Final Review Meeting Livorno, Italy January 30-31, 2012 The HydroNet Project Environment Programme - Project N°212790 Partner name: SSSA Working Team: WP leaders, SSSA Administrative Team Speaker name: Giacomo Saviozzi Technical Management: cooperation for integration From Sensor Devices (SDs) needs: • catamaran fluidic subsystem scheme, • simplified scheme for flat-boat Water Decoupling SDsinvolved Fluidicpartners interface Thanks to the efforts, the SDs been implemented according to the defined interfaces and they can be plag&play installed on floating robots and the “chemical” buoy. Well determined electrical, electronic, hydraulic, informatics interfaces have been proposed to all the involved partners to facilitated the mounting/dismounting of all the SDs and to realize common, standard connections easily to use, to check and to maintain. Livorno - January 31th , 2012 Giacomo Saviozzi 2 Technical Management: cooperation for integration SDs / HRMC protocol The figure shows the state diagram related to a SD in the operative phase is shown Applied in catamarans, flat boat and “chemical” buoy A lot of software shared between catamaran and flat-boat Livorno - January 31th , 2012 Giacomo Saviozzi 3 Technical Management: cooperation for integration Hg bioSDs IFB : Delivered very late AE-2 and CRAB optical SDs LUMEX : Delivered on time Heavy-metal chemiSDs HUJI Cd(II) - Delivered on time HUJI Hg(II) - Delivered very late HUJI Cr(VI) - Delivered very, very late Livorno - January 31th , 2012 Giacomo Saviozzi 4 Technical Management: cooperation for integration HydroNet Hg/HUJI SD datasheet Sensor ID Chemical Parameter Working Temperature Range Water needed to measure + rinse Calibration HUJI_Hg_X * Parameter sensor can detect: Hg(II) (mg/l) 5 - 50 0C Min 2 ml , Max 5 ml / cycle at least twice a day: preferably to carry out standard addition than calibration. Single needed time: approximately 1800 sec Off-Shore Recondition Times Sampling Time Substituting consumables: 900-1800 sec (if any) Times for sampling: • 600 Sec (measurement only), • 800 Sec (with internal sensor cleaning) Discharged whole liquid quantity Discharge mode Internal Operating Voltage Power Consumption 10 ml / cycle o Tube n° 8 (autonomous mode) 12 V Sleeping mode: 4 W Average: 12 W o Max in Operating Mode: 20 W Weight Life Min 4 Kg , Max 5 Kg Until the sensor has to be recharged (with bacteria or hexane for example): Life-measurements: tens (normal conditions: heat, voltage) Life-time: 1 day (initially) Running Cost / Year ca.100 EUR (no manpower, no electrode replacing) Electrodes Replacing Cost Full Sensor Cost Returned Values (informatic) ca. 300 EUR ca. 5200 EUR (no R&D) Output messages in the same measurement: 1 1. Concentration o ppb (µg/L) Least Significative Byte (LSB) Returned Values Resolution: 3 with a multiplication factor Sensitivity To be determined, should finally be <1 ppb To be determined, should finally be 1-100 ppb Working Range (in ng/L or ppt) Livorno - January 31th , 2012 Giacomo Saviozzi 5 Technical Management: cooperation for integration HydroNet SD maintenance manuals Livorno - January 31th , 2012 Giacomo Saviozzi 6 Technical Management: cooperation for integration Software Electrical Software Firmware Electrical Mechanics Software Livorno - January 31th , 2012 Giacomo Saviozzi 7 Technical Management: cooperation for integration HydroNet robots: an high multidisciplinary integrated project Livorno - January 31th , 2012 Giacomo Saviozzi 8 Technical Management: cooperation for integration HydroNet robots datasheets Dissemination / Exploitation (to NILU) Livorno - January 31th , 2012 Giacomo Saviozzi 9 Application Operational Modes Lagoon and river monitoring of water chemical pollutants (heavy metal and oil). Applications managed by a intelligent ground station. series of waypoints set previously by a ground control station. The catamaran can sail autonomously through a series of waypoints set Operational Modes Sub-surface purpose Remotely controlled by an operator or autonomous navigation with obstacle Navigation Marine coastal, rivers and lagoons monitoring of physical and chemical figures The flat boat robot can navigate autonomously in a river or in a lagoon through a avoidance capability. Hull Draught is 0.30 m. Sensors: GPS, digital compass and water current data for estimating position; laser Sub-surface purpose scanner for obstacle detection. Body Size L x W x H: 2.29m x 1.12m x 0.58m Materials Carbon fiber Power Consumption ~ 150W (12V 12.5Ah) previously and can keep a stationary position to gather water environment data. Bottom loiter The boat can dip a probe up to 50m to gather water samples and environment parameters along the water column Fully automatic (predefined): using GPS to position reference, remotely controlled; Navigation speed, altimeter and anemometer sensors, path planning with current estimation; hybrid navigation with motors and sail; obstacle avoidance using a laser scanner and a forward looking sonar Wing span Body Size Length: 1991 mm; Width: 1164 mm Antenna mast length Materials Carbon fiber Weight Power Consumption Maximum Depth Wing span Maximum Travel Range/Duration Can cover a distance of 20 Km Antenna mast length Battery / Endurance About 10 hours Weight 85 Kg Typical Speed About 2 Knots (Maximum Speed About 4 Knots) Maximum Depth The probe can reach a maximum depth of 50m Maximum Travel Range/Duration 3 Km from the coast, Can cover a distance of 22 Km Glide Angle Mechanical Features Electrical Features Two independent inboard propeller motors. 4 Pumps to feed 4 different sensors Battery / Endurance Two 12VDC batteries, 110Ah Typical Speed 1 Solar Panel, 90W Glide Angle PC 104 CPU module GPS module Electrical Features Operating 24-32V Digital Compass Titan PC; Blootooth module; WiFi module; controllers for the motors; GPS module; Water current sensor Laser Scanner Electronical Features Up to 4 chemical sensors for heavy metals One optical sensor for oil slick detection Software Features Embedded Linux OS Special Features 2,5-3 kns Two independent propellers controlled by two motors and two rudders actuated by a single motor; rudders are actuated with an articulated parallelogram by a motor acting on a worm gear mechanism; winch for the sampling probe; fluidic system to manage the sampled water Motors Controller Electronic Features Autonomy: 10 hours Mechanical Features Wi-Fi module Radio communication module 12 Li-Po (TopFuel 29.7 V, 5000mA 8S Long 30C) batteries Laser Scanner; Forward looking Sonar; Altimeter; radio communication module; compass; paddle wheel water speed sensor; up to 4 chemical sensors for heavy metals, optical sensor for oil slick detection Software Features Embedded Linux OS Special Features Emergency measures Internal hulls high temperature detector Emergency measures Physical Parameter Physical Parameter Biological Parameter Chemical Parameter Hg, Cr, Cd, dispersed oil Working Temperature Range Temperature, PH, Turbidity, Conductivity, Oxid reduction potential, Nitrates, Dissolved Oxygen , plus optional sensors Biological Parameter Chemical Parameter Hg, Cr, Cd, dispersed oil Working Temperature Range Calibration Calibration Off-Shore Recondition Times Life 10 years Running Cost / Year 50,000 € Material Replacing Cost / Year 9,000 € Total Cost 110,000 € Livorno - January 31th , 2012 Off-Shore Recondition Times Life Running Cost / Year Material Replacing Cost / Year Total Cost Giacomo Saviozzi 10 Technical Management: cooperation for integration HSLU / Radio modules: • Large messages • Stream DEDALUS / AmI: • mission save/restore, • zoom, • alert UOL / Dispersion models: • subcontract for sediments IJS / Site characterization data: • ARPAT missions for Livorno Coastal Sea Livorno - January 31th , 2012 Giacomo Saviozzi 11 nonTechnical Management The HydroNet – 2nd Newsletters Livorno - January 31th , 2012 Giacomo Saviozzi 12 La 3a Newsletter di HydroNet HydroNet 28 – 01 – 2012 Network di Robot sensorizzati di superficie per il Monitoraggio delle Acque La 3a Newsletter di HydroNet Partner Benvenuti alla terza newsletter di HydroNet distribuita con cadenza annuale per tenervi aggiornarti sui risultati del progetto europeo. Il progetto HydroNet è uno STREP sottomesso nell’ambito dell’area tematica ENVIRONMENT del 7° Programma Quadro della EC, e ha progettato, sviluppato e sperimentato una nuova piattaforma tecnologica per migliorare il monitoraggio delle acque. La piattaforma è costituita da una rete di robot marini autonomi, natanti e boe, dotati di sensori miniaturizzati ambientali, integrati in una infrastruttura software di Ambient Intelligence. HydroNet ha appena terminato con successo il terzo e ultimo anno di attività e ha realizzato 3 natanti, 5 boe e tutti i loro sottosistemi. Nell’ultimo anno sono stati realizzati e integrati negli scafi le parti meccaniche, fluidiche ed elettroniche dei sottosistemi, oltre ai moduli software necessari al controllo dei robot stessi. Il Consorzio è composto da 10 partner. Cinque sono istituzioni pubbliche: Scuola Superiore Sant’Anna (SSSA, Italia), Hochshule Lucerne (HSLU, Svizzera), Jozef Stefan Institute (IJS, Slovenia), University of Ljubljana (UOL, Slovenia), Hebrew University of Jerusalem (HUJI, Israele), e cinque sono aziende medio-piccole: Dedalus SpA (Italia), LUMEX (Russia), Norwegian Institute for Air Research (NILU, Norvegia), Institute of Physical Biology (IFB, Slovenia), RoboTech srl (RT, Italia). Coordinatore del Progetto: Prof. Paolo Dario Scuola Superiore Sant’Anna – SSSA Istituto di BioRobotica Pontedera, Pisa (Italy) Tel: +39-050883420 Fax: +39-050883497 Email: [email protected] www.hydronet-project.eu Ringrazia Il progetto HydroNet ha realizzato una nuova piattaforma hardware e software composta da una rete di robot autonomi, sensorizzati e interconnessi via radio. In accordo al paradigma di Ambient Intelligence (AmI), la piattaforma HydroNet integra i robot in una rete sensoriale mirata alla verifica, in tempo reale, in-situ della salubrità degli ambienti acquatici e alla generazione di informazioni spaziotemporali sulla qualità dell'acqua. Il nucleo della piattaforma è rappresentato da sensori (biologici, ottici e chimici) montati all'interno di boe fisse e dei natanti. Tutti i robot comunicano con la stazione di controllo remota nella quale è installato il software che costituisce il core del sistema AmI. La rete di robot sensorizzati campiona e analizza rapidamente in-situ diversi parametri fisici e chimici dell'acqua generando informazioni in tempo reale sullo stato di salute degli ambienti acquatici. Sensori miniaturizzati rilevano la presenza di diversi inquinanti (cromati, cadmio, mercurio, petrolio, idrocarburi). Il progetto ha anche sviluppato modelli matematici evoluti al fine di simulare la diffusione degli inquinanti in fiumi, laghi e acque costiere. I robot sono natanti, piccoli, leggeri, energeticamente efficienti ed ecocompatibili, sia in termini di impatto ambientale (dimensioni, colori), sia in termini ecologici (materiali utilizzati e generatori di energia). Essi sono in grado di comunicare con la stazione di controllo attraverso una connessione radio senza fili. Le boe sensorizzate monitorizzano un'ampia gamma di parametri ambientali e atmosferici e sono anche nodi della rete per migliorare la connettività e la localizzazione dei robot mobili. Tutta la rete è connessa alla stazione di controllo che mette a disposizione degli operatori e dei decision maker servizi per la gestione e per l'analisi intelligente dei dati con interfacce utente avanzate. La flotta di robot sensorizzati è in grado di navigare in diversi ambienti acquatici: acque costiere, fiumi (alla foce), laghi naturali e artificiali e lagune. In ogni ambiente l’obiettivo della flotta è anche quello di localizzare, in maniera cooperativa, la sorgente inquinante. Caratteristiche dei robot • • • • • Distanza operativa: 15 km per i fiumi, 20 km per le aree costiere; Velocità di crociera: 3 nodi; Autonomia: 8 ore; Profondità campionamento: max 50m; Abili con mare forza 3 (vento 7-10 nodi); Dimensioni: lunghezza < 2m, peso ~80kg; gestione: 2 persone. Livorno - January 31th , 2012 Giacomo Saviozzi 2 14 The HydroNet Official Demonstrations nonTechnical Management All the HydroNet platform has been tested and validated at the planned demonstration sites 1. Marano Lagoon (Italy) 2. Soča/Isonzo River (Slovenia) 3. Coastal area of Livorno (Italy) Livorno - January 31th , 2012 Giacomo Saviozzi 15 nonTechnical Management Improved Contacts WASS CNR- INSEAN Ageotec Drass Galeazzi GeoPolaris Labromare Livorno Coast Guard Sielco NATO Undersea Research Centre Livorno- January 30th , 2012 Giacomo Saviozzi 16 Conclusions Today’s awareness for tomorrow’s commitments We have: an excellent research prototype Society needs: an industrial prototype There’s a gap .... then there’s another gap (industrial production) Surely, it needs much more money HydroNet is an infrastructural need for the Earth wellness Livorno - January 31th , 2012 Giacomo Saviozzi 17