UNIVERSITA’ DEGLI STUDI DI PADOVA
CLS “Scienze e tecnologie per l’ambiente e il territorio”
Corso di depurazione chimica
INCENERIMENTO
Andrea Boaria
INCENERIMENTO
RSU
Sistema EX-SITU di trattamento affidabile per
RS
Rifiuti medici e/o armi
chimiche
Capacità di distruzione notevole (~ 70%)
Processo di combustione (termodistruzione) con lo scopo di smaltire i rifiuti o
decontaminare materiali (suolo), indispensabile per liquidi organici non
degradabili.
Parole chiave dei meccanismi (dissociazione, pirolisi, volatilizzazione,
ionizzazione, condensazione, precipitazione, complessamento,
sterilizzazione,fusione, etc.).
Necessita di trattamenti preliminari (vagliatura, triturazione, selezione,...).
Coadiuvato da meccanismi di trattamento e controllo emissioni (gassose liquide e
solide).
INQUADRAMENTO NORMATIVO
•
Normazione per sopperire al problema emissioni, gestire gli inceneritori e radicare il
recupero energetico.
A livello Europeo
•
RIFIUTI (Regolamento CEE n. 259/93), trasporto entro i confini;
•
•
DISCARICA (Direttiva 1999/31/CEE), smaltimento;
INCENERIMENTO RIFIUTI (Direttiva 2000/76/CE), approccio integrato, valori
limite delle emissioni per l’aria e acqua, per impianti di “incenerimento” e per
quelli di “coinceneremento”.
•
•
•
A livello Nazionale
RIFIUTI (Legge 29/10/1987), smaltimento dei rifiuti;
INCENERIMENTO (DM 25 febbraio 2000 n. 124), introdotti limiti di emissione
e norme tecniche per incenerimento e coincenerimento;
INCENERIMENTO (D.lgs.n. 133 11 maggio 2005), recepimento Direttiva
2000/76/CE.
PROCESSI
mobilizzazione
•
Combustione del suolo (o altro
materiale).
volatilizzazione
ossidazione
Evapor. H2O e idrocar. volatili (>100°C)
A situazioni termiche diverse
Decomposiz. composti inorg. (>400°C)
Evapor. idroc. Pesanti e pirolisi (300-600°C)
PROCESSI
Nel caso di organoclorurati occorre
sostenere una T°C ≥1000-1200°C.
Il processo di termodistruzione deve essere seguito da:
 Incenerimento in camera di post-combustione (quando richiesto);
 Rimozione delle polveri;
 Controllo dei gas acidi (derivazione da trattamento di alogenati, solforati, etc.).
Soprattutto per limitare fenomeni di usura dell’impianto (corrosione (H3PO4),
incrostazioni, formazione particolato vischioso (metalli alcalini, Na, Ca,….).
PROCESSI
Ceneri
Depurazione
Acque di lavaggio
Polveri derivanti dall’abbattimento dei fumi
La termodistruzione riguarda terreni contenenti:
• COMPOSTI INORGANICI (metalli pesanti, particolato, sali alogenati, nitrati, etc.)>;
• COMPOSTI ORGANICI (PCB, PAHs, IA, BA, etc.).
Con una efficienza di distruzione (abbattimento) del 99,9%
PROCESSI
DIAGRAMMA DI TANNER
Individua il campo di composizione
dei rifiuti adatti all’incenerimento.
Acqua < 50%
Materiale combustibile > 25%
Materiale incombustibile (inerti) < 60%
L’autocombustione è garantita con PCI attorno ai 1500-2000Kcal/Kg
TECNOLOGIE DI COMBUSTIONE
•
La combustione avviene nella CAMERA DI COMBUSTIONE per
alimentazione esterna (combustibile) o per auto-alimentazione (sempre con
PCI tra i 1500-2000 Kcal/Kg).
•
Esistono due tipi di CAMERA DI COMBUSTIONE:
 Statica
A letto fluido
Sistema al plasma
 Mobile
Griglia mobile
Tamburo rotante
TECNOLOGIE DI COMBUSTIONE
zona di essicazione
(evaporaz. H2O e perdita peso del rifiuto,
T°C ridotte)
Il FORNO
zona di combustione primaria (reazioni di
combustione, sintesi comp. Volatili, T°C
elevate)
zona di fine combustione (reazioni a
carico di frazioni particellari grandi e con
cinetiche sostenute, T°C in decremento)
zona di combustione secondaria
(termodistruz. frazioni volatili ), con iniezione
di aria secondaria (ossidazione di composti
prima liberati), T°C assai elevate (11001200°C)
TECNOLOGIE DI COMBUSTIONE
Sono presenti anche sistemi di scarico delle scorie, di raffreddamento (il
canale di scarico è immerso in acqua e garantisce una leggera
depressione all’impianto).
Solitamente nella camera di combustione vengono insuflati due diversi tipi
d’aria:
• aria primaria (comburente immesso al di sotto della Camera di
combustione);
• aria secondaria (aria immessa secondariamente e al di sopra della Camera
di combustione secondaria, per favorire l’eccesso)
TECNOLOGIE DI COMBUSTIONE
Tecnologia a Camera di combustione statica
La più usata in fatto di Tecnologia statica
Costituita da un cilindro verticale
Il rifiuto viene tenuto in sospensione con
un effetto corrente
Forno a letto fluido
Si creano dei moti vorticosi che ottimizzano il
processo di combustione (grazie allo
scambio termico)
Temperature attorno i 750-900°C
Il materiale dev’essere prima pretrattato
(granulometria tra i 2,5 e 5 cm)
Tratta rifiuti di derivazione industriale
TECNOLOGIE DI COMBUSTIONE
Tecnologia a Camera di combustione statica
Letto fisso;
Forno a letto fluido
Letto bollente: utilizza l’aria primaria per fluidizzare il
letto, tratta combustibili eterogenei, bassa velocità di
fluidificazione (1-3 m/s), alta efficienza di combustione
e riduzione di emissioni di bottom ashes e ridotto
trasporto di fly ashes;
Letto turbolento;
Letto circolante: applicato a combustibili omogenei,
elevata efficienza di combustione, riduzione bottom
ashes, alta velocità di fluidizzazione (8-10 m/s)
uso di un ciclone per riciclo del solido, elevato
trasporto di fly ashes;
Letto con trasporto pneumatico
TECNOLOGIE DI COMBUSTIONE
Tecnologia a Camera di combustione statica
Sistema al Plasma
Gas altamente ionizzato elettricamente, generato anche con l’arco
elettrico.
L’unità funzionale costituita da un cilindro rotante verticale provvisto di
torcia al plasma, in grado di generare temperature superiori ai 1000°C.
I composti organici subiscono dissociazione in atomi, ionizzazione e
pirolisi; temperature superiori ai 1600°C fondono il terreno ed esso deve
essere raffreddato.
In grado di distruggere totalmente la materia vivente (anche 2000°C),
potendo trattare anche materiali molto persistenti e resistenti (PCB).
TECNOLOGIE DI COMBUSTIONE
Tecnologia a Camera di combustione statica
Sistema al Plasma
-capacità di trasferimento del calore al terreno;
- Minore produzione di prodotti gassosi da
Alcuni VANTAGGI:
trattare;
- ciclo di lavorazione breve;
- tecnologia flessibile sia come condizioni operative
che come tipologia di rifiuti trattabili;
- limitata durata dell’arco al plasma e dei materiali
refrattari (alte temperature in gioco);
Alcuni SVANTAGGI:
- necessità di controlli umani;
- annichilazione totale e doverosa riqualificazione del
terreno;
TECNOLOGIE DI COMBUSTIONE
Tecnologia a Camera di combustione mobile
Forni a griglia mobile
Per i rifiuti urbani è la più consolidata.
Il materiale viene trasportato nella zona di combustione mediante una griglia
mobile inclinata (dove avvengono le reazioni ci combustione).
L’aria primaria viene insuflata sotto la griglia in lieve eccesso (10-20%), mentre
l’aria secondaria viene dosata sopra la griglia.
Le scorie vengono raccolte nella parte terminale della griglia
TECNOLOGIE DI COMBUSTIONE
Tecnologia a Camera di combustione mobile
Forni a tamburo rotante
Costituiti da un tamburo rotante inclinato (Lu ~10-15 m.) favorente il movimento
del materiale.
La combustione avviene a contatto con la parete e la camera di postcombustione completa la termodistruzione.
Rilevanti perdite di calore (Ø tamburo al massimo di 1,5-2 metri).
Si utilizza un eccesso d’aria maggiore (100-150%).
Si utilizza per smaltire fanghi, frazioni fini o liquide, rifiuti sanitari pericolosi e
non;
Temperature d’esercizio tra i 850-1400°C.
La sezione di fondo estrae le bottom ashes (raffreddamento ad H2O)
EMISSIONI
Ogni inceneritore oltre a eliminare i rifiuti li genera (Primo principio
della termodinamica)
Emissioni gassose
Prodotti della combustione
Ceneri di fondo (scorie)
Bottom e fly ashes
Avvengono reazioni di ossidazione, dissociazione, aggregazione, etc,
(aumento in peso della massa dovuto alla sintesi di CO2, creazione di
acidi alogenidrici e diossine).
EMISSIONI
Suddivisione delle emissioni:
MACROINQUINANTI (Ossidi di zolfo, Ossidi di azoto, Gas inorganici, Ossidi di
carbonio, Sotanze Organiche Volatili, Particolato);
MICROINQUINANTI (Metalli Pesanti, Idrocarburi Aromatici, Idrocarburi
Policiclici Aromatici, Organoclorurati, Diossine Bromurate e Alogenate, Fenoli
Alogenati, Dibenzotiofeni Policlorurati, Benzeni Clorurati);
Bisogna ricordare che le emissioni di un inceneritore non interessano
solamente il comparto ambientale ARIA, ma anche l’ACQUA e SUOLO.
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Importante dal punto di vista dell’impatto ambientale e del recupero energetico
La rimozione si differenzia in base
 alla tipologia d’inquinante;
 al carico inquinante da trattare;
 limiti d’emissione;
 particolare processo di applicazione e
condizioni operative
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Abbattimento Sostanze Gassose Incombuste
Generalmente rappresentate da alcali, aldeidi, chetoni, ammine,
monossido di carbonio.
Soprattutto il CO è un ottimo indicatore dell’andamento della combustione: la
sua presenza è indice di insufficiente temperatura d’esercizio, di eventuale
sovraccarico del forno o comunque di una carenza di Ossigeno.
Una risoluzione è l’eccedenza di O2, ma ATTENZIONE, l’eccesso può si
ridurre i CO ma può aumentare gli NOx.
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Abbattimento Particolato
Presente nella corrente aeriforme in concentrazioni che variano a seconda:
 del contenuto di ceneri del rifiuto;
 del tipo di camera di combustione;
 dalle condizioni d’esercizio dell’impianto.
Fenomeno pericoloso dell’ ARRICCHIMENTO DEL PARTICOLATO
Trattamenti:
- a secco;
- a umido;
- a semisecco.
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Abbattimento Particolato
Trattamenti a secco
Si usano i cicloni ( e multicicloni), i filtri a maniche o i precipitatori elettrostatici
(ESP).
Filtri a manica sovente intasati
Soluzione tecnica
Utilizzo di un metodo per rimuovere le polveri (filter cake) ad alta pressione
(pulse jet) coadiuvato con sistema di iniezione di carboni attivi (contro i
microinquinanti).
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Abbattimento Particolato
Trattamenti a umido
Usati scrubber (a riempimenti, a piatti, a venturi, a ciclone, etc.) oppure
precipitatori elettrostatici ad umido (WESP).
Il particolato viene separato dai gas tramite lavaggi in H2O (> allontanamento).
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Trattamento Gas acidi
Principali gas: SO2, HCl, HF (derivanti dalla trasformazione di sostanze madri).
Trattamenti:
-Assorbimento a secco;
- assorbimento a umido;
- assorbimento a semisecco.
Per limitare la presenza di polveri in questi sistemi e per separare le polveri di
abbattimento da quelle di combustione si rende necessaria una depolverazione
preliminare.
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Trattamento Gas acidi
Assorbimento a secco
Prevede l’asorbimento chimico-fisico dei gas acidi usando la Ca(OH)2
(o NaHCO3), in polvere fine.
CaO + H2O
Ca(OH)2
SO2 + Ca(OH)2
NaHCO3
Na2CO3 + CO2 + H2O SO2 + Na2CO3
CaSO3 + H2O
Na2SO3 + CO2
Si necessita, inoltre, di una depolverazione finale (filtri a maniche) per abbattere
le polveri contenenti i prodotti di reazione e i reagenti non esauriti.
Assorbimento a umido
L’assorbimento dei gas è realizzato mediante un lavaggio degli effluenti gassosi
con soluzioni alcaline (NaOH).
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Trattamento Gas acidi
Assorbimento a semisecco
I fumi vengono trattati iniettando un reagente adsorbente (sospensione di latte
di calce).
Il reagente in forma cristallina (finemente dispersa) reagisce allo stato solido
con i gas acidi formando i rispettivi sali.
Non si producono effluenti liquidi e i prodotti di neutralizzazione necessitano
depolverazione finale (trattamento a secco).
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Abbattimento degli Ossidi di Azoto
Si prevede un incremento della quota d’aria secondaria e decremento di quella
primaria in modo da limitare la presenza di O2 in zone ad alta T°C (meno NOx);
questi composti possono essere ridotti anche con ricircoli di gas di scarico (~30%).
Due metodi principali:
- riduzione selettiva non catalitica (SNCR);
- riduzione selettiva catalitica (SCR).
Si usano solitamente ammoniaca in soluzione acquosa (NH4OH) o additivi di
processo contenenti urea.
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Abbattimento degli Ossidi di Azoto
Riduzione selettiva non catalitica (SNCR)
Si sfruttano i radicali amminici, i quali reagiscono con il NO a T°C comprese tra
850 e 1050°C e formano N2 e H2O.
Processi influenzati da:
Temperatura d’esercizio (>T° > ossidazione
dell’ammoniaca; se <T° <reazione dell’ammoniaca
(ammonia slip) con formazione di incriostazioni
((NH4)2SO4 e NH4Cl);
Concentrazione di partenza dei reagenti (per
rendere il processo più efficace si riccorre ad un
eccesso di ammoniaca (1,5-2 moli/mole di NOx).
L’urea è di più facile gestione.
4NH3 + 5O2
4NO + 6H2O
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Abbattimento degli Ossidi di Azoto
Riduzione selettiva catalitica (SCR)
Ossidi di azoto (NO e NO2), tramite ammoniaca, convertiti in N2 e H2O a temp.
comprese tra 270 e 380°C in presenza di un catalizzatore.
Un problema sovente è l’avvelenamento del catalizzatore (presenza nei fumi di
Ossidi di zolfo (SO3)
(NH4)2SO4.e metalli pesanti (V, Zn, As)).
Importante un sistema di abbattimento degli ossidi di azoto a VALLE della
depurazione dei fumi.
DEPURAZIONE POST-COMBUSTIONE
Trattamento di effluenti gassosi
Abbattimento dei composti organoclorurati
Principalmente Clorobenzene, Clorofenoli, Policlorodibenzodiossine,
Policlorodibenzofurani e altri composti ad elevata tossicità.
Si possono evitare con alte temperature nella Camera di combustione (900950°C), con elevati valori di O2 ed elevata turbolenza.
Se presenti nella fase solida (trattamento del particolato o utilizzo di carboni
attivi)
Abbattimento dei Metalli pesanti
Effettuato in concomitanza con quello del particolato (condensazione su di
esso); il mercurio, ad esempio, viene rimosso con lavaggi ad umido o tramite
adsorbimento con carbone attivo.
DEPURAZIONE POST-COMBUSTIONE
Trattamento di prodotti di risulta
Circa il 20-30% in peso e il 10-15% in volume del rifiuto solido grezzo
(γ=2,2-2,7 t/m3).
Ceneri e scorie (bottom and boiler ash)
Tipologie solide
Ceneri volanti (fly ash)
Prodotti di reazione e reagenti in
eccesso
DEPURAZIONE POST-COMBUSTIONE
Trattamento dei prodotti di risulta
Bottom and boiler ash
RIFIUTI SPECIALI NON PERICOLOSI
Costituiti da frazioni inerti e piccole quantità di materiale incombusto.
Le scorie vengono raccolte in una vasca di spegnimento (%U.≈25).
Limitata presenza
OK!! (il processo)
Possono venir avviati ai cementifici o per realizzazioni stradali o infrastrutturali.
DEPURAZIONE POST-COMBUSTIONE
Trattamento dei prodotti di risulta
Fly ash
RIFIUTI SPECIALI PERICOLOSI
Polveri di combustione trasportate dai fumi (Ø < delle scorie).
Possono contenere metalli pesanti (Pb, Cd, Zn) e composti organici
adsorbiti e devono essere allocati in discarica o inertizzati e messi i
discarica.
Prodotti di reazione e reagenti in eccesso
RIFIUTI SPECIALI PERICOLOSI
Sintesi in impianti di assorbimento a secco (assenza fase liquida).
L’inertizzazione (metodo definitivo mediante cementificazione) è attenuato dalla
presenza di Cloruri e Solfati.
DEPURAZIONE POST-COMBUSTIONE
Trattamento prodotti liquidi di risulta
Effluenti liquidi
Spegnimento delle scorie;
Trattamento a umido dei fumi;
Alcune derivazioni
Accumulo sul fondo della fossa;
Da torri di raffreddamento e scarico caldaie;
Dai servizi generali, igienici, sociali.
Le acque possono contenere solidi sospesi, composti organici incombusti, sali
solubili (Cl-, SO4=), gas acidi.
Sottoposte a specifico trattamento chimico-fisico.
UTILIZZO DI RIFIUTI COME ENERGIA
Rifiuto (C, H, ridotti)
(CO2, H2O, ossidati)
Elettrica
ENERGIA
Termica
PCS: quantità di calore sviluppata dall’unità di massa del campione dopo averlo
essicato (bomba mahler);
PCI: quantità di calore sviluppata dall’unità di massa del campione tal quale, cioè
umido.
Formule empiriche per stimare il PCI (riferimento tecnico ~ 1500 Kcal/Kg)
Formule sperimentali di Shien Fan, Boie,
Du Long: PCI = 8080 C + 28750 (H-O/8) + 2500 S + r*H2O)
TERMOVALORIZZAZIONE
Quantitativi imponenti
termodistruzione/ TERMOUTILIZZAZIONE
Lungimiranza energetica
Pressione normativa
TERMOVALORIZZAZIONE
Energia elettrica
Energia termica
(teleriscaldamento)
SI USA IL CALORE PRODOTTO PER PRODURRE ENERGIA
Esempio importante: Inceneritore di Brescia, con ~ 760 mila tonn./y, 510 milioni
KWatt/h netti (fabbisogno di 170 mila famiglie)
Il più grande al mondo e l’apogeo, come efficienza energetica, emissioni e
gestione (da la Repubblica 4 dicembre 2006).
TERMOVALORIZZAZIONE
Dal punto di vista progettuale, due criteri:
1.
2.
Minimi impatti, minimi residui e
migliore tecnologia disponibile,
garantendo informazione e
conoscenza ai cittadini;
Massimizzazione del profitto
(recupero energetico) per garantire
la gestione degli impianti.
Processo di termovalorizzazione in fasi:
- arrivo rifiuti;
- combustione;
- produzione vapore;
- produzione energia elettrica;
- estrazione delle scorie;
- trattamento dei fumi;
- smaltimento delle ceneri.
1 e 2 OK!! Sostenibilità
>1 o >2 NO Sostenibilità
CONCLUSIONI

Potenziale alternativa decontaminante EX-SITU (soprattutto alla discarica);

Usato per distruggere inquinanti molto tossici e resistenti (p.e. PCB);

Possibilità di termoutilizzazione (recupero energetico);

Non garantisce la totale distruzione
problema emissioni
Inquinamento
Opposizione stakeholder
(potenzialità disturbi)
 Richiede personale specializzato;
 Costi di varia natura;
 per i terreni, causa sterilizzazione
riqualificazione
> costi
CONCLUSIONI
 Per rendere l’inceneritore più efficiente (livello energetico ed ambientale):
 migliorare e assicurare le tecniche di monitoraggio dei terreni
circostanti gli inquinanti;
 migliorare e assicurare le tecniche di monitoraggio degli inquinanti di
emissione e acquisizione dei dati in remoto;
 campionamento costante dei macroinquinanti (diossine, etc.) in
emissione (sviluppati anche sistemi di studio per i fattori di emissione nel
tempo);
 assicurare e migliorare il vincolo energetico nei processi
d’incenerimento (imposizione normativa).
Bisogna tener presente che il problema futuro (generazioni future)
sarà sì quello dell’
, ma anche dei
Scarica

Inceneritore