Amplitude modulation and
synchronous detection
Alessandro Spinelli
Tel. (02 2399) 4001
[email protected]
home.deib.polimi.it/spinelli
Slides are supplementary
material and are NOT a
replacement for textbooks
and/or lecture notes
Elettronica 75513
Alessandro Spinelli
The problem
β€’ If the signal is at DC level and buried in LF
noise, HP or BP filters become useless
β€’ If we could «move» the signal spectrum to
higher frequencies, we would improve S/N
β€’ A high-Q BP filter could then be used to
recover the signal
Elettronica 75513
Alessandro Spinelli
Amplitude modulation (AM)
π‘₯ 𝑑
𝑋(𝑓)
π‘š 𝑑 = π‘₯ 𝑑 𝑐(𝑑)
𝑀 𝑓 = 𝑋 𝑓 βˆ— 𝐢(𝑓)
𝑐 𝑑
𝐢(𝑓)
β€’ The amplitude of a carrier wave 𝑐 𝑑 is
modified by a modulating signal π‘₯ 𝑑
β€’ Originally developed for telephone and radio
communication
Elettronica 75513
Alessandro Spinelli
Time and frequency domains
From [1]
|𝑋 𝑓 |
𝑓
|𝐢 𝑓 |
𝑓
βˆ’π‘“π‘
|𝑀 𝑓 |
𝑓𝑐
𝑓
βˆ’π‘“π‘
Elettronica 75513
Alessandro Spinelli
𝑓𝑐
Time and frequency domains
β€’ We consider a sinusoidal carrier
𝑐 𝑑 = 𝐴cos πœ”π‘ 𝑑 + πœ™π‘ ⇔
𝐴 π‘—πœ™
𝐢 𝑓 =
𝑒 𝑐 𝛿 𝑓 βˆ’ 𝑓𝑐 + 𝑒 βˆ’π‘—πœ™π‘ 𝛿 𝑓 + 𝑓𝑐
2
β€’ The modulated signal is then
π‘š 𝑑 =π‘₯ 𝑑 𝑐 𝑑 ⇔
𝐴 π‘—πœ™
𝑀 𝑓 =
𝑒 𝑐 𝑋 𝑓 βˆ’ 𝑓𝑐 + 𝑒 βˆ’π‘—πœ™π‘ 𝑋 𝑓 + 𝑓𝑐
2
Elettronica 75513
Alessandro Spinelli
Demodulation
π‘š 𝑑
𝑀(𝑓)
𝑑 𝑑 = π‘š 𝑑 𝑐(𝑑)
𝐷 𝑓 = 𝑀 𝑓 βˆ— 𝐢(𝑓)
LPF
𝑦 𝑑
π‘Œ(𝑓)
𝑐 𝑑
𝐢(𝑓)
𝑑 𝑑 = π‘š 𝑑 𝑐 𝑑 = π‘₯ 𝑑 𝑐 2 𝑑 = π‘₯ 𝑑 𝐴2 cos 2 πœ”π‘ 𝑑 + πœ™π‘
1 + cos(2πœ”π‘ 𝑑 + 2πœ™π‘ )
2
=𝐴 π‘₯ 𝑑
2
𝐴2
𝐴2 𝑗2πœ™
𝐷 𝑓 =
𝑋 𝑓 +
𝑒 𝑐 𝑋 𝑓 βˆ’ 2𝑓𝑐 + 𝑒 βˆ’π‘—2πœ™π‘ 𝑋 𝑓 + 2𝑓𝑐
2
4
π‘Œ 𝑓
Elettronica 75513
Alessandro Spinelli
Frequency domain view
|𝑋 𝑓 |
𝑓
|𝑀 𝑓 |
𝑓
𝑓𝑐
βˆ’π‘“π‘
|𝐷 𝑓 |
|π‘Œ 𝑓 |
𝑓
2𝑓𝑐
βˆ’2𝑓𝑐
Elettronica 75513
Alessandro Spinelli
Frequency and phase errors
β€’ We consider demodulating with
𝑐′ 𝑑 = 𝐡cos (πœ”π‘ +Ξ”πœ”)𝑑 + πœ™π‘ + Ξ”πœ™
β€’ The low-frequency term (small Ξ”πœ”) is
𝑦 𝑑 = 𝐴𝐡π‘₯ 𝑑 cos(Ξ”πœ”π‘‘ + Ξ”πœ™)/2
– Phase error οƒž signal reduction
– Frequency error οƒž oscillating behavior
β€’ The reference must be locked in frequency and
phase to the carrier οƒž synchronous detection
β€’ The demodulator is also called phase-sensitive
detector (PSD)
Elettronica 75513
Alessandro Spinelli
PSD weighting function
𝑑 𝑑
π‘₯ 𝑑
𝑋(𝑓)
𝐷 𝑓
LPF
𝑦 𝑑
π‘Œ(𝑓)
𝑀𝑅 𝑑
π‘Šπ‘… (𝑓)
𝑦 𝑑 =
𝑑 𝜏 𝑀𝐿𝑃 𝑑, 𝜏 π‘‘πœ =
π‘₯ 𝜏 𝑀𝑅 𝜏 𝑀𝐿𝑃 𝑑, 𝜏 π‘‘πœ
𝑀 𝑑, 𝜏 = 𝑀𝑅 𝜏 𝑀𝐿𝑃 𝑑, 𝜏
𝑦 𝑑 =
π‘₯ 𝜏 𝑀 𝑑, 𝜏 π‘‘πœ =
𝑋 𝑓 π‘Š βˆ— 𝑑, 𝑓 𝑑𝑓
π‘Š 𝑑, 𝑓 = π‘Šπ‘… 𝑓 βˆ— π‘ŠπΏπ‘ƒ (𝑑, 𝑓)
Elettronica 75513
Alessandro Spinelli
Time/frequency domains
|π‘Šπ‘… 𝑓 |
𝑀𝑅 𝜏
𝑑
𝜏
𝑓
|π‘ŠπΏπ‘ƒ 𝑓 |
𝑀𝐿𝑃 𝑑, 𝜏
𝑑
𝜏
𝑓
|π‘Š 𝑓 |
𝑀 𝑑, 𝜏
𝑑
Elettronica 75513
𝜏
Alessandro Spinelli
𝑓
Notes
β€’ The filter is time-variant even if LPF is LTI οƒž
remember that π‘Œ(𝑓) is NOT 𝑋 𝑓 π‘Š(𝑑, 𝑓)
β€’ For the particular case of the PSD is instead
π‘Œ 𝑓 = π‘ŠπΏπ‘ƒ 𝑑, 𝑓 (𝑋 𝑓 βˆ— π‘Šπ‘… 𝑓 )
β€’ If 𝑀𝑅 𝑑 is a periodic signal, |π‘Š 𝑓 |
represents the frequency components that
give contributions in the baseband
Elettronica 75513
Alessandro Spinelli
PSD as optimum filter
β€’ Let’s take a simple case of constant signal οƒž
the input of the PSD is then π‘₯ 𝑑 = 𝐴cos πœ”π‘ 𝑑
β€’ If LPF is an LTI integrator
𝑀𝐿𝑃 𝑑, 𝜏 = 𝐾u 𝑑 βˆ’ 𝜏 β‡’ 𝑀 𝑑, 𝜏 ∝ π‘₯ 𝜏
β€’ PSD is the optimum filter!
β€’ In the general case PSD is quasi-optimum, but
more flexible
Elettronica 75513
Alessandro Spinelli
A look at the weighting function
β€’ For the case of the LTI integrator we have
𝑑
𝑦 𝑑 =𝐾
0
π‘₯ 𝜏 𝑀𝑅 𝜏 π‘‘πœ β‰ˆ 𝐾π‘₯𝑀𝑅 (0)
β€’ 𝑦 𝑑 is an estimate of the cross-correlation between
input and reference signals οƒž maximum output is
achieved when π‘₯ 𝑑 has the same frequency and phase
as 𝑀𝑅 𝑑
β€’ For, say, a simple RC filter we have
1 𝑑
𝑦 𝑑 =
π‘₯ 𝜏 𝑀𝑅 𝜏 𝑒 βˆ’(π‘‘βˆ’πœ)/𝑇𝐹 π‘‘πœ
𝑇𝐹 0
which is again 𝐾π‘₯𝑀𝑅 (0) estimated over a time 𝑇𝐹
Elettronica 75513
Alessandro Spinelli
Frequency domain
β€’ In the frequency domain we have
𝑋 𝑓 βˆ— π‘Šπ‘… 𝑓 =
𝑋(𝜈)π‘Šπ‘… 𝑓 βˆ’ 𝜈 π‘‘πœˆ
β€’ The output LPF selects the components around
𝑓 = 0, i.e.
π‘Œ 𝑓 β‰ˆ
𝑋(𝜈)π‘Šπ‘… βˆ’πœˆ π‘‘πœˆ
β€’ We find again the correlation behavior!
Elettronica 75513
Alessandro Spinelli
Output noise
𝑅π‘₯π‘₯ 𝜏
𝑆π‘₯ (𝑓)
𝑅𝑑𝑑 𝑑, 𝜏
𝑆𝑑 𝑑, 𝑓
𝑀𝑅 𝑑
π‘Šπ‘… (𝑓)
LPF
𝑅𝑦𝑦 𝑑, 𝜏
π‘Œ(𝑑, 𝑓)
From [2]
The output noise of the PSD is non-stationary
(actually cyclostationary) even if the input noise is
Elettronica 75513
Alessandro Spinelli
Output noise autocorrelation
𝑅𝑑𝑑 𝑑, 𝑑 + 𝜏 = 𝑛𝑑 𝑑 𝑛𝑑 (𝑑 + 𝜏)
= 𝑛π‘₯ 𝑑 𝑛π‘₯ 𝑑 + 𝜏 𝑀𝑅 𝑑 𝑀𝑅 𝑑 + 𝜏
= 𝑅π‘₯π‘₯ (𝜏)𝑀𝑅 𝑑 𝑀𝑅 𝑑 + 𝜏
β€’ In particular 𝑛𝑑2 (𝑑) = 𝑛π‘₯2 𝑀𝑅2 (𝑑)
β€’ Since the output filter averages over many periods of
𝑀𝑅 , we consider the time average
𝑅𝑑𝑑 𝑑, 𝑑 + 𝜏 = 𝑅π‘₯π‘₯ (𝜏) 𝑀𝑅 𝑑 𝑀𝑅 𝑑 + 𝜏
1 𝑇
= 𝑅π‘₯π‘₯ (𝜏) lim
𝑀𝑅 𝑑 𝑀𝑅 𝑑 + 𝜏 𝑑𝑑
π‘‡β†’βˆž 2𝑇 βˆ’π‘‡
= 𝑅π‘₯π‘₯ 𝜏 𝐾𝑀𝑅 𝑀𝑅 (𝜏)
Elettronica 75513
Alessandro Spinelli
Frequency domain
β€’ In the frequency domain we have then
𝑆𝑑 𝑓 = 𝑆π‘₯ 𝑓 βˆ— 𝑆𝑀𝑅 (𝑓) (Average spectral density!)
β€’ The reference autocorrelation is
𝐡
𝑀𝑅 𝑑 = 𝐡cos πœ”π‘ 𝑑 ⇔ π‘Šπ‘… 𝑓 =
𝛿 𝑓 βˆ’ 𝑓𝑐 + 𝛿 𝑓 + 𝑓𝑐
2
𝐡2
𝐾𝑀𝑅 𝑀𝑅 𝜏 =
cos πœ”π‘ 𝜏 ⇔ 𝑆𝑀𝑅 𝑓
2
𝐡2
=
𝛿 𝑓 βˆ’ 𝑓𝑐 + 𝛿 𝑓 + 𝑓𝑐
4
β€’ The output spectrum becomes
𝐡2
𝑆𝑑 𝑓 =
𝑆π‘₯ 𝑓 βˆ’ 𝑓𝑐 + 𝑆π‘₯ 𝑓 + 𝑓𝑐
4
Elettronica 75513
Alessandro Spinelli
Ex: flicker noise spectra
𝑆π‘₯ 𝑓
𝑓
𝐡2
𝑆 𝑓 + 𝑓𝑐
4 π‘₯
𝐡2
𝑆 𝑓 βˆ’ 𝑓𝑐
4 π‘₯
𝑆𝑑 𝑓
|π‘ŠπΏπ‘ƒ 𝑑, 𝑓 |
𝑓
𝑓𝑐
βˆ’π‘“π‘
Elettronica 75513
Alessandro Spinelli
Output rms noise
β€’ We consider the equivalent noise bandwidth of
π‘ŠπΏπ‘ƒ 𝑑, 𝑓 , π΅π‘Šπ‘›
β€’ We approximate 𝑆𝑑 𝑓 with 𝑆𝑑 0 over π΅π‘Šπ‘›
(narrow-band output filter)
β€’ The output rms noise is then
𝑛𝑦2 =
𝑆𝑑 𝑓 |π‘ŠπΏπ‘ƒ 𝑑, 𝑓 |𝑑𝑓 β‰ˆ 𝑆𝑑 0 2π΅π‘Šπ‘›
𝐡2
= 2π΅π‘Šπ‘›
𝑆π‘₯ βˆ’π‘“π‘ + 𝑆π‘₯ 𝑓𝑐
4
Elettronica 75513
Alessandro Spinelli
= 𝐡2 π΅π‘Šπ‘› 𝑆π‘₯ 𝑓𝑐
S/N ratio
β€’ We consider a constant signal
π‘₯ 𝑑 = 𝐴cos πœ”π‘ 𝑑
β€’ Output signal and noise are
𝐴𝐡
(no phase errors)
𝑦 𝑑 =
2
𝑛𝑦2 = 𝐡2 π΅π‘Šπ‘› 𝑆π‘₯ 𝑓𝑐
𝑆
𝐴
=
𝑁
4𝑆π‘₯ 𝑓𝑐 π΅π‘Šπ‘›
Elettronica 75513
Alessandro Spinelli
Remarks
β€’ If only LPF is used, S/N would be
𝑆
𝐴
=
𝑁
2𝑆π‘₯ 0 π΅π‘Šπ‘›
β€’ Synchronous detection is useful only if
𝑆π‘₯ 0 ≫ 𝑆π‘₯ 𝑓𝑐
β€’ The modulation stage must be inserted before
the relevant LF noise sources (usually the
amplifiers)
Elettronica 75513
Alessandro Spinelli
Wheatstone bridge with LIA
R
R
LIA
𝑉sin(πœ”π‘ 𝑑)
R(1+x)
R
Elettronica 75513
Alessandro Spinelli
Vo
Low-light measurement with LIA
From [3]
Elettronica 75513
Alessandro Spinelli
References
1. http://cnx.org/content/m45974/latest/
2. http://home.deib.polimi.it/cova/elet/lezioni/
SSN08c_Filters-BPF3.pdf
3. http://en.wikipedia.org/wiki/Lockin_amplifier
Elettronica 75513
Alessandro Spinelli
Scarica

Presentazione standard di PowerPoint