CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 Argomento della lezione Fonti energetiche convenzionali: combustibili,comburente, combustione, potere calorifico Calcolo del fabbisogno di energia primaria Docente Dott. Ing. Franco Barosso 13 aprile 2012 Dott. Ing. Franco Barosso 1 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 LA COMBUSTIONE 13 aprile 2012 Dott. Ing. Franco Barosso 2 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 ENERGIA PRIMARIA e COMBUSTIONE Il potere calorifico dei combustibili ARIA SOLIDO OSSIGENO LIQUIDO GASSOSO Carbone Legna Gasolio Kerosene G.P.L. Metano INNESCO o ENERGIA DI ATTIVAZIONE 13 aprile 2012 Dott. Ing. Franco Barosso 3 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIONE Per combustione si intende la rapida reazione di una sostanza (combustibile) con l’ossigeno dell’aria (comburente), caratterizzata da un forte sviluppo di calore e in piccola parte di energia elettromagnetica (luce), di energia meccanica (rumore) e di energia elettrica (ioni ed elettroni liberi). A causa della presenza dell’ossigeno viene anche definita ossidazione. La reazione di ossidazione deve essere innescata portando la miscela aria-combustibile alla temperatura di accensione. Gli elementi indispensabili per la combustione sono dunque: • il combustibile, • l’aria comburente, • l’innesco della combustione. 13 aprile 2012 Dott. Ing. Franco Barosso 4 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 SOSTANZE COMBUSTIBILI Per combustibile si intende una sostanza che reagisce facilmente con l’ossigeno per sviluppare una elevata quantità di calore (reazione fortemente esotermica). Un combustibile è tanto più pregiato quanto più presenta i seguenti requisiti: • elevata capacità di produrre energia termica, • facilità di reperibilità sul mercato, disponibilità a basso costo, facilità di trasporto e di immagazzinamento, • non essere nocivo o corrosivo né direttamente né con i prodotti della combustione, • essere relativamente “non infiammabile” (durante il trasporto e nei depositi), • impiego con alti rendimenti e basso costo di esercizio. In natura si trovano combustibili (naturali) allo stato solido, liquido e gassoso; altri combustibili (derivati) sono prodotti dall’uomo per esigenze diverse. 13 aprile 2012 Dott. Ing. Franco Barosso 5 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 6 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI I combustibili contengono carbonio, idrogeno, piccole quantità di zolfo, sostanze incombustibili, vapor d’acqua e inerti. Gli elementi che possono bruciare sono: • carbonio (C), • idrogeno (H), • zolfo (S). 13 aprile 2012 Dott. Ing. Franco Barosso 7 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 PRODOTTI COMBUSTIONE La combustione completa produce principalmente: • anidride carbonica (CO2), • vapor d’acqua (H2O), • anidride solforosa (SO2), • anidride solforica (SO3). Una combustione completa non viene quasi mai raggiunta, per cui nei prodotti della combustione si trovano anche piccole quantità di ossido di carbonio (CO) e tracce più o meno consistenti di ossidi di azoto (NOx). 13 aprile 2012 Dott. Ing. Franco Barosso 8 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIONE Le reazioni di combustione complete di queste tre sostanze sono così riassunte: C + O2 → C O2 + 34 MJ H2 + ½ O 2 → H2O + 144,4 MJ S + O2 → SO2 + 10,9 MJ 13 aprile 2012 Dott. Ing. Franco Barosso 9 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 ARIA TEORICA DI COMBUSTIONE Dalle reazioni precedenti si può calcolare la quantità stechiometrica (teorica) di ossigeno (e quindi di aria) necessaria per la combustione di un kg di “elemento” combustibile, tenendo conto dei pesi atomici e molecolari. 13 aprile 2012 Dott. Ing. Franco Barosso 10 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 PESI MOLECOLARI DEI COMBUSTIBILI Elemento Simbolo Peso atomico Composti Formula Peso molecolare Idrogeno H 1 Acqua H2O 18 Ossigeno O 16 Anidride carbonica CO2 44 Azoto N 14 Ossido di carbonio CO 28 Carbonio C 12 Anidride solforosa SO2 64 Zolfo S 32 Anidride solforica SO3 80 13 aprile 2012 Dott. Ing. Franco Barosso 11 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 ARIA TEORICA DI COMBUSTIONE Conoscendo la composizione media di un combustibile (quantità in peso di ogni elemento espresso in percentuale) si ha: kg di ossigeno / kg combustibile = 8/3 x (%C) + 8 x (%H) + 1 x (%S) Ricordando che l’ossigeno è presente nell’aria al 23% in peso, si ha la quantità in peso di aria teorica necessaria per la combustione completa di un kg di combustibile: At = 100/23 x [8/3 x (%C) + 8 x (%H) + 1 x (%S)] Si possono così riportare le quantità di aria teorica per la combustione dei singoli elementi (tenendo presente che il peso specifico dell’aria in condizioni normali è di 1,293 kg/Nm3): • per 1 kg di H sono necessari 34,78 kg di aria (26,89 Nm3) • per 1 kg di C sono necessari 11,59 kg di aria (8,9 Nm3) • per 1 kg di S sono necessari 4,34 kg di aria (3,36 Nm3) 13 aprile 2012 Dott. Ing. Franco Barosso 12 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CARATTERISTICHE COMBUSTIBILI Peso specifico Combustibile Composizione media C(%) 0,92 [kg/dm3] Oli combustibili 0,83 [kg/dm3] Gasolio 0.7171 [kg/Nm3] Metano 0,51 [kg/dm3] 86 CO2 max S(%) Nm3/kg 10,5 3,5 10,53 15,6 9760 - 13,4 0,7 11,21 15,1 10210 - H(%) 25 Nm3/m3 Potere calorifico inferiore Kcal/kg Kcal/Nm3 13,37 9,6 11,7 11930 8550 Propano 46 23,6 13,8 11070 22350 0,58 [kg/dm3] Butano 53 30,8 14,1 10920 29510 0,56 [kg/dm3] Miscela P-B 30/70 51 28,6 14 9600 26500 13 aprile 2012 75 Aria teorica Dott. Ing. Franco Barosso 13 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIONE STECHIOMETRICA Si parla di combustione stechiometrica quando il combustibile reagisce con l’esatta quantità di ossigeno richiesto per ossidare completamente il carbonio, l’idrogeno e lo zolfo. Teoricamente quindi nei prodotti di una combustione stechiometrica non sono presenti incombusti né ossigeno in eccesso e la percentuale di CO2 è la più alta possibile. 13 aprile 2012 Dott. Ing. Franco Barosso 14 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIONE In pratica è raro che si possa realizzare una combustione perfettamente stechiometrica a causa di una imperfetta miscelazione del combustibile con l’aria e per la velocità con la quale avviene la combustione. È necessario quindi fornire un eccesso d’aria in modo tale da ridurre al minimo gli incombusti sia per evidenti ragioni di economia sia per ridurre al minimo l’inquinamento atmosferico dovuto appunto a presenza di ossido di carbonio e di altri incombusti nei fumi emessi. È anche evidente però che l’eccesso d’aria deve essere limitato per poter raggiungere la più alta efficienza. 13 aprile 2012 Dott. Ing. Franco Barosso 15 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 ARIA L’ossigeno per la combustione è normalmente quello presente nell’aria, che può essere considerata costituita da: • con riferimento al volume: – 20,95 % di ossigeno – 79,05 % di azoto e di altri gas inerti • con riferimento alla massa: – 23,15 % di ossigeno – 76,85 % di azoto e di altri gas inerti 13 aprile 2012 Dott. Ing. Franco Barosso 16 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 17 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 ECCESSO D’ARIA È necessario, per garantire il più possibile l’intimo contatto dell’aria con il combustibile in tutte le sue particelle, realizzare una miscela con dell’aria in eccesso. Tale risultato sarà più difficile da raggiungere passando dai combustibili gassosi a quelli liquidi e solidi e nello stesso ordine aumenterà l’eccesso d’aria. Una buona combustione comunque deve avvenire con il minore eccesso d’aria possibile compatibilmente con l’esigenza di non generare incombusti. L’eccesso d’aria ottimale si può così calcolare: • dove: CO2 teorica = % massima in volume di CO2 nei fumi per combustione teorica completa CO2 = % in volume di CO2 nei fumi rilevata dall’analisi dei fumi per la combustione reale in esame 13 aprile 2012 Dott. Ing. Franco Barosso 18 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CONTENUTO PERCENTUALE MASSIMO IN VOLUME NEI FUMI DI CO2 PER COMBUSTIONE TEORICA COMPLETA COMBUSTIBILI CO2 teorica (%) Antracite 19,14 Legna 20,07 Coke 20,5 Kerosene 14,9 Gasolio 15,1 Olio combustibile fuido 15,6 Olio combustibile semifluido 15,7 Olio combustibile denso ATZ 15,8 Olio combustibile denso BTZ 15,8 Metano 11,7 Propano 13,8 Butano 14,1 13 aprile 2012 Dott. Ing. Franco Barosso 19 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 20 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 21 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 LIMITI DI INFIAMMABILITA’ E TEMPERATURA DI ACCENSIONE Un combustibile potrà bruciare regolarmente solo quando nella miscela le percentuali di combustibile e aria siano comprese entro certi limiti detti: UEL (Upper Explosive Limits) e LEL (Low Explosive Limits). La pressione e la temperatura influenzano sensibilmente questi limiti. Un’altra importante caratteristica dei combustibili è la temperatura di accensione che è la temperatura minima alla quale può iniziare e proseguire la reazione di ossidazione con sviluppo di calore. Al di sotto di tale temperatura non c’è combustione. Per i combustibili solidi la temperatura di accensione (detta anche di ignizione) si aggira sui 500 ÷ 600 °C. Per i combustibili gassosi tale temperatura dipende anche dalla velocità dei fluidi (combustibile e aria). 13 aprile 2012 Dott. Ing. Franco Barosso 22 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 23 23 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 POTERE CALORIFICO Il potere calorifico è la quantità di calore prodotta dalla combustione completa di 1 kg di combustibile solido o liquido o di 1 Nm3 di gas. Si definisce normal metro cubo (Nm3) il volume di un metro cubo di gas in condizioni “normali” (760 mmHg, 0 °C) . Il potere calorifico si misura in MJ/kg (o kcal/kg) per i combustibili solidi e liquidi; per i combustibili gassosi si misura in MJ/Nm3 (o kcal/ Nm3). 13 aprile 2012 Dott. Ing. Franco Barosso 24 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 POTERE CALORIFICO Si distinguono due tipi di potere calorifico: • potere calorifico superiore (p.c.s.) misurato dalle calorie sviluppate dalla combustione quando tutto il vapor d’acqua prodotto dalla combustione stessa si condensa; • potere calorifico inferiore (p.c.i.) misurato dalle calorie sviluppate dalla combustione quando non avviene la condensazione del vapor d’acqua. Il potere calorifico è una grandezza caratteristica di ogni combustibile; viene determinato sperimentalmente mediante calorimetri (ad esempio, la bomba calorimetrica di Mahler). 13 aprile 2012 Dott. Ing. Franco Barosso 25 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 POTERE CALORIFICO Il potere calorifico superiore differisce da quello inferiore di circa 230 kJ (= 55 kcal) per ogni 1% di idrogeno contenuto nel combustibile. Il calore di condensazione è pari a circa 2500 kJ/kg. 13 aprile 2012 Dott. Ing. Franco Barosso 26 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 27 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 POTERE CALORIFICO I poteri calorifici indicati nelle tabelle sono valori teorici massimi, per cui in presenza di combustione incompleta essi non saranno raggiunti. Occorre poi tener conto delle perdite di calore per alta temperatura dei prodotti della combustione e delle perdite (per convezione e per irraggiamento) da parte delle pareti calde della caldaia verso l’ambiente circostante. 13 aprile 2012 Dott. Ing. Franco Barosso 28 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI SOLIDI Essi contengono: carbonio, idrogeno, ossigeno, azoto, zolfo, umidità, ceneri. L’analisi chimica non fornisce però indicazioni sulla qualità né definisce le caratteristiche di combustione. Si è invece interessati a conoscere il potere calorifico, le quantità di ceneri e polveri prodotte nonché le caratteristiche di trasportabilità, stoccaggio e combustione. 13 aprile 2012 Dott. Ing. Franco Barosso 29 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CENERI Sono quelle sostanze incombustibili, contenute nei carboni, costituite essenzialmente da minerali, argille, scisti, per cui, dal punto di vista chimico, trattasi di silice SiO2, allumina Al2O3, calce viva CaO, ossido ferrico Fe2O3. Più alto è il contenuto di ceneri e minore è la qualità del combustibile e più basso è il suo potere calorifico. 13 aprile 2012 Dott. Ing. Franco Barosso 30 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CLASSIFICAZIONE COMBUSTIBILI SOLIDI PAGLIA E’ la frazione leggera dei cereali. Si compone essenzialmente di carbonio (lignina), cellulosa e vapor d’acqua: 1 t di paglia equivale a circa 0,4 t di petrolio equivalente. Il suo potere calorifico inferiore varia da 10.000 a 14.000 kJ/kg. 13 aprile 2012 Dott. Ing. Franco Barosso 31 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CLASSIFICAZIONE COMBUSTIBILI SOLIDI LEGNA Appena tagliata la legna contiene una grande quantità d’acqua (fino al 60%); dopo essiccazione in luoghi asciutti e aerati la percentuale si riduce al 15 ÷ 20%. La massa volumica è di 300 ÷÷ 450 kg/m3. Il potere calorifico inferiore varia molto in funzione delle caratteristiche di stagionatura (contenuto di umidità: da 6.000 kJ/kg (per un’umidità del 60%) a 16.500 ÷ 18.500 kJ/kg per un’umidità del 15%. Un combustibile derivato è il carbone di legna, ottenuto per combustione incompleta del legno al di sopra dei 400 °C in difetto d’aria. 13 aprile 2012 Dott. Ing. Franco Barosso 32 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CLASSIFICAZIONE COMBUSTIBILI SOLIDI COMBUSTIBILI FOSSILI Si sono creati in periodi lunghissimi di milioni di anni dalla trasformazione di grandi giacimenti di legna. Fra questi si distinguono la torba, la lignite, i litantraci e le antraciti. 13 aprile 2012 Dott. Ing. Franco Barosso 33 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 34 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CLASSIFICAZIONE COMBUSTIBILI FOSSILI TORBA E’ un fossile di più recente formazione, si trova in giacimenti orizzontali creatisi per trasformazione della legna sommersa nelle paludi. All’estrazione essa contiene una elevata quantità di acqua, fino all’85%. Dopo asciugatura la massa volumica è di 310 ÷ 380 kg/m3 mentre per la torba ridotta in mattonelle si arriva a 650 ÷ 750 kg/m3. Il potere calorifico inferiore può arrivare fino a 14.650 kJ/kg. 13 aprile 2012 Dott. Ing. Franco Barosso 35 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CLASSIFICAZIONE COMBUSTIBILI FOSSILI LIGNITI Sono fossili che hanno subito una trasformazione più profonda rispetto alla torba. Vengono distinte in xiloidi (legnose) e picee (compatte). Le xiloidi hanno una struttura fibrosa, aspetto legnoso, colore chiaro. Possono contenere, appena estratte, fino al 60% di acqua. Dopo essiccazione all’aria il contenuto d’acqua di abbassa fino al 20%. La massa volumica è compresa fra 600 e 700 kg/m3. La lignite picea o carboniosa è più simile al litantrace, ha un minor contenuto di umidità (5 ÷ 10%) ed un più elevato potere calorifico. La massa volumica è compresa fra 750 e 800 kg/m3. La lignite è particolarmente sensibile all’ossidazione e alle autocombustioni, per cui viene spesso utilizzata nelle immediate vicinanze del giacimento, per evitare trasporti pericolosi. 13 aprile 2012 Dott. Ing. Franco Barosso 36 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CLASSIFICAZIONE COMBUSTIBILI FOSSILI CARBONI FOSSILI Sono i combustibili fossili più importanti. In dipendenza della loro età essi presentano caratteristiche diverse: più sono vecchi, più alto è il potere calorifico e minore il contenuto di sostanze volatili. Il litantrace, detto comunemente carbon fossile, è derivato dalla trasformazione di masse legnose sommerse per milioni di anni sotto strati molto spessi di rocce a seguito di sconvolgimenti tellurici. Esso si presenta lucente e friabile e si distingue in grasso e magro (in relazione al contenuto di bitume), oppure a fiamma lunga o corta (a seconda del modo con cui brucia). La massa volumica varia da 680 a 750 kg/m3. 13 aprile 2012 Dott. Ing. Franco Barosso 37 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CLASSIFICAZIONE COMBUSTIBILI FOSSILI CARBONI FOSSILI L’antracite è un carbone di più antica formazione. Non c’è più alcuna traccia di vegetali. E’ di colore plumbeo, metallico, lucente e brucia con poca fiamma, senza odore e fumo. La massa volumica è di 800 ÷ 850 kg/m3. 13 aprile 2012 Dott. Ing. Franco Barosso 38 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 39 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI SOLIDI Fra i combustibili solidi possono essere anche inclusi quelli ottenuti per agglomerazione del minuto e della polvere di carbone, eventualmente additivati con leganti, quali pece di catrame. Cambiando l’origine i conglomerati hanno un potere calorifico inferiore variabile tra 23.000 e 31.000 kJ/kg. 13 aprile 2012 Dott. Ing. Franco Barosso 40 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COKE Fra i combustibili solidi derivati il più noto e utilizzato è il coke: ha un aspetto poroso, colore grigio ferro, brucia senza fiamma, essendo privo, o quasi, di materie volatili. Può essere ottenuto dalla distillazione di litantrace grasso a fiamma corta fino ad una temperatura di 1.100 ÷ 1.200 °C ed allora prende il nome di coke metallurgico, in quanto è impiegato per la carica degli altiforni. Ha una buona resistenza meccanica, porosità per reagire con l’aria, basso contenuto di umidità (max 5%), 8% di ceneri, 1% di zolfo e non fonde per non impedire il passaggio di aria e gas. 13 aprile 2012 Dott. Ing. Franco Barosso 41 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COKE Il coke da gas si ottiene, sempre per distillazione a 1.000 ÷1.100 °C, da litantraci grassi a fiamma lunga. E’ impiegato nel riscaldamento domestico. Il potere calorifico è di 29.300 kJ/kg, le ceneri sono il 15 ÷ 20%, la massa volumica è di 350 ÷ 400 kg/m3. E’ un sottoprodotto della produzione del gas di città. 13 aprile 2012 Dott. Ing. Franco Barosso 42 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 43 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI GASSOSI I combustibili gassosi più usati sono il gas naturale (quello da noi utilizzato è assimilabile al metano: CH4), i gas di petrolio liquefatti (GPL) ed i gas di città. 13 aprile 2012 Dott. Ing. Franco Barosso 44 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 GAS NATURALE Il gas naturale, incolore ed inodore, si trova accumulato nelle parti superiori delle cavità sotterranee contenenti petrolio e gas. Esso è una miscela di metano (dal 55 al 98%), idrocarburi come etano e diversi altri costituenti, quali vapor d’acqua, idrogeno solforato, elio, gas di petrolio che vengono in genere rimossi prima di immettere il gas nelle reti di distribuzione. 13 aprile 2012 Dott. Ing. Franco Barosso 45 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 GAS NATURALE La composizione del gas naturale dipende dalla zona geografica di prelievo; la costituzione tipica è la seguente: 70 ÷ 96 % • metano (CH4) • etano (C2H6) 1 ÷ 14 % • propano (C3H8) 0÷4% • butano (C4H10) 0÷2% • pentano (C5H12) 0 ÷ 0,5 % • esano (C6H14) 0÷2% 0÷2% • anidride carbonica (CO2) • ossigeno (O2) 0 ÷ 1,2 % • azoto (N2) 0,4 ÷ 17% 13 aprile 2012 Dott. Ing. Franco Barosso 46 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 GAS NATURALE Il potere calorifico può variare da 34 a 45 MJ/m3; l’intervallo tipico è 37,3 ÷ 39,2 MJ/m3, a livello del mare. Il gas, prima di essere distribuito viene odorizzato con l’aggiunta di un prodotto chimico allo scopo di poterne avvertire subito la fuoriuscita. Dal punto di vista tossico, non contenendo monossido di carbonio, il gas naturale non è pericoloso ma una combustione incompleta (che produce CO) o la miscela con aria rendono questo gas ugualmente pericoloso. Perché vi sia esplosione è necessario che concorrano simultaneamente tre condizioni: fuga di gas in locale chiuso, miscela con aria in proporzione del 5 ÷ 15% e presenza di fiamma o di una scintilla. 13 aprile 2012 Dott. Ing. Franco Barosso 47 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 GAS NATURALE Il gas naturale, una volta depurato, viene distribuito immettendolo in una rete (metanodotto), opportunamente protetta dalla corrosione chimica ed elettrochimica (rivestimenti protettivi, protezione catodica). Per mantenere la pressione lungo le reti (con utenze anche a centinaia di kilometri) si ricorre a stazioni intermedie di compressione, a distanza di circa 80 km l’una dall’altra, per mantenere valori di pressione attorno ai 70 bar. Prima dell’utilizzo la pressione viene ridotta in stazioni di decompressione (fino a 4 bar, media pressione) e poi ancora fino a 20 mbar (bassa pressione). 13 aprile 2012 Dott. Ing. Franco Barosso 48 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 GAS DI PETROLIO LIQUEFATTI (GPL) Sono idrocarburi, gassosi a temperatura ordinaria, che però, sotto modeste pressioni, diventano liquidi e possono quindi essere stoccati e trasportati. Essi consistono principalmente in propano e butano e vengono utilizzati puri o miscelati tra di loro o con aria. Anche questi gas, per ragioni di sicurezza, vengono odorizzati e non sono tossici. In commercio sono disponibili gas non puri quali: • propano commerciale, • butano commerciale, • miscele di propano-aria, • miscele di butano-aria. 13 aprile 2012 Dott. Ing. Franco Barosso 49 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 50 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 ALTRI TIPI DI COMBUSTIBILI GASSOSI Oltre al gas naturale ed ai GPL esistono numerosi altri tipi di gas che, con la sempre più diffusa utilizzazione del metano, hanno oggi una importanza ridotta. Si tratta di: • gas di altoforno, • gas di cokeria, • gas di raffineria, • gas manifatturato. C’è poi il gas di città che viene ottenuto dalla distillazione di carboni fossili (il residuo è il coke) e dal gas d’acqua, ottenuto a sua volta facendo passare vapor d’acqua su un letto del combustibile da gassificare. Il potere calorifico è di circa 16.750 kJ/m3. La densità rispetto all’aria è 0,45 ÷ 0,50. 13 aprile 2012 Dott. Ing. Franco Barosso 51 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 INTERCAMBIABILITA’ DEI GAS Un dato gas, per essere considerato “intercambiabile” con un gas combustibile di riferimento, deve poter bruciare, in un bruciatore destinato a quest’ultimo, in modo regolare, cioè senza che si verifichi alcuno dei seguenti inconvenienti: • combustione incompleta, • distacco di fiamma, • ritorno di fiamma. 13 aprile 2012 Dott. Ing. Franco Barosso 52 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 INDICE DI WOBBE Il problema è stato affrontato sul piano teorico da Wobbe, che ha rilevato che, a pari pressione, l’erogazione termica in un bruciatore risulta proporzionale al potere calorifico superiore del gas riferito all’unità di volume ed alla portata del gas sul bruciatore, che è inversamente proporzionale alla radice quadrata della densità del gas. Si chiama “Normale del gas” una grandezza definita INDICE DI WOBBE: W = Hs / √ d dove: W = indice di Wobbe in MJ/Nm3 (kcal/Nm3); Hs = potere calorifico superiore del gas in MJ/Nm3 (kcal/Nm3); d = densità del gas riferita all’aria (la cui densità è pari a 1). Pertanto due gas aventi lo stesso indice di Wobbe danno luogo, se la pressione di alimentazione è la stessa, alla medesima erogazione termica. 13 aprile 2012 Dott. Ing. Franco Barosso 53 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 54 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 FUMI DI COMBUSTIONE I fumi derivanti da una combustione completa in eccesso d’aria sono costituiti, in generale, da anidride carbonica (CO2), vapore d’acqua (H2O), anidride solforosa (SO2), piccolissime percentuali di anidride solforica (SO3), azoto (N2) contenuto nell’aria, ossidi di azoto (NOx), ossigeno (O2) dovuto all’eccesso d’aria, fuliggine (C) in quantità molto limitate. E’ importante limitare la presenza di ossido di carbonio (CO), data la sua tossicità. In Italia il limite massimo consentito corrisponde allo 0,1% volumetrico nei fumi secchi. 13 aprile 2012 Dott. Ing. Franco Barosso 55 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI LIQUIDI Derivano dalla distillazione frazionata del petrolio; il greggio si trova in giacimenti a diverse profondità, dai quali viene estratto e inviato agli impianti per la lavorazione. Prima viene lasciato in apposite vasche di decantazione e poi inviato in raffineria, dove viene riscaldato e successivamente pompato in una torre di frazionamento a pressione atmosferica. Durante la distillazione nella parte più alta si raccolgono i gas, poi, ad una temperatura tra i 30 °C ed i 180 ° C, si formano le benzine, tra i 180 °C ed i 250 °C il petrolio o il kerosene, quindi, t ra i 250 °C ed i 360 °C si forma il gasolio o olio diesel. La parte che non riesce a distillare forma un residuo la cui viscosità è piuttosto alta. Con questo procedimento, pertanto, si ottengono: - gas, - distillati (benzine, kerosene, gasoli), - oli lubrificanti, - residui (oli combustibili e bitumi). Per ottenere oli combustibili più fluidi si diluiscono i residui con petrolio e gasolio in quantità variabili proporzionalmente alla viscosità da ottenere. 13 aprile 2012 Dott. Ing. Franco Barosso 56 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI LIQUIDI Le principali caratteristiche di un combustibile liquido sono: • viscosità, • potere calorifico, • punto di scorrimento, • tenore di acqua e sedimenti, • contenuto in zolfo, • contenuto in ceneri, • peso specifico o massa volumica, • punto di infiammabilità e punto di accensione, • calore specifico. 13 aprile 2012 Dott. Ing. Franco Barosso 57 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 VISCOSITA’ La viscosità è la resistenza offerta da un liquido allo scorrimento. Si definisce viscosità dinamica (o assoluta) la forza necessaria a far scorrere una superficie piana unitaria di liquido con velocità unitaria rispetto ad un’uguale superficie posta a distanza unitaria dalla prima. La viscosità dinamica µ si esprima in Pa • s = N • s / m2 Spesso si incontrano ancora i CENTIPOISE 1 Pa • s = 10 P = 1000 cP 13 aprile 2012 Dott. Ing. Franco Barosso (cP): 58 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 VISCOSITA’ Nella pratica si impiega maggiormente la viscosità cinematica, definita dal rapporto tra la la viscosità dinamica di un liquido e la sua massa volumica. La viscosità cinematica ν è così definita: ν = µ / ρ (m2/s) È ancora in uso il CENTISTOKES (cSt) 1 m2/s = 104 cm2/s = 104 St = 106 cSt Tra centistokes e gradi °E non c’è proporzionalità diretta, per cui si ricorre a tabelle di conversione. Negli Stati Uniti la viscosità è espressa in SSU (Secondi Saybolt Universal) e, per fluidi molto viscosi, in SSF (Secondi Saybolt Furol). In Gran Bretagna è utilizzata l’unità di misura Redwood I (Secondi Redwood Standard) e, per fluidi molto viscosi, l’unità Redwood II (Secondi Redwood Admiralty). 13 aprile 2012 Dott. Ing. Franco Barosso 59 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 VISCOSITA’ La viscosità esprime l’attitudine propria di un liquido a scorrere con maggiore facilità. Per gli oli combustibili ha una grande importanza in relazione alla facilità di pompaggio nonché alla polverizzazione per poterli bruciare. La viscosità varia fortemente con la temperatura. La viscosità di un olio viene determinata tramite appositi apparecchi chiamati viscosimetri; la misura viene generalmente espressa in gradi Engler (°E): indicano il rapporto tra il tempo di ef flusso di un certo volume di combustibile alla temperatura di 50 °C (2 0 °C per il gasolio) ed il tempo impiegato da un uguale volume di acqua a 20 °C per defluire dallo stesso foro calibrato. Il valore ottenuto deve venire sempre accompagnato dalla temperatura alla quale il combustibile si trova durante la determinazione. 13 aprile 2012 Dott. Ing. Franco Barosso 60 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 61 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 62 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 63 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI LIQUIDI PUNTO DI SCORRIMENTO Il punto di scorrimento (pour point) è il valore della temperatura al di sotto del quale il combustibile cessa di scorrere per effetto del solo suo peso, cioè tende a solidificare. 13 aprile 2012 Dott. Ing. Franco Barosso 64 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI LIQUIDI ACQUA E SEDIMENTI Acqua e sedimenti rappresentano impurità che si incorporano nei combustibili per contaminazione, prevalentemente durante le operazioni di trasporto e di travaso. Sono soprattutto costituiti da particelle metalliche, terra, sabbia, ecc. che in genere si depositano sul fondo dei serbatoi ma che possono arrivare fino ai bruciatori, intasando i filtri e provocando lo spegnimento dei bruciatori. Il tenore di acqua in un combustibile può causare degli inconvenienti alla combustione solo se è eccessivo. In genere però il contenuto d’acqua non supera l’1 ÷ 2% (valore tollerabile). 13 aprile 2012 Dott. Ing. Franco Barosso 65 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI LIQUIDI: ZOLFO Lo zolfo, che è presente nel petrolio grezzo, si ritrova in massima parte nei residui di distillazione, cioè negli oli combustibili, poiché i composti solforati sono alto bollenti. E’ un elemento indesiderabile, in quanto, oltre ad essere una delle fonti di inquinamento atmosferico (piogge acide), può risultare dannoso soprattutto negli impianti mal costruiti poiché, nella sua reazione di ossidazione, si sviluppa anidride solforosa e, in particolari condizioni, anidride solforica che, reagendo con l’acqua, forma acido solforico, la cui presenza è sempre causa di corrosioni per le parti metalliche con cui viene a contatto. La temperatura a cui si ha la condensazione del vapor d’acqua (causa di formazione dell’acido corrosivo) è detta “punto di rugiada”. Il valore del punto di rugiada aumenta all’aumentare della percentuale di anidride solforosa (SO2) presente nei fumi. 13 aprile 2012 Dott. Ing. Franco Barosso 66 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 67 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI LIQUIDI: CENERI Le ceneri rappresentano la parte incombustibile del prodotto e sono costituite, oltre che da impurità minerali (polveri, sabbia), da composti metallici (sodio, vanadio, ferro, magnesio, ecc.) presenti nel petrolio grezzo e non eliminabili. Con la combustione si raccolgono nella caldaia e nella canna fumaria, dove possono produrre incrostazioni e depositi che ostacolano il tiraggio ed alterano le condizioni di funzionamento dell’impianto. Inoltre, essendo di natura abrasiva, possono dar luogo, durante l’impiego, a logorio delle parti meccaniche (pompe, valvole, ugelli, ecc.). I composti di vanadio e sodio, in particolare, favoriscono l’imbrattamento, l’ossidazione da SO2 a SO3 e quindi la corrosione. In media il tenore in ceneri di un combustibile liquido varia da 0,015 a 0,05 % (per gli oli più densi). Solo eccezionalmente tale valore raggiunge lo 0,1 ÷ 0,2 %. 13 aprile 2012 Dott. Ing. Franco Barosso 68 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI LIQUIDI PESO SPECIFICO Il peso specifico rappresenta il peso in kg di un dm3 di combustibile a 15 °C; varia da = 0,820 kg/dm3 per il gasolio a 0,940 per le nafte più dense (dipende, anche se non in maniera importante, dalla temperatura). 13 aprile 2012 Dott. Ing. Franco Barosso 69 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI LIQUIDI PUNTO DI INFIAMMABILITA’ E PUNTO DI ACCENSIONE Il punto di infiammabilità di un combustibile liquido è la temperatura alla quale questo liquido deve essere riscaldato per sviluppare gas sufficiente a formare con l’aria una miscela infiammabile, in presenza di una fiamma (senza che vi sia combustione continua). Il valore del punto di infiammabilità interessa dal punto di vista della sicurezza nel trasporto, nell’immagazzinamento e soprattutto per la temperatura alla quale può essere riscaldato senza alcun pericolo. In Italia le norme prescrivono che il punto di infiammabilità, determinato con il metodo Pensky-Martens, non sia inferiore a 65 °C, con un limite massimo di 125 °C. Si definisce invece punto di accensione la temperatura alla quale i vapori del combustibile e l’aria danno combustione continua (anche dopo l’allontanamento della fiamma). 13 aprile 2012 Dott. Ing. Franco Barosso 70 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 71 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 COMBUSTIBILI LIQUIDI CALORE SPECIFICO Il calore specifico è definito come la quantità di calore necessaria per innalzare di 1 °C la temperatura del l’unità di peso di una data sostanza. Per i combustibili liquidi più comuni si può assumere un valore medio di 2 kJ/(kg K) = 0,5 kcal/(kg °C); que sto valore serve per determinare il calore da fornire ad una certa quantità di combustibile per riscaldarlo fino ad una data temperatura. 13 aprile 2012 Dott. Ing. Franco Barosso 72 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 73 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 74 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 TEMPERATURA TEORICA DI COMBUSTIONE E’ la massima temperatura che si raggiungerebbe nei fumi per effetto di una combustione completa senza alcun eccesso d’aria (il che non è possibile) e nell’ipotesi che tutto il calore sviluppato nelle reazioni esotermiche di ossidazione dei diversi componenti del combustibile sia utilizzato per innalzare la temperatura dei fumi, che non vi siano scambi di calore con l’esterno e che non ci sia trasformazione in energia raggiante. In realtà circa un terzo dell’energia sviluppata nella combustione si trasforma in energia raggiante. La temperatura di combustione inoltre non può raggiungere i valori teorici perché al di sopra dei 1600 °C c’è la dissoci azione del vapor d’acqua e dell’anidride carbonica formatasi con sottrazione di calore. 13 aprile 2012 Dott. Ing. Franco Barosso 75 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 76 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 GAS COMBUSTI La composizione dei gas combusti può essere rappresentata graficamente con il triangolo di combustione o triangolo di Ostwald: ne esiste uno per ogni tipo di combustibile. Con questo triangolo si può ricavare il contenuto di CO e l’eccesso d’aria, note le percentuali di CO2 e O2. Sulle ascisse è riportato il contenuto percentuale di O2, sulle ordinate il contenuto percentuale di CO2; le rette del CO sono parallele all’ipotenusa, tracciata tra il punto 21% di contenuto massimo di ossigeno e la percentuale massima di CO2 per il combustibile in esame. 13 aprile 2012 Dott. Ing. Franco Barosso 77 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 78 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 PERDITE E RENDIMENTO DI COMBUSTIONE Nella combustione completa si sviluppa una quantità di calore pari al potere calorifico del combustibile. Tale quantità non viene però trasferita interamente al fluido termovettore dell’impianto a causa delle perdite per: • calore sensibile nei prodotti della combustione, • calore per il vapore formatosi nella combustione, • calore di riscaldamento del vapor d’acqua presente nell’aria comburente, • per incombusti, • per carbonio non bruciato e rimasto nelle ceneri, • per fenomeni di irraggiamento e convezione dalle pareti della caldaia 13 aprile 2012 Dott. Ing. Franco Barosso 79 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 PERDITE E RENDIMENTO DI COMBUSTIONE Le perdite più significative sono quelle al camino attraverso i fumi. Esse sono tanto maggiori quanto maggiore è la temperatura e la quantità dei fumi (e dunque l’eccesso d’aria). La perdita percentuale per calore sensibile Qs% si calcola con sufficiente approssimazione con la formula di Hassenstein: Qs% = ks x (tf – ta) / CO2 dove: tf = temperatura di uscita dei fumi ta = temperatura dell’aria comburente CO2 = percentuale in volume dell’anidride carbonica contenuta nei fumi Ks = costante di Hassenstein 13 . aprile 2012 Dott. Ing. Franco Barosso 80 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 81 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 82 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 PERDITE E RENDIMENTO DI COMBUSTIONE Il rapporto tra il calore effettivamente assorbito dal fluido termovettore e quello sviluppabile teoricamente dalla combustione si definisce rendimento di combustione. η = 100 - Qs% = 100 - ks x (tf – ta) / CO2 13 aprile 2012 Dott. Ing. Franco Barosso 83 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 EMISSIONI INQUINANTI 13 aprile 2012 Dott. Ing. Franco Barosso 84 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 FABBISOGNO DI ENERGIA PRIMARIA 13 aprile 2012 Dott. Ing. Franco Barosso 85 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 UNI/TS 11300-2 13 aprile 2012 Dott. Ing. Franco Barosso 86 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 PRESTAZIONE ENERGETICA Prestazione energetica globale: EPg Esprime il valore del fabbisogno annuo di energia primaria per: 1) climatizzazione invernale; 2) climatizzazione estiva (valutazione qualitativa); 3) produzione di acqua calda per usi sanitari; 4) illuminazione artificiale, ove applicabile. E’ espressa in: • kWh/m2 anno, per unità di superficie utile (edifici in classe E1, esclusi collegi, conventi, case di pena e caserme) • kWh/m3 anno per tutti gli altri tipi di edifici USO STANDARD 13 aprile 2012 Dott. Ing. Franco Barosso 87 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 PRESTAZIONE ENERGETICA Prestazioni parziali: 1) Climatizzazione invernale EPi; 2) Climatizzazione estiva EPe; 3) Produzione di acqua calda per usi sanitari EPacs; 4)Illuminazione artificiale, ove applicabile EPill EPgl = EPi + EPacs + Epe + EPill 13 aprile 2012 Dott. Ing. Franco Barosso 88 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 D.M. 26.06.2009 13 aprile 2012 Dott. Ing. Franco Barosso 89 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 13 aprile 2012 Dott. Ing. Franco Barosso 90 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 PRESTAZIONE ENERGETICA Nuove norme (Involucro) UNI EN 13790/2008 Prestazione energetica degli edifici Calcolo del fabbisogno di energia per il riscaldamento e il raffrescamento UNI/TS 11300–1 Prestazioni energetiche degli edifici – Parte 1: Determinazione del fabbisogno di energia termica dell’edificio per la climatizzazione estiva ed invernale 13 aprile 2012 Dott. Ing. Franco Barosso 91 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 PRESTAZIONE ENERGETICA Nuove norme (Impianto) UNI/TS 11300–2 (*),(**)- Prestazioni energetiche degli edifici – Parte 2: Determinazione del fabbisogno di energia primaria e dei rendimenti per la climatizzazione invernale e per la produzione di acqua calda sanitaria UNI/TS 11300 – 3 Prestazioni energetiche degli edifici – Parte 3: Determinazione del fabbisogno di energia primaria e dei rendimenti per la climatizzazione estiva UNI EN 15316-1/2008 - Impianti di riscaldamento degli edifici - Metodo per il calcolo dei requisiti energetici e dei rendimenti dell'impianto - Parte 1: Generalità UNI EN 15316-2-1/2008- Impianti di riscaldamento degli edifici - Metodo per il calcolo dei requisiti energetici e dei rendimenti dell'impianto - Parte 2-1: Sistemi di emissione del calore negli ambienti UNI EN 15316-2-3/008 - Impianti di riscaldamento degli edifici - Metodo per il calcolo dei requisiti energetici e dei rendimenti dell'impianto - Parte 2-3: Sistemi di distribuzione del calore negli ambienti (*) unitamente alla UNI EN 15316-2-3/2008, sostituisce la UNI 10347/1993 (**) unitamente alla UNI EN 15316-1/2008 e alla UNI EN 15316-2-1/2008, sostituisce la UNI 10348/1993 13 aprile 2012 Dott. Ing. Franco Barosso 92 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 PRESTAZIONE ENERGETICA Norme in fase di emanazione UNI/TS 11300-4 Prestazioni energetiche degli edifici – Parte 4: Utilizzo di energie rinnovabili e di altri metodi di generazione per riscaldamento di ambienti e preparazione acqua calda sanitaria 13 aprile 2012 Dott. Ing. Franco Barosso 93 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 FEP Fabbisogno annuo di energia primaria per la climatizzazione invernale è la quantità di energia primaria globalmente richiesta, nel corso di un anno, per mantenere negli ambienti riscaldati la temperatura di progetto, in regime di attivazione continuo. (allegato A c. 11 D.lgs 311/06) 13 aprile 2012 Dott. Ing. Franco Barosso 94 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 FABBISOGNO DI ENERGIA PRIMARIA PER RISCALDAMENTO INVERNALE PROCEDURA DI CALCOLO Il calcolo del fabbisogno di energia primaria si effettua partendo dal fabbisogno di energia termica utile dell’edificio, sommando progressivamente le perdite dei vari sottosistemi al netto dei recuperi sino a giungere al fabbisogno del sottosistema di generazione. 13 aprile 2012 Dott. Ing. Franco Barosso 95 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 FABBISOGNO DI ENERGIA PRIMARIA (FEP) Energia primaria richiesta per la conversione in calore nel generatore Energia primaria richiesta per il funzionamento degli ausiliari Q Qc Qe Q = Qc + Qe ηg = Qh Q Periodo di calcolo Stagione di riscaldamento : il calcolo deve essere eseguito suddividendo il periodo totale in intervalli elementari di durata massima mensile Con il metodo di calcolo semplificato, si assume come periodo di calcolo la stagione di riscaldamento per la climatizzazione invernale e l'anno per l'acqua calda sanitaria. 13 aprile 2012 Dott. Ing. Franco Barosso 96 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 Gli impianti si considerano suddivisi nei seguenti sottosistemi: Impianti di riscaldamento - sottosistema di emissione - sottosistema di regolazione dell’emissione di calore in ambiente - sottosistema di distribuzione -sottosistema di generazione -Impianti di acqua calda sanitaria - sottosistema di erogazione - sottosistema di distribuzione - eventuale sottosistema di accumulo - sottosistema di generazione 13 aprile 2012 Dott. Ing. Franco Barosso 97 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CERTIFICAZIONE ENERGETICA PROCEDURA SEMPLIFICATA 13 aprile 2012 Dott. Ing. Franco Barosso 98 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 CERTIFICAZIONE ENERGETICA PROCEDURA SEMPLIFICATA 13 aprile 2012 Dott. Ing. Franco Barosso 99 CORSO DI ABILITAZIONE PER LA CERTIFICAZIONE ENERGETICA PER LA PROVINCIA AUTONOMADI TRENTO AI SENSI DEL D.G.P. del 22 dicembre 2009, n. 3110 GRAZIE PER LA CORTESE ATTENZIONE 13 aprile 2012 Dott. Ing. Franco Barosso 100