Coping with temporal indeterminacy
in medical data
Luca Anselmaa, Paolo Terenzianib
aDipartimento di Informatica, Università di Torino, Torino, Italy,
Email: [email protected]
bDipartimento di Informatica, Università del Piemonte Orientale
“Amedeo Avogadro”, Alessandria, Italy. Email:
[email protected]
Coping with temporal data
in relational Databases
-Medical data are mostly temporal data (same for many other
applications/domains)
- Adding time to RELATIONAL DATABASES is challenging
Two decades of research into temporal databases have unequivocally shown that a
time-varying table, containing certain kinds of DATE columns, is a completely
different animal than its cousin, the table without such columns. Effectively designing,
querying, and modifying time-varying tables requires a different set of approaches
and techniques “ R.T. Snodgrass: “A paradigm shift”
-Almost 30 years of research (90 entries about time in the
Springer Encyclopedia about Databases (2008))
CHALLENGE:
not only data representation model, but also QUERY
 ALGEBRA
TEMPORAL ALGEBRAE: REQUIREMENTS
Consistent with the data (snapshot) semantics

Reducibility
rT
ρ tT
op
opT
ρtT
opT (rT)
ρtT (rT)
op(ρtT (rT))
=
=
ρtT(opT (rT))
 INTEROPERABILITY WITH CONVENTIONAL
(non-temporal) DATABASES
Coping with INDETERMINATE temporal data
in relational Databases
- INDETERMINACY: don’t
know EXACTLY when
Ex.1 On January 1st 2012 Mary had headache starting
between 8am and 9am and ending between 1pm and 2pm.
Few approaches in the temporal relational DB literature:
- Different data representation models but …
(i) Either no temporal algebra
(ii) Or coercion to determinate data as a prior (compulsory) step
before using a (standard) temporal algebra (e.g., [Das &
Musen, 94], [Dyreson & Snodgrass, 98])
OUR RESULTS
TEMPORALLY INDETERMINATE DATA
IN RELATIONAL DATABASES
-Data representation model
- Temporal Algebra
- Properties: Reducibility & al.
DATA REPRESENTATION MODEL
Indeterminate Temporal Element: “certainly hold” interval +
“possibly hold” interval
Ex.1 On January 1st 2012 Mary had headache starting
between 8am and 9am and ending between 1pm and 2pm.
PAT_ID
SYPTOM
Ds
De
Is
Ie
Mary
Headache
Jan 1st 2012
h9
Jan 1st 2012
h14
Jan 1st 2012
h8
Jan 1st 2012
h15
ALGEBRA
r TI s
πTIX(r)
σTIP(r)
r TI s
=
=
=
=
r –TI s =
σTICERT (r) =
TI
σ POSS (r) =
{ (v|<d,i>) | (v|<d,i>)r  (v|<d,i>)s}
{ (v|<d,i>) |  (v1|<d1,i1>)r  v = πX(v1)  <d,i>= <d1,i1> }
{ (v|<d,i>) | (v|<d,i>)r  P(v) }
{ (vr ∙ vs|<d,i>) | <dr,ir>,<ds,is> ( (vr|<dr,ir>)r  (vs|<ds,is>)s 
<d,i> = <dr,ir> ITE <ds,is>  i ) }
{ (v|<d,i>) | ( <dr,ir> ((v|<dr,ir>)r  <ds,is> ((v|<ds,is>)s 
<d,i> = <dr,ir>)) ) 
( <dr,ir> ((v|<dr,ir>)r  ! (v|<d1,i1>), …, (v|<dk,ik>) ((v|<d1,i1>)s,
…, (v|<dk,ik>)s  <d,i> = <dr,ir> –ITE {<d1,i1>, …, <dk,ik>}  i)))}
{ (v|<d,i>) | (v|<d,i>)r  (d) }
{ (v|<d,i>) | (v|<d,i>)r  (i) }
ALGEBRA
(set operators between ITEs)
ITE intersection. <d,i> ITE <d’,i’> = <dd’, ii’>
ITE difference. <d,i> –ITE {<d’1,i’1>, …, <d’k,i’k>} =
cover(chr(d) – (chr(i’1)  chr(d’1)  …  chr(i’k)  chr(d’k)),
chr(i) – (chr(d’1)  …  chr(d’k))).
chr([cs,ce)) = {c  TC | cs ≤ c < ce}
isConvex(s) iff ∄cTC (min(s)≤c≤max(s) ∧ c∉s)
maximal(S) = {s | s⊆S ∧ isConvex(s) ∧ ∄s’⊆S (isConvex(s’) ∧ s⊂s’)}
partition(i, {d1, …, dk}) = {<dj, ij> |
dj{d1, …, dk} ∧ dj⊆ij ∧ ∄dh{d1, …, dk} (dh≠dj ∧ dhij≠Ø) ∧
i1 … ik=i ∧ iii2=Ø ∧ … ∧ iiik=Ø ∧ … ∧ ik-1ik=Ø ∧
isConvex(i1) ∧ … ∧ isConvex(ik)}
cover(D, I) = {<Ø, [min(i’), max(i’)+1)> | imaximal(I) ∧ ∄cD (ci)}  {<[min(d’),
max(d’)+1), [min(i’), max(i’)+1)> | imaximal(I) (<d’,i’>partition(i, {d | dmaximal(D) ∧
d⊆i}))}
PROPERTIES (1/2)
Consistent extension (ITEs). Determinate temporal elements
can be modeled by ITEs of the form <[start, end), [start, end)>
Closure of ITE set operators. The representation language of
ITEs is closed with respect to the operations of ITE and –ITE.
Closure of temporally indeterminate algebraic operators.
PROPERTIES
Consistent extension (temporally indeterminate relational
algebraic operators). If only determinate ITEs of the form
<[s,e),[s,e)> are used as valid time associated with tuples, our
relational operators TI, –TI, σTIP, πTIX and TI are equivalent to
the standard TSQL2 valid-time relational operators T, –T, σTP,
πTX and T.
 Implementability on top of TSQL2-based DBMS
Reducibility of temporally indeterminate relational
algebra to non-temporal relational algebra
 Interoperability with conventional (non-temporal)
DBMS
ACKNOWLEDGEMENTS
R.T. Snodgrass, CS Dept, Univ. of Arizona, Tucson, USA
G. Molino and M. Torchio of ASU San Giovanni Battista, Turin,
Italy
This research was partially supported by Compagnia di San
Paolo, GINSENG project.
THANKS FOR YOUR ATTENTION!!
Scarica

Dipartimento di Informatica