn and adult mouse brain proteins and tubulin were exposed to maleimide-conjugated infrared dyes DY-680 and DY-780 followed by 1- and 2-DE. The procedure allows amounts of less than 5 mg of cysteine-labeled protein mixtures to be detected (together with unlabeled proteins) in a single 2-DE step with an LOD of individual proteins in the femtogram range; however, co-migration of unlabeled proteins and subsequent general protein stains are necessary for a precise comparison. Nevertheless, the most abundant thiol-labeled proteins, such as tubulin, were identified by MS, with cysteine-containing peptides influencing the accuracy of the identification score. Unfortunately, some infrared-labeled proteins were no longer detectable by Western blots. In conclusion, differential thiol labeling with infrared dyes provides an additional tool for detection of low-abundant cysteine-containing proteins and for rapid identification of differences in the protein composition of two sets of protein samples. Received: December 6, 2006 Revised: January 30, 2007 Accepted: March 2, 2007 Keywords: Immunoblots / Infrared dyes / Mouse brain / Thiol labeling Applications that include protein labeling with sensitive fluorescent dyes such as SYPRO Ruby and SYPRO Orange or cyanine dyes (Cy2, Cy3, and Cy5) have been widely used in DIGE for the detection of differences in the protein composition of various sets of proteins [1]. Here, we describe the use of infrared DY-680 and DY-780 maleimides to label two sets of proteins for rapid identification of differences in their protein composition by 2-DE. The method is reproducible and dyes can be obtained at a reasonable price. One drawback is that only cysteine-containing proteins are labeled, Correspondence: Dr. Beat M. Riederer, Centre de Neurosciences Psychiatriques, Hôpital Psychiatrique, 1008 Prilly, Switzerland E-mail: [email protected] Fax: 141-21-692-51-05 Abbreviations: Cy, cyanine dyes; GFAP, glial fibrillary acidic protein; SCG10, stellar cervical ganglion protein 10 © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim thus excluding proteins without cysteines. As an example, newborn and adult mouse brain proteins were labeled with DY680- and DY780-maleimides (outlined in Fig. 1). These stains have an Mr of 756.97 g/mol for DY-680 (C42H52N4O7S) and 783.01 g/mol for DY-780 (C44H54N4O7S), a neutral pH, and differ in their infrared light emissions by 100 nm due to a difference in a vinyl residue (www.dyomics.com). Preliminary experiments with individual DY-680 or DY-780-labeled proteins separated on 1-D gels showed no overlap in emission with the measuring wavelengths of 800 and 700 nm, respectively. It should be noted that the maleimide dyes are also available as NHS-conjugated dyes that could be applied for labeling of all proteins via primary and e-amino groups; such experiments are currently being performed. All experiments were authorized by the local veterinary office. Brains from deeply anesthetized newborn and adult mice (C57Bl/6) were removed and kept at –807C until use. Brain samples (25 mg brain tissue or 2.5 mg proteins) were www.proteomics-journal.com 39 1754 I. M. Riederer and B. M. Riederer Figure 1. Summary of experimental set-up and procedure. Panel A represents the common separation of the two differentially labeled protein samples in 2-DE IEF pH 3–10 in the first dimension and by molecular weights in the second dimension (panel A); and detection for wavelength specific emission at 700 nm (newborn mouse brain, panel B) and 800 nm for adult brain proteins (panel C). For comparison unlabeled newborn (panel D) and adult (panel E) CBB-stained brain proteins are shown for comparison. Arrows point to two stage-specific proteins, GFAP in green and SCG10 in red (panel A). The molecular weights are indicated to the right in panel A. homogenized in 2.5 mL reducing buffer (0.1 M sodium phosphate pH 6.0, 2.5 mM EDTA, 5 mL/mL protease inhibitors (Sigma, Buchs, Switzerland) and 6 mg 2-mercaptoaethylamine-HCL) and incubated for 90 min at 377C. In addition, two samples of purified pig brain tubulin (0.5 mg) [2] were labeled with each dye for a dilution series and for an estimation of the LOD of a known protein. The reducing © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 40 PUBBLICAZIONI Proteomics 2007, 7, 1753–1756 buffer was replaced by a D-salting Dextran desalting column (Perbio Switzerland, Lausanne), previously equilibrated with conjugation buffer (PBS, pH 7.5 and 1 mM EDTA). Subsequently 500-mL fractions were collected and protein amounts were measured by the Bradford Protein Assay (BioRad, Reinach, Switzerland) or the dot assay and by staining filters with Amidoblack [2]. Protein-containing fractions were pooled and concentrated to 500 mL by a centrifugal filter unit (Amicon Ultra-4, Millipore, Zug, Switzerland). Infrared substances DY-680 and DY-780 maleimides were obtained from Dyomics (Jena, Germany). Two hundred micrograms of DY680 maleimide in 20 mL DMF was added to 2.5 mg brain proteins of newborn mice and 200 mg DY-780 maleimides in 20 mL DMF was added to adult brain protein samples and kept overnight at 47C for saturation labeling of all cysteines. Subsequently, 40-mg dye samples in 4 mL DMF were added to tubulin samples and also kept over night at 47C. Samples were desalted with D-salt Dextran columns and concentrated by Amicon Ultra-4 centrifugation. A considerable amount of proteins are lost during desalting and concentration procedures, but between 25 and 40% of the starting material is obtained in dye-labeled form. For 2-DE, both labeled and unlabeled proteins were treated with the 2-D clean-up kit (Amersham, Otelfingen, Switzerland) and resuspended in strip-rehydration buffer for IEF or in SDS-PAGE sample buffer. Procedures for 1- and 2-DE as well as for silver nitrate and CBB staining were previously described [3–5]. Briefly, 5 mg labeled proteins and 400 mg unlabeled proteins were loaded on IPG ready strips of 11 cm length and pH 3–10 (BioRad) in the first dimension; in the second dimension, 12.5% or gradient 3.6–15% SDS-PAGE was applied. Gels were scanned by the Odyssey infrared imaging system (LiCor, Bad Homburg, Germany) with detection channels of 700 nm (red) and 800 nm (green) at a sensitivity level setting of 5, a scanning resolution of 169 mm, and at medium quality. Data sets were analyzed by computer software (Image master, Amersham/GE Biosciences, Zurich). Proteins were also transferred to NC filters and Western blots were exposed to antibodies for tubulin, glial fibrillary acidic protein (GFAP), and neurofilament proteins [4, 5] and detected with infrared-conjugated secondary antibodies IRD-700DX or IRD800DX (Rockland, BioConcept, Allschwil, Switzerland). The minimal protein amount that can be used for labeling is 200 mg proteins as starting material, yielding 40– 50-mg labeled proteins. This is sufficient for several 2-D gels, while the same amount of unlabeled proteins is only sufficient for a single 2-D gel, CBB staining, and identification of proteins. The sample preparation and labeling process of adult and newborn mouse brain proteins is demonstrated in Fig. 1. The newborn DY-680-labeled proteins appear in red, while the adult DY-780-labeled proteins (5 mg each) are seen in green (Fig. 1A). The two emission patterns were transformed into black and white images, with newborn protein composition represented in panel B and the adult protein pattern in panel C. For comparison, unlabeled newborn and www.proteomics-journal.com Proteomics 2007, 7, 1753–1756 adult brain proteins (400 mg each) were separated individually and stained with CBB (ProtoBlue Safe, National Diagnostics, Chemie Brunschwig, Basel, Switzerland). The CBBstained proteins are quite useful for MALDI-TOF identification and for comparison with DY-labeled protein patterns. Despite a certain similarity, it is apparent that a variety of proteins are not present in the dye-labeled sample. Several proteins do not contain cysteine residues [6] and are therefore not labeled, escaping detection in the infrared scanner. Furthermore, there are development-related differences in protein pattern, e.g. the GFAP (Fig. 1A, arrow pointing to green protein) [5] is more prominent in adult brain while stellar cervical ganglion protein 10 (SCG10; arrow pointing to red spots) is more present in newborn brain. The amino acid composition of these two proteins reveals a single cysteine residue for GFAP (Swiss-Prot no. P03995) and two cysteines for SCG10 (P55821). Therefore, a successful labeling of proteins with only a minimal number of cysteines per molecule is possible. In Fig. 2, a dilution series of labeled tubulin demonstrates that the detection of labeled brain tubulin is possible down to 1 fg (Fig. 2A). Given that tubulins contain seven to eight cysteines, the sensitivity limit of the method is approximately 10 fg. A separation on 1-DE already demonstrated that differences in protein labeling may occur (Fig. 2B). On Western blots, a mAb for tubulin (Tu9b) clearly stained btubulin in the unlabeled adult brain protein sample (Fig. 2 C, lane 2), while in the DY780-labeled sample no positive detection was possible and staining appeared rather as a nonspecific smear. A similar result was obtained with two antibodies for NF-L and GFAP. This suggests that covalently bound maleimide dyes may interfere with immunological detection or alter epitopes. It remains to be seen whether proteins that do not contain cysteines are still immunologically detectable. Regarding the influence of dyes on MALDITOF protein identification, corresponding and equal amounts of samples from the tubulin region were cut out of CBB-stained DY-labeled and non-DY labeled samples (http://www.dyomics.com/48.html) [7] and tested for their suitability to MALDI-TOF analysis by the Protein Analysis Facility (PAF) in Epalinges, Switzerland. Tubulins a-1, b-2, b3, and b-5 were successfully identified in both samples with MASCOT scores for unlabeled tubulins between 899 and 1017 and for DY-780 labeled tubulin between 285 and 677 (http://www.dyomics.com/48.html) [7]. This indicates that tubulin identification is still possible, but given the lower scores for dye-labeled proteins, one must suspect that thiollabeled peptide sequences may no longer allow identification of the correct peptide mass. Tubulins contain between seven and eight cysteines, and therefore several peptides may become unavailable, thus explaining the lower MASCOT scores. Protein labeling with DY-680 and DY-782 maleimides was shown to be a sensitive method for detecting minute quantities of proteins by 2-DE and infrared laser scanning, with a sensitivity in the femtogram range. The physical © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Technology 1755 Figure 2. The LOD of IR680-labeled tubulin is in the femtogram range (A), the blank areas (asterisk) represent a saturated protein concentration. One-dimensional SDS-PAGE with newborn (nb), adult proteins (ad) or combined (mix) demonstrates that a 1-D representation is by far sufficient to identify differences (B), the molecular weights are indicated to the right. Panel C: An infraredlabeling of cysteines altered immunoreactivity of labeled (1) but not unlabeled (2) tubulin. Note that the immunoreactivity appears like a smear in lane 1 and not as specific reactivity with tubulin in lane 2. properties of infrared dyes did not alter the migration properties very much in the 2-DE separation, since the charge and size of many proteins remained similar or the same. The dye-labeled GFAP and SCG10 proteins are found more or less at the same places as identified in the CBB-stained gel. Proteins without cysteine residues are obviously not labeled and therefore escape detection in the Odyssey infrared imaging system. The high sensitivity of the detection system allows the use of only a few micrograms of proteins per 2-D gel, but the protein amounts of most protein spots in such a 2-D gel are far from sufficient for a positive MALDI-TOF identification, requiring either higher amounts of DY-labeled proteins or the addition of unlabeled proteins and a CBB or silver staining for the identification of matching proteins by MS. It has been shown that DY-680- and DY-780-labeled proteins can also be stained with CBB and silver nitrate [7], but it is recommended to image proteins first with an infrared scanner, since CBB-stained and silver nitrate-stained proteins interfere with the infrared imaging. Since detection with CBB and silver nitrate staining is possible, other noncovalent www.proteomics-journal.com 41 1756 I. M. Riederer and B. M. Riederer stains such as SYPRO Ruby, Deep Purple or Lightning Fast may also work for the detection of DY-labeled proteins. It should also be noted that on Western blot filters the proteins are brought to the same focal plane. This favors a better detection by the infrared imaging system and may also allow detection with a variety of noncovalent protein stains [1, 2]. Infrared labeling and DIGE provides an additional, inexpensive tool for identifying differences in cysteine-containing proteins between two developmental stages, two experimental conditions, or between a control and a pathological state [2]. By using five or more dyes and an imaging system with appropriate filters, the separation of many samples within a single 2-D gel seems feasible. In the present protocol, all thiol groups were reduced and the oxidation-sensitive modifications were lost and no longer distinguishable by 2-D DIGE. It is known that protein oxidation plays a crucial role during aging and a variety of diseases [8]. Therefore, the labeling protocol could be modified so that a given sample is labeled with one color prior to the reduction of oxidized cysteines, followed by reduction of oxidized proteins and labeling of the reduced cysteines with another color [2]. The identification of oxidized proteins may find a wide application in the study of different pathologies and during normal aging. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 42 PUBBLICAZIONI Proteomics 2007, 7, 1753–1756 The authors thank Dr. F. Lehmann (Dyomics GmBH) for his helpful suggestions and support. This work was supported by an FNRS grant (31-067201.01). References [1] Patton, W. F., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2002, 771, 3–31. [2] Bondallaz, P., Barbier, A., Soehrman, S. et al., Cell Motility Cytoskeleton 2006, 63, 681–695. [3] Porchet, R., Probst, A., Bouras, C. et al., Proteomics 2003, 3, 1476–1485. [4] Porchet, R., Probst, A., Dráberova, E. et al., Neuroreport 2003, 14, 929–933. [5] Shaw, M., Riederer, B. M., Proteomics 2003, 3, 1408–1417. [6] Patton, W., Electrophoresis, 2000, 21, 1123–1144. [7] Riederer, I. M., Riederer, B. M., in: Palagi, P. M., Quadroni, M., Rossier, J. S., Sanchez, J. C., Stöcklin, R. (Eds.), Proceedings of the Swiss Proteomics Society, Fontis Media, Bern, Switzerland, 2004, pp. 183–185. [8] Paget, M. S. B., Buttner, M. J., Annu. Rev. Genet. 2003, 37, 91– 121. www.proteomics-journal.com PUBBLICAZIONI ODYSSEY Substitution of the use of radioactivity by fluorescence for biochemical studies of RNA Bei-Wen Ying, Dominque Forumy and Satoko Yoshizawa Laboratoire de Chimie et Biologie Structurales, ICSN-CNRS, 91190 Gif-sur-Yvette, France Abstract We present here the use of fluorescent methodologies for structural and functional studies of RNA in place of radioactivity. The methods are highly sensitive and quantitative with the use of an infrared fluorescence imaging system. IRD-700 and IRD-800 labels are used for fluorescence detection. Chemical probing methods are largely used for mapping RNA secondary structure and to monitor ligand interactions and conformational changes involving individual bases of RNA. The new fluorescent primer extension methodology allows simple and fast chemical probing of RNA with high sensitivity. IRD-700 and IRD-800 labeled primers can also be used to monitor protein–RNA interactions by fluorescent mobility shift assays. The speed and ease of these approaches are advantages over prior methods that used hazardous radioisotopes. Structural and biochemical investigations of RNA should benefit from the use of these fluorescent methodologies. 43 Le piu` recenti pubblicazioni dalla letteratura scientifica QUANTITATIVE WESTERNS Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate Santos, et.al. Visual Deprivation Modifies Both Presynaptic Glutamate Release and the Composition of Perisynatptic/Extrasynaptic NMDA Receptors in Adult Visual Cortex (Yashiro, et. al.) Quantitative, Two-Color Western Blot Detection with Infrared Fluorescence (Schutz-Geschwender, et. al.) The novel secretase inhibitor MRK-560 reduces amyloid plaque deposition without evidence of Notch-related pathology in the Tg2576 mouse (Jonathan D. Best, et al) Western blot analysis of sub-cellular fractionated samples using the Odyssey Infrared Imaging System (Misawa, et. al.) Identification of Cysteines Involved in S-Nitrosylation, S-glutathionylation, and Oxidation to Disulfides in RyR1 (Aracena-Parks, et. al.) Cardiac Adenoviral S100A1 Gene Delivery Rescues Failing Myocardium (Most, et.al.) Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis (Thibault) Phosphorylation Regulates KSR1 Stability, ERK Activation, and Cell Proliferation (Lewis, et. al.) ATM Activation by DNA Double-Strand Breaks Through the Mre11-Rad50Nbs1 Complex (Paull, et. al.) Phosphatidylinositol 4,5-Bisphosphate Reverses Endothelin-1ÐInduced Insulin Resistance via an Actin-Dependent Mechanism (Elmendorf, et. al.) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855 but not Thr-697 (Walsh, et. al.) IN-CELL WESTERNS New Approach for High-Throughput Screening of Drug Activity on Plasmodium Liver Stages (Gego, et. al.) A Novel Cell-Based Assay for G-Protein-Coupled Receptor-Mediated Cyclic Adenosine Monophosphate Response Element Binding Protein Phosphorylation (Selkirk, et. al.) 44 PUBBLICAZIONI Identification of Novel Keratinocyte Differentiation Modulating Compounds by High-Throughput Screening (Fiona M. Watt, et. al.) New Approach for High-Throughput Screening of Drug Activity on Plasmodium Liver Stages (Gego, et. al.) Angiotensin II Stimulation of VEGF mRNA Translation Requires Production of Reactive Oxygen Species (Feliers, et. al.) HSP Induction Mediates Selective Clearance of Tau Phosphorylated at Proline-Directed Ser/Thr Sites But Not KXGS (MARK) Sites (Dickey, et. al.) VEGF regulation of endothelial nitric oxide synthase in glomerular endothelial cells (Kasinath, et.al.) The Molecular Scaffold Kinase Suppressor of Ras 1 (KSR1) Regulates Adipogenesis (Lewis, et.al.) Tumor Necrosis Factor Alpha Increases Collagen Accumulation And Proliferation In Intestinal Myofibroblasts Via TNF Receptor 2 (Theiss, et. al.) Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis (Thibault) In vitro and In vivo Pharmacokinetic-Pharmacodynamic Relationships for the Trisubstituted Aminopurine Cyclin-Dependent Kinase Inhibitors Olomoucine, Bohemine and CYC202 (Workman) Development of a High Level Drug Screening Assay for the Detection of Changes in Tau Levels-Proof of Concept with HSP90 Inhibitors (Dickey) A cell-based immunocytochemical assay for monitoring kinase signaling pathways and drug efficacy (Olive, et. al.) In vitro and In vivo Pharmacokinetic-Pharmacodynamic Relationships for the Trisubstituted Aminopurine Cyclin-Dependent Kinase Inhibitors Olomoucine, Bohemine and CYC202 (Workman, et. al.) A 384-well cell-based phospho-ERK assay for dopamine D2 and D3 receptors (Wong) Proteinase-Activated Receptor-2 Induction by Neuroinflammation Prevents Neuronal Death during HIV Infection (Power, et. al.) Phosphorylation Regulates KSR1 Stability, ERK Activation, and Cell Proliferation (Lewis, et. al.) Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP (White, et. al.) Nuclear Factor of Activated T-Cells and Serum Response Factor Cooperatively Regulate the Activity of an å-Actin Intronic Enhancer (Hill-Eubanks, et. al.) The Molecular Scaffold KSR1 Regulates the Proliferative and Oncogenic Potential of Cells (Lewis, et. al.) p38 MAPK activation elevates serotonin transport activity via a traffickingindependent, PP2A-dependent process (Blakely, et. al.) 45 Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib (Settleman, Haber, et. al.) The Molecular Scaffold KSR1 Regulates the Proliferative and Oncogenic Potential of Cells (Lewis, et. al.) Effect of Drotrecogin Alfa (activated) on Human Endothelial Cell Permeability and Rho Kinase Signaling (Vlahos, Liu, et. al.) Intracellular and Surface Distribution of Monocyte Tissue Factor. Application to Intersubject Variability (Egorina, et. al.) Transactivation of Epidermal Growth Factor Receptor Mediates Catecholamine-Induced Growth of Vascular Smooth Muscle (Faber, et. al.) ON-CELL WESTERNS Prostate cancer cell proliferation In Vitro is modulated by antibodies against GRP 78 isolated from patient serum (Gonzalex-Gronow, et. al.) Researchers Develop A Novel High-Throughput Assay for Tracking GPCR Internalization using Infrared Fluorescence. 1157k (Miller) Protein Array Analysis NEW! Quantitative Fluorescence Imaging Analysis for Cancer Biomarker Discovery: Application to B-Catenin in Archived Prostate Specimens (Huang, et. al.) Protein Microarrays using Odyssey infrared imaging system - A powerful tool for multiplexing analysis of cytokines (Siddiqui) Age-Dependent Cell Death and the Role of ATP in Hydrogen PeroxideInduced Apoptosis and Necrosis (Miyoshi, et al.) Research team led by Dr. Emanuel Petricoin publishes new methodology for analyzing reverse phase arrays. 426k (Petricoin, et. al.) Competition on nitrocellulose-immobilized antibody arrays: From bacterial protein binding assay to protein profiling in breast cancer cells (Sakanyan, et. al.) Antibodies Immobilized as Arrays to Profile Protein Post-translational Modifications in Mammalian Cells (Chin, et. al.) Arginine Operator Binding by Heterologous and Chimeric ArgR Repressors from Escherichia coli and Bacillus Stearothermophilus (Sakanyan, et. al.) Array assessment of phage-displayed peptide mimics of Human Immunodeficiency Virus type 1 gp41 immunodominant epitope: Binding to antibodies of infected individuals (Sakanyan, et. al.) Dissecting DNA-protein and protein-protein interactions involved in bacterial transcriptional regulation by a sensitive protein array method combining a near-infrared fluorescence detection (Sakanyan, et. al.) 46 PUBBLICAZIONI CELL PROLIFERATION ASSAY Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752 (Smolen, et. al.) COOMASSIE Assessing Detection Methods for Gel-Based Proteomic Analyses (Harris, et. al.) Technical innovations for the automated identification of gel-separated proteins by MALDI-TOF mass spectrometry (O. Jahn, et. al.) Characterization of the Munc13-calmodulin interaction by photoaffinity labeling (O. Jahn , et al) Quantitation of protein on gels and blots by infrared fluorescence of Coomassie blue and Fast Green (Luo S., et al.) The E22K Mutation of Myosin RLC that Causes Familial Hypertrophic Cardiomyopathy Increases Calcium Sensitivity of Force and ATPase in Transgenic Mice (Szczesna-Cordary, et.al.) CARMIL is a Potent Capping Protein Antagonist: Identification of a Conserved CARMIL Domain That Inhibits the Activity of Capping Protein and Uncaps Capped Actin Filaments (Uruno, et. al.) Structural Basis for the Cytoskeletal Association of Bcr-Abl/c-Abl (Sattler, Superti-Furga, et. al.) Molecular Imaging A Systematic Approach to the Development of Fluorescent Contrast Agents for Optical Imaging of Mouse Caner Models (Kovar, et. al.) Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo (Adnreev, et. al.) Biomimetic Amplification of Nanoparticle Homing to Tumors (Simberg, et. al.) Near Infrared Technology and Optical Agents For Molecular Imaging (Mike Olive) The LI-COR Odyssey® as a Near Infrared Imaging Platform for Animal Models of Alzheimer’s Disease. 2006k (Skoch and Bacskai) Tissue Section Imaging GalR1, but not GalR2 or GalR3, levels are regulated by galanin signaling in the locus coeruleus through a cyclic AMP-dependent mechanism (Picciotto, et. al.) Researchers develop high throughput infrared immunostaining method for rapid and detailed evaluation of GPCR’s in mouse brain (Kearn) 47 EMSA Negative Regulation of Inducible Nitric-oxide Synthase Expression Mediated through Transforming Growth Factor-ß-Dependent Modulation of Transcription Factor TCF11 (Berg, et. al.) Vasoactive intestinal peptide transactivates the androgen receptor through a PKA-dependent extracellular signal-regulated kinase pathway in prostate cancer LNCaP cells (Xie, et. al.) Rational Design of p53, an Intinsically Unstructured Protein, for the Fabrication of Novel Molecular Sensors (Matsumur, et. al.) cAMP-responsive Element in TATA-less Core Promoter is Essential for Haploid-specific Gene Expression in Mouse Testis (Nozaki, et. al.) Hox Proteins Functionally Cooperate with the GC Box-binding Protein System through Distinct Domain (Kuroiwa, et. al.) Cyclooxygenase-2-dependent and -independent effects of celecoxib in pancreatic cancer cell lines (Philip, et. al.) cAMP-Responsive Element in TATA-Less Core Promoter is Essential for Haploid-Specific Gene Expression in Mouse Testis (Nozaki, et. al.) SMAD6S Regulates Plasminogen Activator Inhibitor-1 Through a PKC-b Dependent Up-Regulation of TGF-b (Grinnell, et. al.) Electrophoretic mobility shift assay: Gel imaging was carried out using the Odyssey Infrared Imaging System (LI-COR) at a wavelength of 700 nm (Somboonthum, et. al.) ELISA/FLISA Comparative Antibody Titers Using A Microtiter Plate Assay Versus Dot Blotting on Nitrocellulose (Gerthoffer) siRNA Isoform Selective Effects of the Depletion of Arfs1-5 on Membrane Traffic (Kahn, et. al.) ADDITIONAL APPLICATIONS Discovery of a mRNA mitochondrial localization element in Saccharomyces cerevisiae by nonhomologous random recombination and in vivo selection (Liu & Liu) Light and Metabolic Signals Control the Selective Degradation of Sucrose Synthase in Maize Leaves during Deetiolation (Qui, et. al.) 48 PUBBLICAZIONI Near-Infrared Fluorescence Enhancement Using Silver Island Films (Anderson, et. al.) Odyssey Imaging System Used As Platform For Epithelial Cell Research. (Vogelmann, et. al.) Fractionation of the Epithelial Apical Junctional Complex:Reassessment of Protein Distributions in Different Substructures (Nelson, et. al.) 1526k 49 PRODOTTI PER IMAGING INFRAROSSO IMAGING INFRAROSSO L'analisi quantitativa dell'espressione proteica PRODOTTI PER IMAGING INFRAROSSO FLUOROFORI COMPATIBILI CON ODYSSEY PERFORMANCE ODYSSEY CHANNEL ++ 700 IRDye™ 800 +++ 800 Alexa Fluor® 647 +/++ 700 Alexa Fluor 660 ++ 700 Alexa Fluor® 680 +++ 700 Alexa Fluor 700 ++ 700 Alexa Fluor® 750 ++ 700/800* Atto 680 DYE/STAIN IRDye™ 700DX ® ® ++ 700 Coomassie® +++ 700 Cy™ 5 +/++ 700 ++ 700 ++ 700** (traditional or colloidal) Cy™ 5.5 DDAO Phosphate (alkaline phosphatase substrate) DRAQ5™ +++ 700 NBT/BCIP ++ 700** Qdot® 705 +/++ 700 Qdot® 800 +/++ 700/800* SYTO®-60 ++ 700/800* TO-PRO-3® ++ 700 TOTO-3 ++ 700 ++ 700 ® Trypan Blue Giallo: Fluorofori prodotti da LI-COR * Il segnale appare in entrambi i canali ** Potrebbe non essere quantitativo Performance: +++ Eccellente ++ Molto buono + Buono 51 GUIDA AI PRODOTTI LI-COR STRUMENTI FE3 09201F0 FE3 09201MP ODYSSEY INFRARED IMAGING SYSTEM Sistema di acquisizione ed analisi di immagine di membrane Composto da: Lettore infrarosso Odyssey con doppio laser a 685 nm e 785 nm; Odyssey Application Software per acquisizione, analisi e stampa delle immagini (1 licenza) MOUSE POD Dispositivo accessorio per l’analisi in vivo. Dotato di 3 vani di alloggiamento per piccoli animali (topi o piccoli ratti) con sistema di riscaldamento dell’aria per il mantenimento della temperatura corporea dell’animale e completamente integrabile con sistema di anastesia a gas (non fornito); Software Odyssey SAI module, per l’analisi dell’imaging In Vivo Mouse Pod Odyssey Infrared Imaging System 52 PRODOTTI PER IMAGING INFRAROSSO SOFTWARE FE3 500000 ODYSSEY APPLICATION SOFTWARE Software per acquisizione, analisi e stampa delle immagini (1 licenza) FE3 500U00 ODYSSEY SOFTWARE UPGRADE Upgrade alla versione più recente di Odyssey Application Software FE3 501000 1 LICENZA AGGIUNTIVA PER APPLICATION SOFTWARE FE3 505000 5 LICENZE AGGIUNTIVE PER APPLICATION SOFTWARE FE3 0920151 FE3 0920155 FE3 570000 LICENZA PER SOFTWARE SITE Licenza per l’uso dei software Odyssey-Licor su un numero illimitato di Personal Computer IN-CELL WESTERN SOFTWARE (ICW) Software per l’analisi dei dati di In-Cell Western ODYSSEY SAI MODULE Software di supporto per l’analisi di Imaging In Vivo 53 ACCESSORI ODYSSEY FE3 0926700 SILICON MAT 13X13 CM FE3 0926700 SILICON MAT 22X22 CM FE3 0926701 4” SOFT ROLLER FE3 720000 1 MP ALIGNEMENT GUIDE FE3 722000 6 MP ALIGNEMENT GUIDE MOUSEPOD FE3 097901 MOUSE NOSECONE FE3 097902 RAT NOSECONE PROTEIN ARRAY FE3 300520 FE3 300062 FE3 300620 NITROCELLULOSE SLIDES Vetrini con superfi cie in nitrocellulosa per lo spotting di anticorpi o proteine SLIDE INDEXING SYSTEM Supporto per replicazione dello spotting dei vetrini SLIDE ARRAYER REPLICATOR Replicatore per lo spotting dei vetrini FE3 300640 FE3 300660 54 MICROPLATE INDEXING SYSTEM Sistema di supporto per la replicazione del Blotting su piastra WASH AND BLOT STATION Stazione per il lavaggio del replicatore a pins FE3 300680 LINT FREE BLOT PAPER (5 cm x 31 cm) FE3 300700 PIN CLEANING SOLUTION (30 ml) FE3 300720 REPLACEMENT PINS PRODOTTI PER IMAGING INFRAROSSO VASCHETTE PER INCUBAZIONE WESTERN BLOT FE3 2997101 WESTERN INCUBATION BOX SMALL, 1 SCATOLA FE3 2997105 WESTERN INCUBATION BOX SMALL, 5 SCATOLE FE3 2997201 WESTERN INCUBATION BOX MEDIUM, 1 SCATOLA FE3 2997205 WESTERN INCUBATION BOX MEDIUM, 5 SCATOLE FE3 2997210 WESTERN INCUBATION BOX MEDIUM0, 10 SCATOLE FE3 2997301 WESTERN INCUBATION BOX LARGE, 1 SCATOLA FE3 2997305 WESTERN INCUBATION BOX LARGE, 5 SCATOLE FE3 2997310 WESTERN INCUBATION BOX LARGE, 10 SCATOLE FE3 2997401 WESTERN INCUBATION BOX EXTRA LARGE, 1 SCATOLA FE3 2997405 WESTERN INCUBATION BOX EXTRA LARGE, 5 SCATOLE FE3 2997410 WESTERN INCUBATION BOX EXTRA LARGE, 10 SCATOLE REAGENTI ANTICORPI SECONDARI FE3 09226220 IRDye 680 GOAT ANTI MOUSE IgG, 0.5 mg FE3 09226221 IRDye 680 GOAT ANTI RABBITIgG, 0.5 mg FE3 09226210 IRDye 800 CW GOAT ANTI MOUSE IgG, 0.5 mg FE3 09226211 IRDye 800 CW GOAT ANTI RABBIT IgG, 0.5 mg FE3 322120 IRDye 800 CW DONKEY ANTI MOUSE IgG, 0,5 mg FE3 322130 IRDye 800CW DONKEY ANTI RABBIT IgG, 0,5 mg FE3 322140 IRDye 800 CW DONKEY ANTI GOAT IgG, 0,5 mg FE3 322220 IRDye 680 DONKEY ANTI MOUSE IgG. 0,5 mg FE3 322230 IRDye 680 DONKEY ANTI RABBIT IgG, 0,5 mg FE3 332224 IRDye 680 DONKEY ANTI GOAT IgG, 0,5 mg WESTERN BLOTTING FE3 0927101 10 X ORANGE LOADING DYE FE3 0928400 PROTEIN MARKER FE3 0927400 BLOCKING BUFFER 1-PACK 500 ml FE3 092403 BLOCKING BUFFER 3-PACK 3X500 ml 55 FE3 092410 BLOCKING BUFFER 10-PACK 10X500 ml FE3 310800 BULK BUFFER MEMBRANE KIT FE3 100000 NYLON MEMBRANES FE3 310900 ODYSSEY NITRO MEMBRANE 10 PK FE3 310920 ODYSSEY NITRO MEMBRANE 3M R0LL FE3 310500 ODYSSEY WESTERN KIT 1 FE3 310510 FE3 310580 56 Kit composto da 10 confezioni da 500 ml di blocking buffer e da 1 rotolo di millipore Immobilon PVDF (3 m x 26.5 cm) Kit per Western Blot contenente: IrDye 800CW Goat Anti-Mouse secondary antibody (25 μl, 1 mg/ml) IrDye 680 Goat Anti-Rabbit secondary antobody (25 μl, 1 mg/ml) 500 ml Odyssey Blocking Buffer 10 membrane Immobilon FL PVDF ODYSSEY WESTERN KIT 2 Kit per Western Blot contenente: IrDye 800CW Goat Anti-Rabbit secondary antibody (25 μl, 1 mg/ml) IrDye 680 Goat Anti-Mouse secondary antibody (25 ul, 1 mg/ml) 500 ml Odyssey Blocking Buffer 10 membrane Immobilon FL PVDF ODYSSEY WESTERN KIT 3 Kit per Western Blot contenente: IrDye 800CW Goat Anti-Mouse secondary antibody (25 μl, 1 mg/ml) IrDye 680 Goat Anti-Rabbit secondary antobody (25 μl, 1 mg/ml) 500 ml Odyssey Blocking Buffer 10 Membrane Odyssey in nitrocellulosa FE3 310600 ODYSSEY WESTERN KIT 4 FE3 400040 PROTEIN LOADING BUFFER Kit per Western Blot contenente: IrDye 800CW Goat Anti-Rabbit secondary antibody (25 μl, 1 mg/ml) IrDye 680 Goat Anti-Mouse secondary antobody (25 μl, 1 mg/ml) 500 ml Odyssey Blocking Buffer 10 Membrane Odyssey in nitrocellulosa PRODOTTI PER IMAGING INFRAROSSO FE3 400200 PBS DRY PACK FE3 40012B TRIS-GLYCINE DRY PACK FE3 40016B TRIS-GLYCINE SDS DRY PACK FE3 340030 NEWBLOT NITRO STRIPPING BUFFER FE3 340032 NEWBLOT PVDF STRIPPING BUFFER FE3 340040 SMARTGEL 7,5% 100 ml FE3 340040 SMARTGEL 7,5% 500 ml FE3 340040 SMARTGEL 10% 100 ml FE3 340040 SMARTGEL 10% 500 ml FE3 340040 SMARTGEL 12,5% 100 ml FE3 340040 SMARTGEL 12,5% 500 ml IN-CELL WESTERN FE3 310700 ODYSSEY ICW KIT 1 FE3 310720 ODYSSEY ICW KIT 2 kit per ICW contenente: IRDye 800 CW Goat Anti-Mouse secondary antibody (0.5 mg) Odyssey Blocking Buffer (4x500 ml) Draq5 TM (100 ml) Sapphire700 TM Stain (100 ml) (reagenti per 40 piastre da 96 pozzetti o 10 piastre da 384 pozzetti) kit per ICW contenente: IRDye 800 CW Goat Anti-Rabbit secondary antibody (0.5 mg) Odyssey Blocking Buffer (4x500 ml) Draq5 TM (100 ml) Sapphire700 TM Stain (100 ml) (reagenti per 40 piastre da 96 pozzetti o 10 piastre da 384 pozzetti) STAINING E MARCATURA DI PROTEINE ED ANTICORPI FE3 0928040 HIGH MOLECULAR WEIGHT IRDye 800 CW PROTEIN LABELLING KIT Kit per la marcatura di 3x1.0 mg di proteina Adatto per proteine da 45 a 194 kDa FE3 0928042 LOW MOLECULAR WEIGHT IRDye 800CW PROTEIN LABELLING KIT Kit per la marcatura di 3x1.0 mg di proteina Adatto per proteine da 10 a 45 kDa 57 Overlay 700 nm (normalization) 800 nm (pERK) Total DRAQ5/ ERK Sapphire700 Total DRAQ5/ ERK Sapphire700 Total DRAQ5/ ERK Sapphire700 Metodo di Normalizzazione 0 .9 Background pERK/ERK pERK/DRAQ5+Sapphire 0 .8 0.8 0 .6 0 .3 0 24 Rel. Flluorescence Intensity 800 Ch Integrated Intensity 1 .2 18 Fold-activation of ERK pERK/ERK pERK/DRAQ5+Sapphire 1 8.3 12 6 0 Confronto dei Metodi di Normalizzazione L’attivazione di ERK è stata indotta in cellule A431 stimolando con EGF. Fosfo-ERK è stato misurato ad 800 nm usando un anticorpo anti fosfo-ERK e un secondario marcato con IRDye800. la normalizzazione è stata eseguita in due diversi modi: quantificando la quantita di ERK totale con un anticorpo anti ERK ed un secondario marcato con IRDye 680, oppure con colorazione con DRAQ5 e Sapphire700. Entrambi i metodi garantisco lo stesso risultato di normalizzazione dell’espressione di fosfo-ERK. 58 PRODOTTI PER IMAGING INFRAROSSO 19 .9 FE3 0928044 MICROSCALE MOLECULAR WEIGHT IRDye 800CW PROTEIN LABELLING KIT Kit per la marcatura di 3x1.0 mg di proteina Adatto per proteine da 10 a 194 kDa FE3 338046 HIGH MOLECULAR WEIGHT IRDye 700DX PROTEIN LABELLING KIT Kit per la marcatura di 3x1.0 mg di proteina Adatto per proteine da 45 a 194 kDa FE3 338048 LOW MOLECULAR WEIGHT IRDye 700DX PROTEIN LABELLING KIT Kit per la marcatura di 3x1.0 mg di proteina Adatto per proteine da 10 a 45 kDa FE3 338050 MICROSCALE MOLECULAR WEIGHT IRDye 700DX PROTEIN LABELLING KIT Kit per la marcatura di 3x1.0 mg di proteina Adatto per proteine da 10 a 194 kDa FE3 400020 IRDye BLU COOMASSIE, 1 litro Blu Coomassie per lo Staining dele proteine totali FE3 400220 SAPPHIRE TM 700 STAIN, 100 μl per staining di normalizzazione dei ICW FE3 700100 IRDye 700DX INFRARED Dye NHS ESTER (0,5 mg, liofilizzati) FE3 700110 IRDye 700DX INFRARED Dye NHS ESTER (5,0 mg, liofilizzati) FE3 700200 IRDye 800CW INFRARED Dye NHS ESTER (0,5 mg, liofilizzati) FE3 700210 IRDye 800CW INFRARED Dye NHS ESTER (5,0 mg, liofilizzati) FE3 720200 IRDye 800RS INFRARED Dye NHS ESTER (0,5 mg, liofilizzati) FE3 720210 IRDye 800RS INFRARED Dye NHS ESTER (5,0 mg, liofilizzati) IRDye® 700DX in PBS 100 100 ACQUA 1XPBS 210,000 165,000 165,000 680 689 689 EM MAX (nm) 687 700 700 MW (g/mole) 1954 1954 1954 90 IRDye 700DX 90 Emission 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 550 600 650 700 750 0 800 Wavelength (nm) 59 Relative Fluorescence METANOLO ABS MAX (nm) Relative Absorbance DILUENTE EXT. COEFF. (M -1 cm -1) Absorbance 300,000 240,000 ACQUA 240,000 1XPBS PBS: METANOLO 270,000 ABS MAX (nm) 778 774 774 777 EM MAX (nm) 794 789 789 791 IRDye® 800CW in PBS MW (g/mole) Absorbance 90 1166 1166 1166 1166 100 100 IRDye 800CW 90 Emission 80 80 70 70 60 60 50 50 40 40 30 30 20 20 Relative Fluorescence METANOLO EXT. COEFF. (M -1 cm -1) Relative Absorbance DILUENTE 10 10 0 600 650 700 750 800 850 0 900 Wavelength (nm) 300,000 200,000 ACQUA 200,000 1XPBS PBS: METANOLO 270,000 ABS MAX (nm) 770 767 767 770 EM MAX (nm) 786 786 786 786 IRDye® 800RS in 1x PBS MW (g/mole) 100 100 Absorbance 90 90 Emission 961 961 961 961 IRDye 800RS 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 600 650 700 750 Wavelength (nm) IN-VIVO IMAGING FE3 0926446 IRDye 800CW EGF OPTICAL PROBE Recombinant EGF polypeptide, contenente 54 residui aminoacidici coniugati con il fluoroforo IRDye 800CW Due topi atimici, con tumore, iniettati con 0,9% di soluzione salina (sinistra) e con 1 nmol di EGF marcato con IRDye 800 (destra), 72 ore prima dell’imaging su Odyssey e Mouse-POD. 60 PRODOTTI PER IMAGING INFRAROSSO 800 0 850 Relative Fluorescence METANOLO EXT. COEFF. (M -1 cm -1) Relative Absorbance DILUENTE NORTHERN BLOT, SOUTHERN BLOT ED EMSA FE3 322310 IRDye 680 LABELED STREPTAVIDIN, 0,5 mg FE3 322300 IRDYE 800CW STREPTAVIDIN, 0,5 mg FE3 079210 OLIGO EMSA PER p53 (IrDye 700), 50 nM FE3 079220 OLIGO EMSA PER STAT3 (IrDye 700), 50 nM FE3 079230 OLIGO EMSA PER CREB (IrDye 700), 50 nM FE3 079240 OLIGO EMSA PER NFKB (IrDye 700), 50 nM FE3 079250 OLIGO EMSA PER AP-1 (IrDye 700), 50 nM FE3 079260 OLIGO EMSA PER SP-1 (IrDye 700), 50 nM FE3 079270 OLIGO EMSA PER E2F (IrDye 700), 50 nM FE3 079280 OLIGO EMSA PER EGR (IrDye 700), 50 nM FE3 079290 OLIGO EMSA PER HIF-1 (IrDye 700), 50 nM FE3 079300 OLIGO EMSA PER OCT-1 (IrDye 700), 50 nM FE3 079310 OLIGO EMSA PER PAX-5 (IrDye 700), 50 nM FE3 079320 OLIGO EMSA PER YY1/NFE1 (IrDye 700), 50 nM Analisi nell’infrarosso dell’EMSA di AP1 AP1-EMSA è stato eseguito per valutare i cambiamenti del legame di AP1 in tre diversi trattamenti su cellule HeLa. HeLa controllo, HeLa a 2 ore (dati non mostrati) e HeLa a 4 ore in risposta dopo stimolazione con siero. Gli estratti nucleari sono stati caricati a diluizioni seriali e identificati usando un oligo marcato con IRDye 700 contenente la sequenza del AP1 binding domain. 61 CONTATTARE M-MEDICAL Centralino Area Tecnico-Scientifica Area Commerciale Servizi Commerciali Tel. 02 93 991 90 Fax 02 93 991 001 [email protected] Tel. 02 93 991 005 Tel. 02 93 991 097 Tel. 02 93 991 226 Fax 02 93 991 001 Gestione Ordini Tel. 02 93 991 328 Tel. 02 93 991 370 Tel. 02 93 991 519 Tel. 02 93 991 526 Fax 02 93 991 001 Assistenza Tecnica Tel. 02 93 991 368 Fax 02 93 991 001 Sito Internet www.mmedical.it 63 Evoluzione nella Ricerca Le Guide di M-MEDICAL La Raccolta Le Guide di M-MEDICAL *8,'$$// $&48$385$ / DSSURFFLRDOODSXULILFD]LRQHGHOO DFTXD IL FLUSSO LAMINARE Principi teorici, definizioni, classificazioni, applicazioni e utilizzi pratici Le Guide di M-MEDICAL GUIDA ALL'IMAGING INFRAROSSO L'analisi quantitativa dell'espressione proteica PCR QUANTITATIVA Guida Metodologica ed Applicativa alla PCR Quantitativa Indice