Nuove potenziali strategie di sensibilizzazione a molecole di nuova generazione: analisi del ruolo delle serin-­‐treonin chinasi CK2 e GSK3 Francesco Piazza Department of Medicine Hematology and Clinical Immunology University of Padova ITALY SIES – DISCUTIAMONE INSIEME “FARMACORESISTENZA” 20 MARZO 2014 FIRENZE, ITALY La farmacoresistenza •  Meccanismi vari 1.Resistenza singola>>>polichemioterapia 2.FenoGpo MDR (resistenza mulGpla) Overespressione di P-­‐gp 3.Mutazioni geneGche pathways bersaglio Overespressione molecole proliferaGve/anGapoptoGche (es. delezione PTEN, mutazioni PI3K) Esempio classico in ematologia mutazioni: BCR-­‐ABL DifferenG meccanismi di farmacoresistenza possono impa[are in modo differente a seconda se il farmaco è “convenzionale” o di nuova generazione Nature Reviews Cancer 13, 714–726 (2013) DifferenG meccanismi di farmacoresistenza possono impa[are in modo differente a seconda se il farmaco è “convenzionale” o di nuova generazione Nature Reviews Cancer 13, 714–726 (2013) Farmacoreistenza: problemaGca pressante in ematologia e in oncologia JCO 2009 vol. 27 no. 3, 469-­‐471. Inibitori del proteasoma •  Bortezomib (Velcade) •  Approvato per la terapia del mieloma mulGplo e del linfoma mantellare Nature 480, S40–S42 (15 December 2011) Il Bortezomib causa citotossicità inibendo NF-­‐kB e aevando La via mitocondriale dell’apoptosi L’inibizione dle proteasoma sinergizza con l’inibizione della via aggresoma-­‐autofagia •  Resistenza a inibitori del proteasoma (bortezomib):  Mutazioni di PSMB5 (subunità β5)  Alterazioni vie di risposta allo stress  Up regolazione di meccanismi anIapoptoIci Mechanisms of resistance and susceptibility to proteasome inhibition.
Kumar S , and Rajkumar S V Blood 2008;112:2177-2178
©2008 by American Society of Hematology
Sites of action of proteasome inhibitors.
Ruschak A M et al. JNCI J Natl Cancer Inst 2011;jnci.djr160
© The Author 2011. Published by Oxford University Press.
COMPLEXITY OF MM GENESIS AND EVOLUTION EXTRA-­‐BM MM BM (micro)environment Memory B Ly Long-­‐lived PC Post-­‐GC B Ly MGUS SMM CSR t G1-­‐S passage Derangement (CyclinD) >>Myc EpigeneGcs NF-­‐kB Non CSR t TP53 Ras EpigeneGcs MM Increased nutrients needs Increased metabolic acGvity Non-­‐CSR t(Myc) Gains EpigeneGcs KNOWN GENETIC LESIONS IN MM • 
Inherited variaQons SNPs hyperdyploid D1+D2 • 
hyperdyploid D2 Primary geneQc events hyperdiploid D1 1. 
IGH@translocaQons partners   t(4;14) FGFR3 and MMSET   t(6;14): CCND3   t(11; 14): CCND1   t(14;16): MAF   t(14; 20): MAFB 2. Hyperdiploidy   Trisomies of chromosomes 3, 5, 7, 9, 11, 15, 19 and 21 HYPERDIPLOID Trisomies of odd • 
1. 
2. 
3. 
4. 
5. 
Secondary geneQc events Gains Seconday translocaQons EpigeneQc events Molecular hallmarks DeleQons None 11q13 CCND1 6p21CCND3 4p16 FGFR37MMSET 16q23 cMAF NON-­‐HYPERDIPLOID 14q32 translocaitons chromosomes Cis and Trans-­‐
Trans-­‐dysregulaGon dysregulaGon of CCND1 of CCNDs Morgan GJ, Nature Rev Cancer, 2012 Chesi M, Bergsagel L, Int J Hematol, 2013 Whole exome/genome sequencing unravels pathway dysregulaGon in MM Frequently mutated genes • 
NRAS, KRAS, FAM46C, DIS3, TP53, CCND1, PNRC1, ALOX12B, HLA-­‐A, MAGED-­‐1 •  Pathways RNA processing and protein homeostasis (DIS3, FAM46C, XBP1*, LRRK2) •  IdenGcal mutaGons: gain of funcGon oncogenes IRF4, PRDM1 Clinically relevant mutaGons BRAF •  Gene set mutaGons NF-­‐κB pathway (BTRC, CARD11, CYLD, IKBIP, IKBKB, MAP3K1, MAP3K14, RIPK4, TLR4, TNFRSF1A, TRAF3) Histone modifying enzymes MLL, MLL2, MLL3, WHSC1, WHSC1L1>>> HOXA9 overexpression *not staGsGcally significant Chapman MA et al. Nature 2011 NF-κB mutations in MM
Activation: intrinsic
p50 IKBα IKKβ p65 CLASSICAL:
Aberrations of: CYLD
TACI
NFκB1
TRAF2, 3
cIAP1,2
NIK
NIK RelB NFKB2 p52 ALTERNATIVE:
Truncation of
NFκB2
TRAF3
NIK
20% ca. di
patients &
cell lines
Keats J et al., Cancer Cell 12: 95-97 (2007)
Annunziata C et al., Cancer Cell 12: 115-130 (2007)
ER stress and Unfolded Protein Response Ischemia
Endoplasmic
reticulum
BiP
BiP
PERK
IRE1
BiP
ATF6
P
eIF2a
>>>XBP1-short
>>>ERAD
>>>CHAPERONES
High-rate
protein
synthesis
Oxydative
stress
Gene mutations
>>BiP
>>GADD153
>>XBP1
PROTEIN SYNTHESIS
>>>ATF4
>>BiP
Adaptation=survival
UPR “early” or “chronic”
Overwhelming stress=apoptosis
UPR “terminal”
Antigen
Terminal plasma cell
differentiation
Clonal
expansion
Resting B-lymphocytes (long lived)
Stressed to work
Increased Ig secretion
Productive stress ?
Stressed to kill
Exuberant Ig secretion
Proteasome insufficiency and
Accumulation of poly-Ub proteins
Increased metabolic, energetic
and redox demand
Fatal stress ?
Adapted from: Cenci S, Sitia R FEBS Letters 2007, 581:3652.
XBP1: what role in plasma cell malignancies? •  ER stress UPR -­‐ XBP1 overexpression and its inhibiGon -­‐ XBP1 negaGve myeloma progenitor cells. XBP1s directs a compensatory UPR polyA XBP1u XBP1 mRNAu IRE1α
polyA XBP1s XBP1 mRNAs XBP1s-­‐dependent transcripGonal program COPING WITH ER STRESS Hetz C Nat Rev Mol Cell Biol 2013 ? The differenQaQon and stress response factor XBP-­‐1 drives mulQple myeloma pathogenesis.
-  Transcription factor regulates th “unfolded protein
response”
-  Indispensable for PCs ontogenesis
-  2 transcripts from alternative splicing
-  Overexpression of the spliced (XBP-1s) form in MGUS
(50%) and MM 70%
Carrasco et al Cancer Cell 2007
Animal Model of Multiple Myeloma: XBP1s Trangenic Mice
Carrasco D et al. Cancer Cell 2007 InhibiGon of XBP1s generaGon as a therapeuGc strategy in MM polyA ? XBP1u XBP1 mRNAu IRE1α
IRE1 inhibitors polyA XBP1 mRNAs XBP1s TERMINAL UPR APOPTOSIS XBP1s-­‐dependent transcripGonal program COPING WITH ER STRESS Mimura N et al. Blood 2012 Hetz C et al. Nat Rev Drug Discov 2013 A role for XBP1 in the sensiGvity to proteasome inhibitors? PIs (bortezomib) Leung-­‐Hagstejin C et al. Cancer Cell 2013 BiP
BiP
PERK
ATF6
P
eIF2a
>>>XBP1-LONG
Davenport et al 2007 Obeng 2006 BiP
>>>XBP1-short
>>BiP
>>GADD153
>>XBP1
PROTEIN SYNTHESIS>>BiP
>>>ATF4
>>>ERAD
>>>CHAPERONES
Adaptation=survival
UPR “early” or “chronic”
Overwhelming stress=apoptosis
UPR “terminal”
MM cell “tumor progenitors” PRE-­‐PLASMABLASTS CD20+ XBP1 – De-­‐commitment to secretory Ig producQon PIs RESISTANT BULK of MM cells XBP1 + Commitment to secretory Ig producQon PIs SENSITIVE Leung-­‐Hagstejin C et al. Cancer Cell 2013 FARMACORESISTENZA (specialmente ai nuovi farmaci) •  Meccanismi collegaG alla “ONCOGENE ADDICITON” (assuefazione ad un oncogene) •  Meccanismi dipendenG dal fenoGpo “NON-­‐ONCOGENE ADDICTED” (assuefazione a upregolazione di molecole/pathways di per sé non oncogeniche) Protein Kinase CK2
PKCK2 • Serine-threonine kinase
ubiquitously expressed
NON ONCOGENE ADDICITON • Is necessary and instrumental
for cell survival
• Has over 300 substrates
Solimini N et al. Cell. 2007 130(6):986-­‐8. Luo Jand
et modified
al. Cell. from:
2009 136(5):823-­‐37. W. Litchfield Biochimica et Biophysica Acta 1784 (2008) 33–47
Adapted
James
S. Duncan, David
PKCK2 is a Ser-­‐Thr Kinases That Regulates oncogene and Non-­‐oncogene addicGon related pathways • 
• 
• 
• 
NFκB MYC PI3K/AKT/MTOR ER stress/IRE1/XBP1 PKCK2 Piazza F et al Leukemia 2012 CK2 and NF-­‐κB: a liason not enough explored CK2 Is a p65 Kinase Responsible for NF-­‐kappaB AcQvaQon in physiological and pathological condiQons P CK2
p65 p50 NF-­‐κB CK2 Is a C-­‐Terminal IkappaB Kinase Responsible for NF-­‐kappaB AcQvaQon during the UV Response. UV p50 p65 CK2
IrradiaQon NF-­‐κB P P IκB TNFα
Wang D et al. Journal Biol Chem 2000 Kato T et al Mol Cell 2003 Ub
P
IκB
p50
Proteasome
IκB
p65
CK2 P
Piazza et al. Blood,108: 1698. (2006)
P
P
STAT3
P P
STAT3
P
SRC
STAT3
STAT3
JAK
P
p50 p65
UPSTREAM SIGNALS (?)
CK2 inhibitor CX-­‐4945 CK2
Ser 529
Ser 536
NF-­‐κB
p-­‐STAT3 S727 STAT3 β-­‐acQn Tyr 705
Ser 727
STAT3
p-­‐NF-­‐κB p65 S529 NF-­‐κB p65 β-­‐acQn PROLIFERATION
SURVIVAL
RESISTANCE TO CHEMOTHERAPY
INFLAMMATION
ANGIOGENESIS
Piazza FA et al Blood 2006 Manni S et al. PLOS One 2013 Unfolded
client kinase
Folded
client kinase
HSP90
CK2
HSP90
CK2
cdc37
P
cdc37
cdc37
Gene amplificaGon In MM subsets Ischemia
Endoplasmic
reticulum
Gene mutations
BiP
BiP
PERK
IRE1
ATF6
PROTEIN SYNTHESIS
>>>ATF4
>>BiP
Adaptation=survival
UPR “early” or “chronic”
CK2
BiP
P
eIF2a
>>>XBP1-short
>>>ERAD
>>>CHAPERONES
High-rate
protein
synthesis
Oxydative
stress
>>BiP
>>GADD153
>>XBP1
?
Overwhelming stress=apoptosis
UPR “terminal”
CK2 è in parte nel RE, è akva dop ER stress e la sua inibizione causa alterazioni della UPR C
A
B
CK2α SERCA MERGE un TG p-­‐Ser 13 CDC37
U-­‐266 CDC37
β-acQn * 200 175 150 125 100 75 50 25 Kinase acQvity of CK2α (%) TG: INA-­‐6 K27 5 μM: -­‐ + IRE1α
BIP/GRP78 p-­‐Ser 51 EIF2α
-­‐ + -­‐ +
micro c EIF2α
CHOP/GADD153 Cl PARP β-acQn CK2α
rS6 kinase GAPDH
un 3h 6h 24h PBMC IRE1α
BIP/GRP78 CK2α
β-acQn p-­‐Ser 51 EIF2α
EIF2α
CHOP/GADD153 CK2α
β-acQn p-­‐Thr 981 PERK PERK CK2α
Cl PARP β-acQn 1,2 1 0,8 0,6 0,4 0,2 0 * F
2,0 *
1,8 CK2α siRNA 1,6 XBP1u 500bp 400bp XBP1s 1,4 1,2 1 *
*
0,8 0,6 0,4 0,2 0 CK2α
scr CK2α siRNA scr mRNA levels XBP1s/XBP1u (arbitrary units) CK2α: E
+ -­‐ -­‐ + mRNA level scr: CK2α protein levels (arbitrary densitometric units) D
TG 2.5 µM BIP/GRP78 1,2 1 0,8 *
scr CK2α siRNA 0,6 0,4 0,2 0 EDEM CHOP/GADD153 Manni et al.,Clinical Cancer Res 2012 L’inibizione di CK2 sinergizza con inibitori di Hsp90 nell’arrestare la crescita di linee cellulari di MM in vitro e in vivo in un modello di xenotrapianto murino 3H-­‐thymidine-­‐incorporaQon (cpm) K27 50000 GA+K27 40000 30000 20000 10000 0 3H-­‐thymidine-­‐incorporaQon (cpm) 60000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 µM GA 50000 GA+K27 40000 30000 Tumor volume mm3 CI=0.291 60000 350 300 250 200 150 100 50 0 0 VH tTBB COMBO 4 8 12 16 20 24 28 32 days 20000 10000 0 0 1 2 3 4 5 µM Manni S et al. Clin Cancer Res 2012 L’inibizione di CK2 distrugge il complesso tra Hsp90 IRE1a e Cdc37 Input K27: IP: IRE1α
-­‐ + -­‐ + IRE1α HSP90 CDC37 CK2α
β-acQn CK2
Cdc37 P
Hsp90 Compensatory (oncogenic) UPR
IRE1α
Manni S et al. Clin Cancer Res 2012 Coopera con Hsp90 nella UPR nel mieloma? ER Bip IRE1
Bip Bip PERK
ATF6 ? SURVIVAL CK2 CK2 HSP90 K27 GA CDC37 APOPTOSIS INHIBITION OF CK2 CAUSES APOPTOSIS OF MM and MCL CELLS and POTENTIATES THE EFFECT OF BORTEZOMIB Annexin V/CD19 posiQve cells (fold over control) MCL paGents (n=7) 2 * 1,5 1 0,5 0 CX4945 5 µM: -­‐ + ? CK2
bortezomib INHIBITION OF CK2 AND BORTEZOMIB SYNERGIZE TO CAUSE CELL GROWTH ARREST OF MCL CELLS 80 60 40 20 0 0 2 4 6 8 100 CX-­‐4945 80 60 40 20 0 0 2 4 6 8 10 µM 10 µM 100 BZ BZ+K27 80 60 CI=0.16 40 20 0 0 5 100 10 15 20 25 30 nM BZ BZ+CX-­‐4945 80 60 CI=0.016 40 20 0 0 5 10 15 20 25 30 nM H 100 K27 80 60 40 20 0 0 2 4 6 8 100 80 CX-­‐4945 60 40 20 0 0 2 4 6 8 3H-­‐thymidine-­‐incorporaQon (cpm % over untreated) K27 100 80 60 10 µM BZ BZ+K27 CI=0.5 40 20 0 10 µM 3H-­‐thymidine-­‐incorporaQon (cpm % over untreated) F 100 Rec-­‐1 G 3H-­‐thymidine-­‐incorporaQon 3H-­‐thymidine-­‐incorporaQon (cpm % over untreated) (cpm % over untreated) 3H-­‐thymidine-­‐incorporaQon 3H-­‐thymidine-­‐incorporaQon (cpm % over untreated) (cpm % over untreated) E 3H-­‐thymidine-­‐incorporaQon 3H-­‐thymidine-­‐incorporaQon (cpm % over untreated) (cpm % over untreated) Jeko-­‐1 0 5 10 15 20 25 30 35 40 nM 100 80 60 40 20 0 COMBINATION INDEX (CHOU and TALALAY METHOD): BX + K27= 0.16 Jeko1 BZ+ CX4945= 0.016 BX + K27= 0.5 Rec1 (bortezomib resistant) BZ+ CX4945= 0.69 BZ BZ+CX-­‐4945 CI=0.69 0 5 10 15 20 25 30 35 40 nM A Siglo scrambled Bor 11.1% 27.2% M1
M1
siRNA CK2 α+β
siRNA CK2 α+β + Bor 42.7% 21.2% M1
M1
Annexin V Manni S, PLOS One 2013 INA-­‐6 * Annexin V posiQve cells (fold over control) 4 siRNA CK2 α+β: *
♦
3.5 BZ 5 nM: -­‐ -­‐ + +
-­‐ + -­‐ +
CX-­‐4945 5μM: Bcl2 Mcl1 β-­‐acQn p-­‐STAT3 Ser727 STAT3 β-­‐acQn 3 2.5 2 p-­‐NF-­‐κB p65 Ser529 NF-­‐κB p65 β-­‐acQn 1.5 1 -­‐ -­‐ -­‐ -­‐ -­‐ + -­‐ -­‐ + -­‐ -­‐ +
CX-­‐4945 2.5μM: -­‐ -­‐ -­‐ -­‐ + -­‐ -­‐ + -­‐
-­‐ + -­‐
CX-­‐4945 1μM: -­‐ -­‐ -­‐ + -­‐ -­‐ + -­‐ -­‐
+ -­‐ -­‐
BZ 1nM: -­‐ + -­‐ -­‐ -­‐ -­‐ + + + -­‐ -­‐ -­‐
BZ 5nM: -­‐ -­‐ + -­‐ -­‐ -­‐ -­‐ -­‐ -­‐
+ + +
Poly-­‐ubiquiQn
0.5 0 siRNA CK2 α+β: BZ 5 nM: -­‐ -­‐ + +
-­‐ + -­‐ +
CK2α
CK2β
β-­‐acQn Hsp70
β-­‐acQn UPSTREAM SIGNALS ER stress Proteasome inhibiQon PROTEIN DEGRADATION
TURN OVER
CK2
Ser 529
Ser 536
NF-­‐κB
Tyr 705
Ser 727
STAT3
PROLIFERATION
SURVIVAL
RESISTANCE TO CHEMOTHERAPY
INFLAMMATION
ANGIOGENESIS
CK2 inhibitors Collaborate With Proteasome And chaperone inhibitors INHIBITION OF CK2 SHUTS DOWN STAT3, NF-­‐κB IN MCL/MM p<0.05 *
2 #
1,5 1 0,5 -­‐ -­‐ + -­‐ -­‐ + -­‐ -­‐ + p-­‐NF-­‐kB p65 Ser 536 *
2 1,5 1 0,5 0 2 1,5 * 1 0,5 #
2,5 IL-­‐6 mRNA level NF-­‐kB p65 p-­‐STAT3 Ser727 Cyclin D1 p-­‐NF-­‐kB p65 Ser 529 3 0 2 1,5 1 * 0,5 #
0 1 2 #
0,5 1,5 0 CX4945 5 μM: BZ 2.5 nM: mRNA level 1,5 *
1 * 0,5 -­‐ -­‐ + +
-­‐ + -­‐ +
0 2 mRNA level 2 Bcl2 β-­‐acQn mRNA level STAT3 TNF-­‐α
BZ 25nM: 0 mRNA level -­‐ + -­‐ -­‐ + -­‐ -­‐ + -­‐ 3 2,5 mRNA level -­‐ -­‐ -­‐ -­‐ -­‐ -­‐ + + + NOS-­‐2 BZ 15nM: *
3,5 IAP-­‐2 K27 5µM: 4 mRNA level CX4945 2.5μM: 4,5 COX-­‐2 Rec-­‐1 -­‐ -­‐ -­‐ + + + -­‐ -­‐ -­‐ 1,5 1 0,5 *
# 0 CX4945 5 μM: BZ 2.5 nM: -­‐ -­‐ + +
-­‐ + -­‐ +
Schematic representation of mammalian GSK-3α and
GSK-3β.
Doble B W , and Woodgett J R J Cell Sci
2003;116:1175-1186
©2003 by The Company of Biologists Ltd
(A) Regulation of GSK-3β activity by serine phosphorylation.
Doble B W , and Woodgett J R J Cell Sci
2003;116:1175-1186
©2003 by The Company of Biologists Ltd
Journal of Cell Science 2003 116, 1175-­‐1186 GSK3 Espressione di forme fosforilate inibitorie/aevatorie di GSK3 nel MM PBMC
1 2 3 4
nPC
PATIENTS
CELL LINES
1 2 3 4 5 6 7 8 9
U-266 OPM-2 RPMI
8226
INA-6
GSK-3α
GSK-3β
pSer 21 GSK-3α
pSer 9 GSK-3β
β-actin
PATIENTS
7 3
1
GSK-3α
GSK-3β
pTyr 279 GSK-3α
pTyr 216 GSK-3β
β-actin
C
D
GSK-3
total
DAPI
(nuclei)
MERGE
GSK-3
total
OPM2
MM1
INA-6
MM9
U-266
MM10
RPMI
8226
E
DAPI
(nuclei)
MERGE
GSK-3
total
BMMC
DAPI
(nuclei)
MERGE
100
90
80
70
60
50
40
30
20
10
0
SB415286:
(µM)
*
-
*
**
*
2 4 8 12 16
**
2 4 8 12 16
SB415286 4 mM:
*
100
90
80
70
60
50
40
30
20
10
0
INA-6
*
*
-
*
- +
*
*
- +
- +
U-266 RPMI
8226
INA-6
Annexin V negative cells
(% of total cell number)
U-266
100
90
80
70
60
50
40
30
20
10
0
Annexin V negative cells
(% of total cell number)
3H-thymidine
incorporation
(arbitrary units as % of untreated)
Inibitori di GSK3 causano arresto della crescita e apoptosi di cellule di MM 100
90
80
70
60
50
40
30
20
10
0
-
+
normal
PBMC
Inibitori di GSK3 sono efficaci nell’inibire la forma fosforilata in Grosina e aevatoria e inducono apoptosi nonostante auemnG di βcatenina e P-­‐ERK U-266
RPMI-8226
SB216763:
-
-
5mM 10mM
pTyr 279 GSK-3a pTyr 216 GSK-3b GSK-3a GSK-3b PARP
Cleaved-PARP
Smac/DIABLO
n
SB216763 (5mM)
c
n
c
GSK-3a GSK-3b pTyr 279 GSK-3a pTyr 216 GSK-3b b-catenin
pThr 202/Tyr 204 ERK1,2
ERK 1,2
INA-6
SB415286 4 mM:
-
8h
24 h
PARP
Cleaved-PARP
b-actin
PARP
Cleaved-PARP
nucleophosmin
GAPDH
GSK3 Inibitori di GSK3 cooperano con bortezomib nell’indurre citotossicità di cellule di MM INIBITORE GSK3 Annexin V positive cells
(arbitrary units)
B
U-266
A
INIBITORE GSK3 + bortezomib *
7
U-266
*
6
SB415286 (4µM):
BZ (5nM): 5
*
4
-­‐ -­‐ + -­‐ -­‐ + + + n c n c n c n c
3
PARP
Cleaved PARP
2
1
pSer 473 AKT
0
AKT
MCL-1
Nucleophosmin
RPMI-8226
GAPDH
Annexin V positive cells
(arbitrary units)
*
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
SB415286 (4µM):
BZ (5nM):
*
-
+
-
+
+
+
GSK-3α
GSK-3β
GSK-3β
25%
15%
R1
R1
dead cells
(fold increase
arbitrary units)
scr
GSK-3α
*
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
F
*
scr -
+
GSK-3α
+
*
-
dead cells
(fold increase
arbitrary units)
GSK-3β
scr
GSK-­‐3α
E
*
scr scr R1
GSK-3α
GSK-3β
uncleaved PARP
β-actin
*
dead cells
(fold increase
arbitrary units)
2.5
2
1.5
1
0.5
0
siRNA:
BZ (5nM) :
21%
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
scr
GSK-­‐3β
dead cells
(fold increase
arbitrary units)
scr
2.5
2
1.5
1
0.5
0
siRNA:
BZ (5nM) :
R1
GSK-3β
D
BZ (5nM)
GSK-3α
22%
scr GSK-3β
+
+
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
siRNA:
BZ (5nM) :
*
*
BZ (5nM):
siRNA:
dead cells
(fold increase
arbitrary units)
GSK3β
scr
GSK3α
scr
GSK-3α
GSK-3β
uncleaved PARP
β-actin
scr
scr
GSK-3α
GSK-3β
β-actin
GSK-3α
GSK-3β
β-actin
C
B
72h
scr
scr
un
GSK-3β
48h
72h
scr
GSK-3α
un
scr
48h
GSK-3α
A
- + - - - - + + + +
- - scr α/β
α
β
scr α/β
α
β
1 2 3 4 5 6 7 8 9 10
GSK-3α
GSK-3β
pSer 473-AKT
AKT
MCL-1
scr -
α/β
-
scr
+
α/β
+
β-actin
Bortezomib causa aevazione di GSK3 e shi| nel nucleo in cellule di MM untreated
BZ (5nM)
U-266
BZ (5nM):
INA-6
n
+
c
n
c
pSer 21/9 GSK-3α/β
GSK-3α
GSK-3β
PARP
cleaved-PARP
β-actin
% of cells with
cytolsolic-only GSK3
U-266
untreated
BZ 18h (5 nM)
100
80
60
40
20
0
*
*
*
RPMI
8226
INA-6
C
U-266
U-266
SB216763:
-­‐ 5µM 10µM -­‐ BZ (5nM):
-­‐ -­‐ + n
pTyr 279 GSK-3α
pTyr 216 GSK-3β
GSK-3α
GSK-3β
GAPDH
nucleophosmin
c
n
-­‐ c
n
c
n
5µM 10µM + c
n
c
+ n
c
Fbxw7α-­‐ and GSK3-­‐mediated degradaGon of p100 is a pro-­‐
survival mechanism in mulGple myeloma (2012) Luca Busino, Sco[ E. Millman, Luigi Sco[o, Christos A. Kyratsous, Venkatesha Basrur, Owen O’Connor, Alexander Hoffmann, Kojo S. Elenitoba-­‐Johnson & Michele Pagano GSK3 GSK3 Unstressed Bortezomib ? GSK3α
?
GSK3β
SURVIVAL  NF-­‐kB  STAT3 GSK3α
SURVIVAL  P-­‐AKT  P100 NF-­‐kB GSK3β
?
GSK3
MAF
AKT
NF-­‐κB
β-­‐catenin
Mcl-1
osteoblast
PROLIFERATION
BONE LOSS
SURVIVAL
PROLIFERATION
PROLIFERATION
MIGRATION
SURVIVAL
RESISTANCE TO CHEMOTHERAPY
ANGIOGENESIS
plasmacells
CONCLUSIONS  UpregulaGon of prosurvival signaling can be mediated by ONCOGENE and NON ONCOGENE ADDICTION MECHANISMS in blood tumors  The idenGficaGon of the underlying mechanisms can be helpful To idenGfy Achillee’s heels exploitable for “syntheGc lethality”   CK2 and GSK3 are two PKs with a potenGal applicaGon as therapeuGc targets in MM and other blood cancers. Hematology Division University of Padova Laboratory of Myeloma and Lymphoma Pathobiology VeneQan InsQtute of Molecular Medicine A. Brancalion A. Cabrelle A. Colpo C. Gurrieri E. Mandato S. Manni L. Quoe Tubi F. Zaffino Prof. G. Semenzato Biochemistry University of Padova L.A. Pinna M. Ruzzene 
Scarica

apoptosis upr