June 23, 2014 • Expectations from Bell non-resonant instability: Why do we need it? Maximum energy • Description of our toy-model: • Spectrum Energetics Comparison with KASKADE-GRANDE data Comparison with ARGO data Conclusions RESONANT INSTABILITY (Skilling 1975) Excitation of Alfvén waves with λ ≅ rL NON RESONANT INSTABILITY (Bell 2004) Purely growing waves at wavelengths non-resonant with rL (λ << rL), driven by the CR current jCR. Growth rate dependence on the shock velocity (α vs2) and on plasma density (α n⅙) Very Young SNRs ρ = cost ISM Ze xCR 2 EM (R) @ 4pr Rvsh (R) 10 cL · WIND • • • ρ α R-2 Ze M xCR 2 EM (R) @ vsh (R) 5 Vw Lc Independent from the B field strength Proportional to CR efficiency (ξCR) Strong dependence on shock velocity ED phase 1 1 dt N acc (E) = fesc r (t)vsh3 (t)4p Rsh2 (t) 2 E(t) dE Caprioli et al. 2010, Schure&Bell 2013 Acceleration spectrum éæ ölED ×a æ ölST ×a ù t t R(t) = R0 êç ÷ +ç ÷ ú êëè t0 ø è t0 ø úû STARTING POINT WIND ρej α R-k k=[7,9] ì - 2-lED ï E 2(1-lED ) ï N acc (E) µ í ï E -2 ï î lED = p=[3,4] k -3 k -2 lST = 2 5 No sharp cut-off above EM! Observed Spectrum -d  H æ E ö æ X(E) ö N obs (E) = N acc (E)´ ÷ ç ÷ ´ ç1+ 2 2p RD D0 è Ze ø è XCR ø Diffusion Spallation Fixed Variables Mej= 1 M ESN= Supernova energy dM/dt= 10-5 M/yrs R = Explosion rate Vw= 10 km/s Rd= 10 kpc H= 3 kpc nd= 1 cm-3 kpc D0= 3 x 1028 cm2 s-1 δ= 0.65 σsp= α(E) Αβ(E) ξCR EM t0 V0 ESN= 1051 erg R= 1/30 yrs EM= 6.6 x 1014 eV ξCR= 12% t0= 96 yrs v0=10.445 km/s ESN= 1051 erg R= 1/30 yrs EM= 6.4 x 1014 eV ξCR= 10 % t0= 88 yrs v0=11.339 km/s ESN= 1051 erg R= 1/30 yrs EM= 6.3 x 1014 eV ξCR= 8.5 % t0= 84.5 yrs v0=11.830 km/s ~2x1012 ~3x1015 • τdyn> τpp≅ 103 s • τdyn> τIC ≅ 106 s • τdyn> τph ≅ 109 s k=9 ESN= 1052 erg R= 1/950 yrs EM ≅ 9.4 x 1015 eV ξCR ≅ 13 % t0 ≅ 27 yrs v0 ≅37.500 km/s k=9 ESN= 1052 erg R= 1/950 yrs EM ≅ 9.4 x 1015 eV ξCR ≅ 13 % t0 ≅ 27 yrs v0 ≅37.500 km/s k=9 ESN= 1051 erg R= 1/30 yrs EM ≅ 6.3 x 1014 eV ξCR ≅ 8.5 % t0 ≅ 84 yrs v0 ≅11.800 km/s k=9 ESN= 4 x 1051 erg R= 1/60 yrs Uncertainty on the data? EM ≅ 1.2 x 1015 eV ξCR ≅ 4.5 % Additional component? t0 ≅ 42 yrs v0 ≅23.700 km/s Bell non-resonant instability (NRI) predicts that very energetic SNRs can reach PeV energies Our toy-model shows that the NRI leads to the release of a steep power-law spectrum in the ejecta dominated phase The “knee” provided by our model is at E < 3x1015 eV for standard energetics KASKADE Grande data can be fitted only by requiring a challengingly large energetics of a SNR Our model can fit ARGO data of the light component but a fit to the overall spectrum requires the existence of another population of very energetic particles in addition to the SNR one.