Milano, 7 novembre, 2013 Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Maurizio Follador [email protected] Advanced Education, Frontier Interdisciplinary Research and Exploitation of Research Results Paolo Dario, Director Cecilia Laschi, Deputy-Director The BioRobotics Institute @ Polo Sant’Anna Valdera Viale R. Piaggio 34 56025 Pontedera (Pisa) Tel. +39 050 883000 www.bioroboticsinstitute.eu Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Research Areas www.bioroboticsinstitute.eu Humanoid Robotics (Paolo DARIO) Neuro-Robotics (Maria Chiara CARROZZA) Surgical Robotics (Arianna MENCIASSI) Soft Robotics (Cecilia LASCHI) Neural Engineering (Silvestro MICERA) Biomedical Signal Processing (Angelo Maria SABATINI) Creative Design (Cesare STEFANINI) Future and Emerging BioRobotics (Paolo DARIO) Neurodevelopmental bioengineering Ambient Assisted Living and Service Robotics Marine Robotics Roboethics New research areas Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Shape memory alloys at BioRobotics Institute Bergamasco et al. 1989 Menciassi et al., 2004 Octopus Project, 2013 Araknes Project, 2012 Leghe a memoria di forma come tecnologia di attuazione per la biorobotica OCTOPUS IP (2009-2013) Novel Design Principles and Technologies for a New Generation of High Dexterity Soft-bodied Robots Inspired by the Morphology and Behaviour of the Octopus Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Soft Robotics Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. The role of soft body parts appears clear in natural organisms, to increase adaptability and robustness. Compliance, or softness, are also needed for implementing the principles of embodied intelligence, or morphological computation, a modern view of intelligence, attributing a stronger role to the physical body and its interaction with the environment. Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Muscular Hydrostat: Constant volume during contractions Longitudinal Muscles Transverse Muscles Oblique Muscles The muscular system serves as a modifiable skeleton and allows the transformation of force into motion Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Muscular Hydrostat: Constant volume during contractions All movements are combination of the three muscle bundles Local bending, stiffening, elongation and shortening are possible ELONGATION SHORTENING CONTRACTED CONTRACTED RELAXED RELAXED Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Muscular Hydrostat: Constant volume during contractions BENDING CONTRACTED RELAXED Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Muscular Hydrostat: Bioinspired artificial unit biological artificial Transverse muscles SMA Transverse actuation system Longitudinal muscles Longitudinal actuation system Embedding material 68-75° Connective tissue Mechanical interface / containment Leghe a memoria di forma come tecnologia di attuazione per la biorobotica PATENT PENDING Single SMA spring actuator SMA springs working in water Working frequency of 1 Hz Operation current 1.2 A Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Assembly of multiple units NON ACTIVATED Leghe a memoria di forma come tecnologia di attuazione per la biorobotica ACTIVATED Fabrication of an entire artificial octopus arm 260 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 65 15 Transverse springs Longitudinal springs Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Longitudinal cables Fabrication of an entire artificial octopus arm Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Artificial arm capabilities Rest length Elongation Shortening Bending Multi – Bending performed by local bends Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Integration in the multiple-arm robotic octopus prototype SMA actuation ARM 1 Vision system Manipulation arms ARM 2 b1 servomotor b2 orientation Locomotion arms mechanism Passive suckers Image: London Science Museum/Jennie Hills Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Grasping ability of the robot Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Grasping characterization Minimum grasping radius Testing Radii [mm] Grasping Effectiveness, 50% distance from the tip Grasping Effectiveness, 30% distance from the tip 12.5 17.5 22.5 Fail Pass Pass Pass Pass Pass The effectiveness of the grasping strongly depends on the point where the object is grabbed. The use of a conical structure (instead of cylindrical) enables the possibility to grasp object of different sizes depending on the distance to the tip because of the spiral shape it forms when actuated Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Operating limits angles Max angles achievable by SMA longitudinal springs Simple bending Operating Limit Angles [deg] a0 85 Single change of convexity bending. Operating Limit Angles [deg] Double change of convexity bending Operating Limit Angles [deg] a1 78 a2 76 b1 55 b2 44 c2 57 Leghe a memoria di forma come tecnologia di attuazione per la biorobotica SURGICAL ROBOTS FOR MINIMALLY INVASIVE SURGERY Leghe a memoria di forma come tecnologia di attuazione per la biorobotica INTRODUCTION (A STEP THROUGH MINIMALLY INVASIVE SURGERY) LAPAROSCOPIC SURGERY • less invasive then open • fast recovery ROBOTIC ENDOSCOPIC TRANSLUMENAL SURGERY (NOTES) SURGERY • performance improvement • invasiveness comparable with laparo. Derived by endoscopes • no “external” incisions • less invasive then laparo. New instruments Miniaturized robotic systems Leghe a memoria di forma come tecnologia di attuazione per la biorobotica ARAKNES RESEARCH PLATFORM (TROCAR/NOTES ACCESS) Leghe a memoria di forma come tecnologia di attuazione per la biorobotica (www.araknes.org) ARAKNES RESEARCH PLATFORM (www.araknes.org) (TROCAR/NOTES ACCESS) DOCKING MECHANISM • Assembly of modular components dependant by the features needed (electro-cut, gripper, etc) ANCHORING FRAME • Safe in deployment and in cause of fault ROBOTIC MODULES Leghe a memoria di forma come tecnologia di attuazione per la biorobotica ANCHORING FRAME SPECIFICATIONS Actively change configuration Guarantee a stable adhesion during surgical tasks Respect anatomical constrains during deployment Embed miniaturized actuators Experimental evaluation of anatomical constraints WHY SMA ACTUATION? •SMA provide soft actuation and inherent compliant muscle-like behavior (low forces applied to the environment) •Compatible with magnetic anchoring (it is hard to use electric motors close to permanent magnets) •Easy to miniaturize, compact design is allowed! (it is possible to leave free space for magnets on the device) Leghe a memoria di forma come tecnologia di attuazione per la biorobotica FROM THE CONCEPT TO THE PROTOTYPE (BIAS ELEMENT DESIGN) • ELASTIC BAND AS BIAS ELEMENT • ELASTIC BAND AS SAFETY SYSTEM! • THE GOAL IS TO PROVIDE A NON LINEAR TORQUE LAYING BETWEEN AUSTENITE AND MARTENSITE TORQUE Leghe a memoria di forma come tecnologia di attuazione per la biorobotica FROM THE CONCEPT TO THE PROTOTYPE (SMA ANGULAR ACTUATORS FABRICATION) Constrain the SMA wire/sheet shape 1st thermal treatment Thermal treatment ~500°deg (depends by the alloy composition) 2nd thermal treatment Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Repeat in order to reach desired shape 3rd thermal treatment ANCHORING FRAME M. Salerno, S. Tognarelli, C. Quaglia, P. Dario, and A. Menciassi, “Anchoring frame for intra-abdominal surgery,” International Journal of Robotics Research , 2013. Leghe a memoria di forma come tecnologia di attuazione per la biorobotica ARAKNES RESEARCH PLATFORM (www.araknes.org) (TROCAR/NOTES ACCESS) DOCKING MECHANISM •Stable connection of robotic modules with the anchoring frame ANCHORING FRAME • Cubic docking base shape exploited for constraining the rotations ROBOTIC MODULES • 1 active degree of freedom to execute the docking Leghe a memoria di forma come tecnologia di attuazione per la biorobotica Conclusions SMA are still limited from the point of view of control… The use of Shape Memory Alloys for actuation represents a technological opportunity for replacing the today's electro-mechanical actuators with simpler, more compact and reliable ones. From active and smart materials… Strong mixture of expertise Leader in consumer electronics Leader in SMA providing and manufacturing Leghe a memoria di forma come tecnologia di attuazione per la biorobotica …To robust and reliable actuators Thank you for your attention! Paolo Dario, Director Cecilia Laschi, Deputy-Director a memoria di forma come Superiore tecnologia diSant'Anna attuazione per la biorobotica The Leghe BioRobotics Institute, Scuola Polo Sant'Anna Valdera - viale Rinaldo Piaggio 34, Pontedera (Pisa)