Final Review Meeting
Livorno, Italy
January 30-31, 2012
The HydroNet Project
Environment Programme - Project N°212790
Partner name: SSSA
Working Team: WP leaders, SSSA Administrative Team
Speaker name: Giacomo Saviozzi
Technical Management: cooperation for integration
From Sensor Devices (SDs) needs:
• catamaran fluidic subsystem scheme,
• simplified scheme for flat-boat
Water
Decoupling
SDsinvolved
Fluidicpartners
interface
Thanks to the
efforts,
the SDs been implemented according to the
defined interfaces and they can be plag&play
installed on floating robots and the “chemical” buoy.
Well determined electrical, electronic, hydraulic,
informatics interfaces have been proposed
to all the involved partners to facilitated
the mounting/dismounting of all the SDs and
to realize common, standard connections easily
to use, to check and to maintain.
Livorno - January 31th , 2012
Giacomo Saviozzi
2
Technical Management:
cooperation for integration
SDs / HRMC protocol
The figure shows the
state diagram related to a SD in
the operative phase is shown
Applied in
catamarans, flat boat
and “chemical” buoy
A lot of software shared
between
catamaran and flat-boat
Livorno - January 31th , 2012
Giacomo Saviozzi
3
Technical Management: cooperation for integration
Hg bioSDs
IFB : Delivered very late
AE-2 and CRAB optical SDs
LUMEX : Delivered on time
Heavy-metal chemiSDs
HUJI Cd(II) - Delivered on time
HUJI Hg(II) - Delivered very late
HUJI Cr(VI) - Delivered very, very late
Livorno - January 31th , 2012
Giacomo Saviozzi
4
Technical Management: cooperation for integration
HydroNet Hg/HUJI SD datasheet
Sensor ID
Chemical Parameter
Working Temperature Range
Water needed to measure + rinse
Calibration
HUJI_Hg_X *
Parameter sensor can detect:

Hg(II) (mg/l)
5 - 50 0C
Min 2 ml , Max 5 ml / cycle
at least twice a day:
preferably to carry out standard addition than calibration. Single needed
time: approximately 1800 sec
Off-Shore Recondition Times
Sampling Time
Substituting consumables: 900-1800 sec (if any)
Times for sampling:
• 600 Sec (measurement only),
• 800 Sec (with internal sensor cleaning)
Discharged whole liquid quantity
Discharge mode
Internal Operating Voltage
Power Consumption
10 ml / cycle
o
Tube n° 8 (autonomous mode)
12 V

Sleeping mode: 4 W

Average: 12 W
o
Max in Operating Mode: 20 W
Weight
Life
Min 4 Kg , Max 5 Kg
Until the sensor has to be recharged (with bacteria or hexane for example):

Life-measurements: tens (normal conditions: heat, voltage)

Life-time: 1 day (initially)
Running Cost / Year
ca.100 EUR (no manpower, no electrode replacing)
Electrodes Replacing Cost
Full Sensor Cost
Returned Values (informatic)
ca. 300 EUR
ca. 5200 EUR (no R&D)
Output messages in the same measurement: 1
1.
Concentration
o
ppb (µg/L)
Least Significative Byte (LSB)
Returned Values Resolution: 3 with a multiplication factor
Sensitivity
To be determined, should finally be <1 ppb
To be determined, should finally be 1-100 ppb
Working Range (in ng/L or ppt)
Livorno - January 31th , 2012
Giacomo Saviozzi
5
Technical Management: cooperation for integration
HydroNet SD maintenance manuals
Livorno - January 31th , 2012
Giacomo Saviozzi
6
Technical Management: cooperation for integration
Software
Electrical
Software
Firmware
Electrical
Mechanics
Software
Livorno - January 31th , 2012
Giacomo Saviozzi
7
Technical Management: cooperation for integration
HydroNet robots:
an high multidisciplinary
integrated project
Livorno - January 31th , 2012
Giacomo Saviozzi
8
Technical Management: cooperation for integration
HydroNet robots datasheets
Dissemination / Exploitation (to NILU)
Livorno - January 31th , 2012
Giacomo Saviozzi
9
Application
Operational Modes
Lagoon and river monitoring of water chemical pollutants (heavy metal and oil).
Applications
managed by a intelligent ground station.
series of waypoints set previously by a ground control station.
The catamaran can sail autonomously through a series of waypoints set
Operational Modes
Sub-surface purpose
Remotely controlled by an operator or autonomous navigation with obstacle
Navigation
Marine coastal, rivers and lagoons monitoring of physical and chemical figures
The flat boat robot can navigate autonomously in a river or in a lagoon through a
avoidance capability. Hull Draught is 0.30 m.
Sensors: GPS, digital compass and water current data for estimating position; laser
Sub-surface purpose
scanner for obstacle detection.
Body Size
L x W x H: 2.29m x 1.12m x 0.58m
Materials
Carbon fiber
Power Consumption
~ 150W (12V 12.5Ah)
previously and can keep a stationary position to gather water environment data.
Bottom loiter
The boat can dip a probe up to 50m to gather water samples and environment
parameters along the water column
Fully automatic (predefined): using GPS to position reference, remotely controlled;
Navigation
speed, altimeter and anemometer sensors, path planning with current estimation;
hybrid navigation with motors and sail; obstacle avoidance using a laser scanner
and a forward looking sonar
Wing span
Body Size
Length: 1991 mm; Width: 1164 mm
Antenna mast length
Materials
Carbon fiber
Weight
Power Consumption
Maximum Depth
Wing span
Maximum Travel Range/Duration
Can cover a distance of 20 Km
Antenna mast length
Battery / Endurance
About 10 hours
Weight
85 Kg
Typical Speed
About 2 Knots (Maximum Speed About 4 Knots)
Maximum Depth
The probe can reach a maximum depth of 50m
Maximum Travel Range/Duration
3 Km from the coast, Can cover a distance of 22 Km
Glide Angle
Mechanical Features
Electrical Features
Two independent inboard propeller motors.
4 Pumps to feed 4 different sensors
Battery / Endurance
Two 12VDC batteries, 110Ah
Typical Speed
1 Solar Panel, 90W
Glide Angle
PC 104 CPU module
GPS module
Electrical Features
Operating 24-32V
Digital Compass
Titan PC; Blootooth module; WiFi module; controllers for the motors; GPS module;
Water current sensor
Laser Scanner
Electronical Features
Up to 4 chemical sensors for heavy metals
One optical sensor for oil slick detection
Software Features
Embedded Linux OS
Special Features
2,5-3 kns
Two independent propellers controlled by two motors and two rudders actuated by
a single motor; rudders are actuated with an articulated parallelogram by a motor
acting on a worm gear mechanism; winch for the sampling probe; fluidic system to
manage the sampled water
Motors Controller
Electronic Features
Autonomy: 10 hours
Mechanical Features
Wi-Fi module
Radio communication module
12 Li-Po (TopFuel 29.7 V, 5000mA 8S Long 30C) batteries
Laser Scanner; Forward looking Sonar; Altimeter; radio communication module;
compass; paddle wheel water speed sensor; up to 4 chemical sensors for heavy
metals, optical sensor for oil slick detection
Software Features
Embedded Linux OS
Special Features
Emergency measures
Internal hulls high temperature detector
Emergency measures
Physical Parameter
Physical Parameter
Biological Parameter
Chemical Parameter
Hg, Cr, Cd, dispersed oil
Working Temperature Range
Temperature, PH, Turbidity, Conductivity, Oxid reduction potential, Nitrates,
Dissolved Oxygen , plus optional sensors
Biological Parameter
Chemical Parameter
Hg, Cr, Cd, dispersed oil
Working Temperature Range
Calibration
Calibration
Off-Shore Recondition Times
Life
10 years
Running Cost / Year
50,000 €
Material Replacing Cost / Year
9,000 €
Total Cost
110,000 €
Livorno - January 31th , 2012
Off-Shore Recondition Times
Life
Running Cost / Year
Material Replacing Cost / Year
Total Cost
Giacomo Saviozzi
10
Technical Management: cooperation for integration
HSLU / Radio modules:
• Large messages
• Stream
DEDALUS / AmI:
• mission save/restore,
• zoom,
• alert
UOL / Dispersion models:
• subcontract for sediments
IJS / Site characterization data:
• ARPAT missions for Livorno Coastal Sea
Livorno - January 31th , 2012
Giacomo Saviozzi
11
nonTechnical Management
The HydroNet – 2nd Newsletters
Livorno - January 31th , 2012
Giacomo Saviozzi
12
La 3a Newsletter di HydroNet
HydroNet
28 – 01 – 2012
Network di Robot sensorizzati di
superficie per il Monitoraggio delle
Acque
La 3a Newsletter di HydroNet
Partner
Benvenuti alla terza newsletter di HydroNet distribuita con cadenza annuale per tenervi
aggiornarti sui risultati del progetto europeo.
Il progetto HydroNet è uno STREP sottomesso nell’ambito dell’area tematica
ENVIRONMENT del 7° Programma Quadro della EC, e ha progettato, sviluppato e
sperimentato una nuova piattaforma tecnologica per migliorare il monitoraggio delle acque.
La piattaforma è costituita da una rete di robot marini autonomi, natanti e boe, dotati di
sensori miniaturizzati ambientali, integrati in una infrastruttura software di Ambient
Intelligence.
HydroNet ha appena terminato con successo il terzo e ultimo anno di attività e ha
realizzato 3 natanti, 5 boe e tutti i loro sottosistemi. Nell’ultimo anno sono stati realizzati e
integrati negli scafi le parti meccaniche, fluidiche ed elettroniche dei sottosistemi, oltre ai
moduli software necessari al controllo dei robot stessi.
Il Consorzio è composto da 10 partner.
Cinque sono istituzioni pubbliche:
Scuola Superiore Sant’Anna (SSSA, Italia), Hochshule Lucerne (HSLU, Svizzera), Jozef
Stefan Institute (IJS, Slovenia), University of Ljubljana (UOL, Slovenia), Hebrew University
of Jerusalem (HUJI, Israele),
e cinque sono aziende medio-piccole:
Dedalus SpA (Italia), LUMEX (Russia), Norwegian Institute for Air Research (NILU,
Norvegia), Institute of Physical Biology (IFB, Slovenia), RoboTech srl (RT, Italia).
Coordinatore del Progetto: Prof. Paolo Dario
Scuola Superiore Sant’Anna – SSSA
Istituto di BioRobotica
Pontedera, Pisa (Italy)
Tel: +39-050883420 Fax: +39-050883497
Email: [email protected]
www.hydronet-project.eu
Ringrazia
Il progetto HydroNet ha realizzato una nuova piattaforma hardware e
software composta da una rete di robot autonomi, sensorizzati e
interconnessi via radio. In accordo al paradigma di Ambient
Intelligence (AmI), la piattaforma HydroNet integra i robot in una rete
sensoriale mirata alla verifica, in tempo reale, in-situ della salubrità
degli ambienti acquatici e alla generazione di informazioni spaziotemporali sulla qualità dell'acqua. Il nucleo della piattaforma è
rappresentato da sensori (biologici, ottici e chimici) montati all'interno
di boe fisse e dei natanti. Tutti i robot comunicano con la stazione di
controllo remota nella quale è installato il software che costituisce il
core del sistema AmI.
La rete di robot sensorizzati campiona e analizza rapidamente in-situ
diversi parametri fisici e chimici dell'acqua generando informazioni in
tempo reale sullo stato di salute degli ambienti acquatici. Sensori
miniaturizzati rilevano la presenza di diversi inquinanti (cromati,
cadmio, mercurio, petrolio, idrocarburi). Il progetto ha anche sviluppato
modelli matematici evoluti al fine di simulare la diffusione degli
inquinanti in fiumi, laghi e acque costiere.
I robot sono natanti, piccoli, leggeri, energeticamente efficienti ed ecocompatibili, sia in termini di impatto ambientale (dimensioni, colori), sia
in termini ecologici (materiali utilizzati e generatori di energia). Essi
sono in grado di comunicare con la stazione di controllo attraverso una
connessione radio senza fili. Le boe sensorizzate monitorizzano
un'ampia gamma di parametri ambientali e atmosferici e sono anche
nodi della rete per migliorare la connettività e la localizzazione dei robot
mobili. Tutta la rete è connessa alla stazione di controllo che mette a
disposizione degli operatori e dei decision maker servizi per la gestione
e per l'analisi intelligente dei dati con interfacce utente avanzate.
La flotta di robot sensorizzati è in grado di navigare in diversi ambienti
acquatici: acque costiere, fiumi (alla foce), laghi naturali e artificiali e
lagune. In ogni ambiente l’obiettivo della flotta è anche quello di
localizzare, in maniera cooperativa, la sorgente inquinante.
Caratteristiche dei robot
•
•
•
•
•
Distanza operativa: 15 km per i fiumi, 20 km per le aree costiere;
Velocità di crociera: 3 nodi; Autonomia: 8 ore;
Profondità campionamento: max 50m;
Abili con mare forza 3 (vento 7-10 nodi);
Dimensioni: lunghezza < 2m, peso ~80kg; gestione: 2 persone.
Livorno - January 31th , 2012
Giacomo Saviozzi
2
14
The HydroNet
Official Demonstrations
nonTechnical Management
All the HydroNet platform has been tested and
validated at the planned demonstration sites
1. Marano Lagoon (Italy)
2. Soča/Isonzo River (Slovenia)
3. Coastal area of Livorno (Italy)
Livorno - January 31th , 2012
Giacomo Saviozzi
15
nonTechnical Management
Improved Contacts
WASS
CNR- INSEAN
Ageotec
Drass Galeazzi
GeoPolaris
Labromare
Livorno Coast Guard
Sielco
NATO Undersea Research Centre
Livorno- January 30th , 2012
Giacomo Saviozzi
16
Conclusions
Today’s awareness for tomorrow’s commitments
We have: an excellent research prototype
Society needs: an industrial prototype
There’s a gap .... then there’s another gap (industrial production)
Surely, it needs much more money
HydroNet is an
infrastructural need
for the Earth wellness
Livorno - January 31th , 2012
Giacomo Saviozzi
17
Scarica

HydroNet PM Presentation - The BioRobotics Institute