la rappresentazione
dell'informazione
numeri binari ed altro
IGEA nov 2002
rappresentazione informazioni
1
informazione
un foglio con
l’immagine di
gatto Silvestro
IGEA nov 2002
rappresentazione informazioni
2
informazione e supporto
 l’informazione
è memorizzata (o
contenuta) in appositi supporti fisici
 libri,
dischi, nastri, giornali…
 l’informazione
è trasmessa su (o portata
da) appositi supporti fisici
 cavi
 ma
coassiali, etere, fibre ottiche…
informazione  supporto
IGEA nov 2002
rappresentazione informazioni
3
informazione e supporto /2

medesima informazione su supporti distinti
8
7
6
5
4
3
2
1
0
5
IGEA nov 2002
rappresentazione informazioni
4
informazione e supporto /3
 medesimo
supporto per informazioni
distinte
 fare
italiano: compiere un'azione; porre in essere,
eseguire, operare…
 English: money paid for transportation (train,
taxi, plane…)

 largo
italiano: esteso in larghezza; per estens., vasto,
ampio
 castillano: que tiene más longitud de lo normal

IGEA nov 2002
rappresentazione informazioni
5
informazione
 richiede
 non
 entità
un supporto
coincide col supporto
logica, extra-fisica
 non
interpretabile in termini di materiaenergia
 sottoposta alle leggi della fisica solo
perché richiede un supporto
 può
essere creata e distrutta
IGEA nov 2002
rappresentazione informazioni
6
supporto fisico
 sistema
fisico
 deve poter assumere configurazioni
differenti
 almeno
due
 a ciascuna di esse si associa una precisa
entità di informazione
 l’interpretazione delle configurazioni è fatta
secondo un codice prestabilito
IGEA nov 2002
rappresentazione informazioni
7
esempio: il telegrafo

supporto: conduttore in cui può transitare
corrente continua
 entità di informazione: “punti” e “linee”


rappresentano le lettere dell’alfabeto ed altri
simboli fondamentali
codice:




transita per 1 s  punto
transita per 2 s  linea
non transita per 1 s  separa punti e linee di una
stessa lettera
non transita per 2 s  separa due lettere
IGEA nov 2002
rappresentazione informazioni
8
esempio: il telegrafo /2

codice (Morse):
relazione tra lettere
e sequenze di
entità di
informazione

più livelli di codifica

quanti?
IGEA nov 2002
rappresentazione informazioni
9
livelli di codifica

configurazione del supporto fisico (liv. fisico)


messaggio (liv. logico 1)


“S” “O” “S”
messaggio (liv. semantico)


∙∙∙ − − − ∙∙∙
messaggio (liv. logico 2)


sì 1 s, no 1 s, sì 1 s, no 1 s, sì 1 s, no 2 s, sì 2 s,
no 1 s, sì 2 s, no 1 s, sì 2 s, no 2 s, sì 1 s, no 1 s,
sì 1 s, no 1 s, sì 1 s, no 2 s
SOS (save our souls)
due livelli di codifica + un livello semantico
IGEA nov 2002
rappresentazione informazioni
10
codifica dati

alfabeto simboli


sintassi




definisce sequenze di simboli “ben formate” (fbf: formule ben
formate)
1.234,5 ok
123,4,5 ko
codice



{‘0’, ‘1’, …, ‘9’, ‘+’, ‘-’, ‘,’, ‘.’}
1.234,5 = 1 × 103 + 2 × 102 + 3 × 101 + 4 × 100 + 5 × 10-1
1,234,5 = ?
codici diversi sullo stesso alfabeto


123,456 = 1 × 102 + 2 × 101 + 3 × 100 + 4 × 10-1 + 5 × 10-2 +
+ 6 × 10-3 [IT]
123,456 = 1 × 105 + 2 × 104 + 3 × 103+ 4 × 102 + 5 × 101 +
+ 6 × 100 [USA]
IGEA nov 2002
rappresentazione informazioni
11
codifica binaria

alfabeto binario {0, 1}


quanti bit per codificare n oggetti?







ciascun simbolo binario si chiama bit (binary digit = cifra
binaria)
1 bit  2 stati (0, 1)  2 oggetti
2 bit  4 stati (00, 01, 10, 11)  4 oggetti
3 bit  8 stati  8 oggetti
…
k bit  2k stati  2k oggetti
log2 n bit  n stati  n oggetti
log2 n non è in genere un intero!


occorrono in realtà log2 n bit
il numero reale di stati potrà anche risultare > n

di quanto?
IGEA nov 2002
rappresentazione informazioni
12
es.: codifica di un insieme
lunedì
martedì
mercoledì
giovedì
venerdì
sabato
domenica
IGEA nov 2002
000
00
001
0
010
01
011
100
10
101
1
110
11
111
ci sono più configurazioni che
oggetti nell’insieme: perché?
rappresentazione informazioni
13
bit, byte, kilobyte, …
nome
bit
byte
kilobyte
megabyte
gigabyte
terabyte
petabyte
exabyte
IGEA nov 2002
sim
b
B
KB
MB
GB
TB
PB
EB
definizione
due stati, ‘0’ o ‘1’
8b
210 B = 1 024 B
220 B = 1 048 576 B
230 B = 1 073 741 824 B
240 B = 1 099 511 627 776 B
250 B
260 B
rappresentazione informazioni
apx
103 B
106 B
109 B
1012 B
1015 B
1018 B
14
tipi di dato

numeri






simboli (o caratteri)
stringhe
immagini



come codificarli?
testi


naturali
interi
razionali
reali
fisse
movimento
suoni
IGEA nov 2002
rappresentazione informazioni
15
sistemi di numerazione
posizionali in base p
 alfabeto
p
{0, 1, 2, …, p-1}
cifre (p > 1)
 il
“peso” di una cifra è unicamente
determinato dalla sua posizione
 fbf: ckck-1…c1c0.c-1c-2…c-h
 convenzione
k
 codice
c
i
anglosassone
p
i
i  h
IGEA nov 2002
rappresentazione informazioni
16
base p
numerale
codice
numero
1234.56dieci
103+2×102+3×10+4+
+5×10-1+6×10-2
1234.12sei
63+2×62+3×6+4+6-1+2×6-2 7870.1944…
1234.12cinque
53+2×52+3×5+4+5-1+2×5-2 194.28
1234.12quattro
120.12tre
1234.56
errore!
32+2×3+3-1+2×3-2
10101010.11due 27+25+23+2+2-1+2-2
15.5555…
170.75
17
numeri naturali (in base 2)


da 0 a 2k-1

1 byte: naturali da 0
a 255
 2 byte: da 0 a 65535
 4 byte: da 0 a
4 294 967 295
IGEA nov 2002
rappresentazione informazioni
0
1
2
3
4
5
6
7
000
001
010
011
100
101
110
111
analogia del contakm
k bit possono
rappresentare 2k
naturali distinti
18
Scarica

trasparenze