dizionari alberi bilanciati dizionari ADT che supportano le seguenti operazioni membership anche detta search insert delete o remove le liste e i BST sono dizionari maggio 2002 ASD2002 - Alberi bilanciati 2 dizionari/2 tutte le implementazioni finora considerate hanno almeno un’operazione di costo lineare w.c.t. (worst case time, tempo nel caso peggiore) in molti casi un costo lineare è giudicato inaccettabile strutture più efficienti? maggio 2002 alberi bilanciati tavole hash ASD2002 - Alberi bilanciati 3 introduzione al bilanciamento nozione intuitiva di bilanciamento tutti i rami di un albero hanno approssimativamente la stessa lunghezza ciascun nodo interno ha “molti” figli caso ideale per un albero k-ario ciascun nodo ha 0 o k figli la lunghezza di due rami qualsiasi differisce di al più una unità maggio 2002 ASD2002 - Alberi bilanciati 4 bilanciamento perfetto 34 21 16 6 63 30 43 72 18 28 32 37 52 un albero binario perfettamente bilanciato di n nodi ha altezza lg2 n 1 se ogni nodo ha 0 o 2 figli nf = ni +1 -1 foglia + 1 nodo interno +2 foglie maggio 2002 nf = # foglie ni = # nodi interni n = nf + ni le foglie sono circa il 50% dei nodi ASD2002 - Alberi bilanciati 5 bilanciamento perfetto/2 facilmente generalizzabile ad alberi di arità k nf (k 1)ni 1 (k 1)n 1 nf k costo di ricerca/inserimento/eliminazione O(log n) ripetuti inserimenti/eliminazioni possono distruggere il bilanciamento degrado delle prestazioni maggio 2002 ASD2002 - Alberi bilanciati 6 bilanciamento in altezza un albero è bilanciato in altezza se le altezze dei sottoalberi sinistro e destro di ogni nodo differiscono di al più un’unità gli alberi bilanciati in altezza sono detti alberi AVL da Adel’son-Vel’skii & Landis, primi proponenti maggio 2002 ASD2002 - Alberi bilanciati 7 fattore di bilanciamento 34 21 16 6 63 30 43 18 28 32 37 52 3 29 72 fattore di bilanciamento (FDB): altezza sottoalbero dx – altezza sottoalbero sx 78 57 +1 -1 0 in un albero bilanciato in altezza |FDB| 1, per ogni nodo maggio 2002 ASD2002 - Alberi bilanciati 8 alberi AVL? maggio 2002 ASD2002 - Alberi bilanciati 9 alberi di Fibonacci 1 2 4 7 12 maggio 2002 h Fh AVLh 0 0 0 1 1 1 2 1 2 3 2 4 4 3 7 5 5 12 6 8 20 7 13 33 ASD2002 - Alberi bilanciati 10 alberi di Fibonacci/2 alberi di Fibonacci alberi bilanciati di altezza i col minimo numero di nodi AVLi +2 AVLi maggio 2002 AVLi +1 Relazioni AVLi +2 = AVLi + AVLi +1 + 1 Fi +2 = Fi + Fi +1 AVLi = Fi +2 – 1 ASD2002 - Alberi bilanciati 11 alberi di Fibonacci/3 un albero di Fibonacci ha tutti i fattori di bilanciamento dei nodi interni pari a ± 1 è l’albero bilanciato più vicino alla condizione di non bilanciamento un albero di Fibonacci con n nodi ha altezza < 1.44 lg(n +2) – 0.328 dimostrato da Adel’son-Vel’skii & Landis un AVL di n nodi ha altezza (lg n ) maggio 2002 ASD2002 - Alberi bilanciati 12 inserimento in AVL 1. inserire nuovo nodo come in un BST “classico” il nuovo nodo diviene una foglia 2. ricalcolare i fattori di bilanciamento che sono mutati in seguito all’inserimento solo nel ramo interessato all’inserimento (gli altri fattori non possono mutare), dal basso verso l’alto 3. se nel ramo appare un fattore di bilanciamento pari a ±2 occorre ribilanciare tramite “rotazioni” maggio 2002 ASD2002 - Alberi bilanciati 13 rotazioni negli AVL casi possibili DD: inserimento nel sottoalbero destro di un figlio destro (del nodo che si sbilancia) SD: inserimento nel sottoalbero sinistro di un figlio destro (del nodo che si sbilancia) DS: inserimento nel sottoalbero destro di un figlio sinistro (del nodo che si sbilancia) SS: inserimento nel sottoalbero sinistro di un figlio sinistro (del nodo che si sbilancia) simmetrici a coppie una rotazione (semplice o doppia) è sempre sufficiente maggio 2002 ASD2002 - Alberi bilanciati 14 rotazione semplice (caso DD) gli antenati di P non sono interessati all’inserimento perché in seguito alla rotazione recuperano il loro fattore di bilanciamento precedente maggio 2002 ASD2002 - Alberi bilanciati 15 rotazione doppia (caso SD) gli antenati di P non sono interessati all’inserimento maggio 2002 ASD2002 - Alberi bilanciati 16 inserimento negli AVL/costo passo 1: proporzionale all’altezza dell’albero (lg n ) passo 2: proporzionale all’altezza dell’albero (lg n ) passo 3: (1) in totale: (lg n ) maggio 2002 ASD2002 - Alberi bilanciati 17 cancellazione negli AVL cancellare nodo come in un BST “classico” 2. ricalcolare i fattori di bilanciamento che sono mutati in seguito alla cancellazione 1. solo nel ramo interessato all’inserimento (gli altri fattori non possono mutare), dal basso verso l’alto 3. per ogni nodo con fattore di bilanciamento pari a ±2 occorre operare una rotazione semplice o doppia O(lg n ) rotazioni nel caso peggiore più costoso dell’inserimento maggio 2002 ASD2002 - Alberi bilanciati 18 rotazione semplice eliminazione foglia da sottoalbero sinistro di P il figlio destro ha FDB +1; a), b) e c) il figlio destro ha FDB 0; d), e) ed f) maggio 2002 ASD2002 - Alberi bilanciati 19 rotazione doppia eliminazione foglia da sottoalbero sinistro di P FDB(Q) = –1 e FDB(R)= –1; g), h) ed i) rotazione R-Q (P resta a +2, R e Q vanno a +1) e rotazione P-R maggio 2002 ASD2002 - Alberi bilanciati 20 rotazione doppia/2 eliminazione foglia da sottoalbero sinistro di P FDB(Q) = -1, FDB(R)=+1, j), k) ed l) rotazione R-Q (P resta a +2, R va a +2 e Q va a 0) e rotazione P-R maggio 2002 ASD2002 - Alberi bilanciati 21 cancellazione negli AVL/costo nel caso peggiore occorre effettuare rotazioni (semplici o doppie) lungo tutto il ramo passo 1: proporzionale all’altezza dell’albero (lg n ) passo 2: proporzionale all’altezza dell’albero (lg n ) passo 3: (lg n ) · (1) in totale: (lg n ) maggio 2002 ASD2002 - Alberi bilanciati 22 AVL e dizionari gli AVL consentono di realizzare dizionari in cui le tre operazioni membership insert delete hanno costo O(lg n ) w.c.t. maggio 2002 ASD2002 - Alberi bilanciati 23 cancellazione negli AVL/2 gli alberi AVL possono essere estesi consentendo per ogni nodo un FDB limitato se |FDB| 2 altezza 1.81lg n – 0.71 se |FDB| 3 altezza 2.15lg n – 1.13 maggio 2002 ASD2002 - Alberi bilanciati 24 cancellazione negli AVL/esempio animazione tratta dal sito Web http://www.seanet.com/users/ arsen/avltree.html maggio 2002 ASD2002 - Alberi bilanciati 25