S. Bellone, M. Petrosino, A. Rubino, P. Vacca Università degli Studi di Salerno Dip. Ing. Informazione ed Ing. Elettrica Organic Electronics • Effect of ITO treatment on OLEDs performance • Realization and Characterization of Polymeric Memories Riunione Annuale GE 2006 Ischia, 21-23 giugno 2006 Università degli Studi di Salerno Effect of ITO treatment on OLEDs performance Effect of ITO treatment on OLEDs performance Al Electron transporter (ALQ3) Hole transporter (NPD or PF6) ITO 200 nm 60 nm 70 nm 200 nm glass light The effect of various chemical–physical ITO surface treatments have been studied. These treatments remove surface impurity, decrease surface roughness and increase ITO work–function. Small molecules–ITO (NDP) interface and Polymeric–ITO (PF6) interface have been considered. The hole-transporter layers depositing technique are been This work is done in collaboration with Portici ENEA Research Center Riunione Annuale GE 2006 • thermic evaporation for small molecules • spin coating for polymeric molecules Ischia, 21-23 giugno 2006 Università degli Studi di Salerno Effect of ITO treatment on OLEDs performance OLEDs Energy diagrams ITO–NPD–Alq3–Al device ITO–PF6–Alq3–Al device An additional hole barrier is in NPD device A bigger hole anode barrier is in PF5 device Riunione Annuale GE 2006 Ischia, 21-23 giugno 2006 Università degli Studi di Salerno Effect of ITO treatment on OLEDs performance ITO chemical–physical properties for various treatments RMS roughness Spikes Surface energy (W/) (nm) (nm) (mJ/m ) Xp Piranha solution 10,03 4,50 10,70 63,08 0,58 UV ozone–HCl (12%) 11,13 2,60 9,40 46,60 0,51 HCl (12%) 12,31 3,10 14,50 42,36 0,31 Oxygen plasma 10,44 1,80 11,00 38,72 0,65 Annealing 200°C 10,33 2,50 11,90 36,34 0,48 UV ozone 10,00 3,00 24,90 34,40 0,52 HCl (6%) 12,46 12,50 24,70 33,31 0,44 Untreated 10,55 2,40 17,20 32,56 0,49 Treatment Sheet resistance Riunione Annuale GE 2006 2 Polarity Ischia, 21-23 giugno 2006 Università degli Studi di Salerno Effect of ITO treatment on OLEDs performance PF6–OLED Results 2 Current Density (A / cm ) a a HCl b UV-HCl c O2-Plasma d annealing e untreated f UV Ozono g Piranha -4 1x10 -5 1x10 b 1 d -6 1x10 e -7 1x10 f 0.0 4.0 a HCl b UV-HCl c O2-plasma d annealing e untreated f piranha g UV ozone c 8.0 12.0 Voltage (V) Luminance (cd/m^2) -3 1x10 0.1 f 0.01 b g e 16.0 a c d g 20.0 1E-3 12 14 16 18 20 Voltage (V) • The best result is obtained with HCl–UV treatment with an increase of 60 in luminance • The device’s improvement is due to a better adhesion between polymer and substrate during spinning gotten by • increment of the apolar ITO surface energy because the solvent used is apolar • decrement of ITO surface roughness Riunione Annuale GE 2006 Ischia, 21-23 giugno 2006 Università degli Studi di Salerno Effect of ITO treatment on OLEDs performance NPD–OLED Results 0.1 1E-3 1E-4 a HCl b UV-HCl c O-Plasma d annealing e untreated a HCL b UV-HCl c O2-Plasma d annealing e untreated 2 Luminance [cd/m ] -2 Current density [A cm ] 0.01 1000 1E-5 c a 100 a c b 10 d 1E-6 e d b e 1E-7 0.01 0.1 1 10 Voltage (V) 4 5 6 7 8 9 10 11 12 13 14 Voltage [V] • The best result is obtained with HCl treatment with an increase of 100 in luminance • The device’s improvement is due to a better adhesion between evaporated organic moleculs and substrate during Joule–deposition gotten by • increment of the apolar ITO surface energy because NPD is an apolar molecule • increment of ITO surface roughness Riunione Annuale GE 2006 Ischia, 21-23 giugno 2006 Università degli Studi di Salerno Polymeric Memories Realization and Characterization of Polymeric Memories Al 200 nm Polymeric Active Layer 150 nm Al on glass or doped–Si This research work is done in collaboration with Dip. Ing. Chimica ed Alimentare Università di Salerno Riunione Annuale GE 2006 New ad hoc polymers are used to realize organic memory cells. Organic layer is deposited using spin–coating technique. The goal is to realize organic memory using low-cost technologies. To study transport and dynamic phenomena dummy device have been realized on p-type and n-type Si substrate. Ischia, 21-23 giugno 2006 Università degli Studi di Salerno Polymeric Memories Electric Bistability (I) N-Si / O2-Polymer / Al device 0,0 300,0µ cycles (1) (2) (3) (4) 0,0 cycles (1) (2) (3) (4) 0,0 150,0µ Current Current (A) 200,0µ 0,0 [A] 250,0µ 100,0µ 0,0 0,0 50,0µ 0,0 0,0 0,0 -8 -6 -4 -2 0 2 4 Voltage (V) 6 0 2 4 6 Voltage [V] The molecules show two states with different electrical conductivity This electrical bistability is imputable to conformational bistability To return from high conductivity state to low conductivity state, conformational switching is forced by high reverse electric field Riunione Annuale GE 2006 Ischia, 21-23 giugno 2006 Università degli Studi di Salerno Polymeric Memories Electric Bistability (II) Al / N-Polymer / Al device erase 4 (1) (2) (3) (4) (5) (6) (7) (8) 1E-5 1E-7 2 0 read -2 write -4 1E-6 1E-9 Current [A] | Current | [A] Voltage [V] cycles 1E-3 1E-11 1E-7 High 1E-8 Low 1E-9 1E-13 -4 -3 -2 -1 0 1 2 3 Voltage [V] Read voltage – 1.5 V Write voltage –4V Erase voltage +4V Riunione Annuale GE 2006 4 0 25 50 75 100 125 150 175 200 Time [s] One order of difference in current between high conductive state and low conductive one is obtained Ischia, 21-23 giugno 2006 225