ISEO – 27 July 2010 MODAL ANALYSIS APPLIED TO THE STUDY OF THE INTERNAL WAVE STRUCTURE OF ISEO LAKE GIULIA VALERIO Università degli Studi di Brescia QUESTION - How does a so complex bathymetry affect the internal wave structure in lake Iseo? distance [m] 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 elevation [m] (10:1) 350 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 Csanady (1972) - Bäuerle (1994) - Wang et al. (2000) - Fricker and Nepf (2000) - Lemmin and Mortimer (2005) - Antenucci and Imberger (2001) - Gomez-Giraldo et al. (2006) - Rueda et. al (2003) - Shimizu et al. (2007) – Okely et al. (2010) NUMERICAL APPROACH - Modal model • Linear 1 2 t t V1 0 2 V 0 2 t V 1 V1 gh111 0 0 t V2 V gh gh 2 2 1 1 2 2 2 t • Separation in time and space Eigenvalue problem i x, i x, i 0 Mortimer (1974) - Lemmin and Mortimer (2005) - Shimizu et al. (2007) – Shumizu and Imberger (2008) – De la Fuente et al. (2008) MODEL EXPERIMENTAL APPROACH - Field activity • Forced waves - dominant mode 1 • Locations of the monitoring stations • Influence of spatial variability of wind field on modes excitation •Poincarè waves trapped around the island • Sampling strategy for temperature mapping www.rmso.com.au Becker and Miles (1991) – Strub and Powell (1986) - Rueda et al. (2005) - Strub (1986)- Laval et al. (2003), Pan et al. (2002) - Shimizu et al. (2007) - Bäuerle (1994) - Okely et al. (2010) FIELD ACTIVITY MODEL • General agreement of the main basin scale motion (Cfr 17/7 T3; 18/7 T17) • Problems in phase capturing in the south (Cfr olaris) non-uniform wind distribution? • Excitation of vertical modes > 1 (Cfr 20/7 T22) necessity number of layers > 2 when the upper layer is shallow • Non-linearity of the singnal limitations of the linear model Thanks for your attention!