Relator Prof.ssa Reviser Fiora Pirri Prof. Daniele Nardi Virtual Simulation of the Grasping: GOLOG Planner and 3D Simulation for the Problem of Grasping of SymGEONs recognized by Neural Network Andrea Luciani Summary • The Manipulation Problem • The Hand • Cinematic of the Grasp • SymGEONs • Neural Network • The Planner The Manipulation Problem Simulation Scene reconstruction Valuation Realization Planner Grasping parameters calculus Local Variables Planning Sensing Visual Sensor Controller Control Tactile Sensor Actuator Hand Object Camera / Scanner The Manipulation Problem Simulator The Manipulation Problem State of the Art Prototypes: •Salisbury Hand •Utah/Mit Hand •16 DOF •Antagonist tendons •LL Analogic Control •HL Control Risc68000 VxWorks Sun Utah/Mit Hand The Manipulation Problem State of the Art Manipulation Literature Deterministic techniques 1982, K. Salisbury Kinematic and Force Analysis of Articolate Hands 1985, M. Mason, K. Salisbury Robot Hands and the Mecanics of Manipulation 1988, D. J. Montana The Kinematics of Contact and Grasp 1994, B. Mirtich, J. Canny Easily Computable Optimum Grasp in 2-D and 3-D The Manipulation Problem State of the Art Manipulation Literature Euristic Method 1991, S. Stansfield Robotic Grasping of Unknow Objects: A Knowledge-Based Approach 1993, S. Caselli, E. Faldella, B. Fringuelli, F. Zanichelli A Hybrid System for Knowledge-Based Synthesis of Robot Grasp Summary Manipulation Problem •The Hand • Cinematic of the Grasp • SymGEONs • Neural Network • The Planner The Hand High Level The Hand High Level 11 DOF The Hand High Level Common Rotation Axis The Hand Primitive Actions: •Traslatione and Rotation •Hand Aligment •Finger Alignment •Opening •Finger Positioning •Force Application The Hand Primitiva Actions: Alignement y x Hand Finger Summary Manipulation Problem The Hand •Cinematic of the Grasp • SymGEONs • Neural Network • The Planner Cinematic of the Grasp Grasp Geometry Cinematic of the Grasp Contact Models Contact Type Outline Wrench Basis 0 0 1 0 0 0 Contact without Friction Contact with Friction Soft-finger 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 Wb FC f 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 f12 f 22 f3 f3 0 0 0 0 0 0 1 f12 f 22 f 3 f3 0 f 4 f3 Cinematic of the Grasp Cinematic •Contact Map 0 Roci 6mi 6mi Gi W , W R , G R b i poc Roc Roc b i i i k F0 Gi f ci , f ci FCi , FCi R mi i 1 •Grasp Map G G1 Gk , G R FC R m 6m , m m1 mk Cinematic of the Grasp Force-Closure: Fe R f c FC : G f c Fe 6 G FC R 6 Cinematic of the Grasp Stability Fe 0 3 ROPpi fci 0 i 1 Pp3 x Pp2 y y z f c3 Co 3 R f OPpi ci f c1 i 1 F0 3 (( Ppi Co CoO) ROPpi ) f ci Pp1 i 1 0 0 3 3 ( Pp Co ROP ) f c CoO ROP f c i pi i pi i i 1 i 1 z x y z Center of Mass x f c2 object Summary Manipulation Problem The Hand Cinematic of the Grasp •SymGEONs • Neural Network • The Planner SymGEONs Definition : Superellipsoid + Deformations a1 cos1 cos 2 1 2 x , a2 cos sin 1 a3 sin , , 2 2 a1 , a2 , a3 R , 1 , 2 (0,1] T A P E R I N G kx X z 1 x a3 Y k y z 1 y a 3 k x , k y 0,1 B E N D I N G X 1 cos 1 x Y y 1 Z sin x 0, , z SymGEONs Representative ability SymGEONs Recognition Advantages: •Simmety •Invariance •Versatility Summary Manipulation Problem The Hand Cinematic of the Grasp SymGEONs •Neural Network • The Planner Neural Network Functionality Input: SymGEONs Shape Parameters Output: Grasp Configurations Grasp Configuration Pp1 , Pp2 , Pp3 , Pal , Ca Neural Network Structure SymGEON Shape Parameters a1 a2 a3 kx ky 1 2 Grasp Classes Domain Structure F I L T E R NEURAL Network 12 6 15 Selected Class S E L E C T I O N Grasp Configuration O P T I M I Z A T I O N Neural Network Filter Caracteristic Zones Domain Partition Neural Network Optimization I Neural Network Optimization II Neural Network Optimization III Summary Manipulation Problem The Hand Cinematic of the Grasp SymGEONs Neural Network •The Planner The Planner Input Parameters: Good _ grasp Pp1 , Pp2 , Pp3 , Pal , Ca , N Accur Acc Normals N1 , N 2 , N3 , N Force _ grasp Fg Pt _ part P Max _ dim _ mano M Friction F Dia _ palmo D p Obstacle(C , r ,Type, Ext x , Ext y , Ext z ) Dia _ dito Dd The Planner Primitive Actions: goAt L approccio _ mano P allinea _ mano P aprimano allinea _ dita P0 , P1, P2 , P3 presa P1 , P2 , P3 , P4 , P5 , P6 applica _ forza F1, F2 , F3 , N1, N 2 , N3 The Planner Fluents : At P, s Near N , s Choosed _ grasp N , s Ready _ app N , s Allineamento P, s Ready _ grasp N , s The Planner Principals Phases : •Approach •Alignement •Grasp The Planner Approach (Path Planning) : The Planner Alignement : proc Allineamento ? Near N Good _ grasp Pp1 , Pp2 , Pp3 , Pal , Ca , N Cen _ geo Pp1 , Pp2 , Pp3 , Co ; allinea _ mano Co ; allinea _ dita Co , Pp1 , Pp2 , Pp3 ; aprimano endproc The Planner Grasp : proc Grasp approccio _ mano P ; presa P , P , P , P , P , P ; applica _ forza F , F , F , N , N , N endproc ap p 1 p 2 p 3 c c 1 2 1 c 2 3 3 1 2 3 Summary Manipualtion Problem The Hand Cinematic of the Grasp SymGEONs Neural Network The Planner End … to ArmHand2 ALCOR Autonomous agents Laboratory for COgnitive Robotics