EDIFICI A ENERGIA QUAZI ZERO – VERSO IL 2020 Il futuro delle costruzioni tra decreti NZEB, edifici di riferimento, certificazione ed efficienza energetica in area mediterranea NZEB E SALUTE Prof. Ing. Arch. Marco D’Orazio L’aquila, 13 maggio 2015 www.edifici2020.it Con il patrocinio di DIRETTIVA SAVE DECRETO 192 DIRETTIVA NZEB DECRETO 311 DIRETTIVA EPBD DECRETO 59 DIRETTIVA EPBD RECAST RISPARMIO EFFICIENZA ENERGETICA NUOVO DECRETO ‘15 CONTENIMENTO DEI CONSUMI TENUTA ISOLAMENTO Ma è questo l’obiettivo ? Tramonto a Pechino L’obiettivo è la salute non il risparmio • Le malattie croniche «non trasmissibili» costeranno al sistema sanitario mondiale nel corso dei prossimi 20 anni 30 mld € (48% del PIL mondiale dell’anno appena trascorso) • Le malattie respiratorie rappresentano una quota rilevante (235 milioni di persone soffrono di asma, 64 milioni di persone soffrono di bronco-pneumopatia cronica ostruttiva (BPCO) (il 5% delle morti totali sono riconducibili a queste patologie), Milioni di persone soffrono le conseguenze di forme lievi di BPCO, riniti allergiche e altre patologie croniche • I fattori di rischio sono noti: Fumo, Inquinamento indoor e outdoor, Allergeni, Esposizioni occupazionali An «unsafe» Classi A3,A4 Sd 1…2..15……… Riduzione dei Ricambi orari Forte inibizione Dei flussi termoigrometrici ORE SPESE FUORI DELL’ABITAZIONE Fasce deboli passiamo il 90% del nostro tempo in ambienti abitati Sd elevati BARRIERA Tenuta per risparmio energetico 1 BARRIERA BARRIERA 2 BARRIERA Ciò che si produce rimane all’interno Alcune evidenze sperimentali EDIFICI EFFICIENTATI EDIFICI REALIZZATI SECONDO SCHEMI NZEB EDIFICI SPERIMENTALI CON LOGICHE NZEB Un caso di studio Zona climatica E Utilizzo incentivi Isolamento copertura 16 cm Isolante fibroso Finestre classe A4 Isolamento a cappotto Interno 10 cm EPS I PROBLEMI DI NATURA TERMICA Ondata di calore Temperatura interna > T superfici Per tutta la fase di scarico Fuori confort I PROBLEMI DI NATURA IGROMETRICA E DI IAQ UNI 13788 (ver.2004) Il confronto con il riferimento Pa 1200 0 Pa 1200 0 Zona di Torino, primi anni ‘90 Camera da letto Temperatura esterna No interventi 900 0,18 800 UR% ambientali 0,16 0,14 0,12 500 0,10 0 0,00 UR% 10 0 0,02 90 100 80 0,04 70 200 60 0,06 50 300 40 0,08 30 400 20 Count 600 Proportion per Bar 700 accoppiamento disaccoppiamento calore calore vapore PASSATO Innalzamento temperature superficiali in estate Diminuzione temperature superficiali in inverno Maggiore accumulo igroscopico vapore Accumulo igroscopico nei materiali del pacchetto interno FUTURO Innalzamento dei valori di picco delle UR% ambientali Rischio formazione muffe - UNI EN 13788 Temperature interne Etichette di riga B 270 540 810 1080 C 270 540 810 1080 D 270 540 810 1080 E 270 540 810 1080 Totale complessivo 18 18,5 18,8 19,1 19,5 20 20,8 21 21,1 22 22,4 22,6 22,7 22,9 23,3 23,4 23,6 23,8 24,1 25,3 25,4 25,5 25,7 26,5 26,7 Totale complessivo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 4 3 0 0 0 0 0 4 0 0 14 0 0 1 0 0 0 0 0 0 1 0 0 2 1 0 1 0 0 0 0 0 0 1 0 0 3 1 0 1 0 0 0 0 0 0 1 0 0 3 1 0 1 3 0 0 0 0 0 1 0 0 6 3 0 0 4 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 14 • 6 città • 4 zone climatiche • 4 classi di concentrazione • Valori medi mensili T e UR% esterne • Valori di trasmittanza edificio di riferimento E’ un problema La pericolosità • Classe A: funghi e loro prodotti metabolici che hanno la caratteristica di essere altamente patogeni. Per la gravità dei loro effetti sulla salute dell’uomo, non deve essere ammessa la loro presenza all’interno degli ambienti; • Classe B: Funghi e loro prodotti metabolici che diventano patogeni se l’organismo umano viene sottoposto ad una loro esposizione per lungo tempo e che possono essere causa di reazioni allergiche; • Classe C: Funghi che non sono pericolosi per la salute dell’uomo, ma che possono comunque causare danni alle superfici. 1926 NON E’ IL FATTORE PREPONDERANTE SONO I FATTORI PRINCIPALI Le condizioni limite Isopleth • LIM II • Materiali biologicamente avversi alla crescita • LIM I • Materiali che permettono la crescita • LIM 0 • Mezzo di coltura ottimale Condizioni Limite per la germinazione delle spore Sulla superficie Cresce se > di….. Moisture Level Category of microoorganism High Tertiary colonizers Alternaria (aw> 0.9; ERH% > 90%) (hydrophilic) epicoccum alternata; spp.; Aspergillus exophiala fumigatus; spp. fusarium moniliforme; mucr plumbeus; phoma erbarum; phialophora spp.; rhizopus spp.; stachybotrys chartarum (s.atra); trhchoderma spp.; ulocladium consortiale; sporobolomyces spp. Actinobacteria (or Actinomycetes) Intermediate Secondary colonizers (aw 0.8-0.9; ERH% 80-90%) Aspergillus cladosporium flavus; aspergillus cladosporioides; versicolor; cladosporium sphaerospermum; mucor circinelloides; rhizopus orzyae Low Primary (aw< 0.8; ERH% < 80%) (xerophilic) colonizers Alternaria citri; apsergillus (eurotium) amstelodami; aspergillus candidus; aspegillus (eurotium) glaucus; aspergillus niger; aspergillus penicilloides; aspergillus (eurotium) repens; aspergillus restrictus; aspergillus versicolor; paenicillium variatii; paenicillium aurantiogriseum; paenicillium brevicompactum; paenicillium chrysogenum; paenicillium commune; paenicillium expansum; paenicillium greseofulvum; wallemia sebi. Altre evidenze sperimentali Velocità di crescita • Scelta di 3 ceppi (colonizzatori primari) • Aspergillus versicolor (più frequente nelle abitazioni) • Penicillium chrysogenum • Stachybotrys chartarum. • Scelta di diverse tipologie di rasanti e finiture (3 rasanti per cappotto, 2 finiture per interno, 2 pitture) • Attivazione delle muffe con bagno colturale • Inoculazione su capsule petri • 15 dd in camera climatica con UR >90% e T=23°C • Analisi della % coperta con microscopio a fluorescenza • Analisi del rapporto tra superficie coperta e sostanze organiche I risultati • A,B rasanti per cappotto • C,D,E Finiture da interno • F,G Pitture Una volta che c’è l’innesco …… I risultati Mould index % di superficie coperta Cod. Aspergillus versicolor Penicillium chrysogenum Stachybotrys chartarum Aspergillus versicolor Penicillium chrysogenum Stachybotrys chartarum A 3 3 2 6.9% 9.2% 1.1% B 2 4 4 1.8% 12.4% 17.9% C 0 3 4 0.1% 6.1% 12.1% D 3 3 5 6.3% 9.4% 23.4% E 4 2 3 12.4% 1.5% 5.9% F 6 7 7 57.8% 66.1% 69.3% G 2 0 1 3.9% 0.0% 0.8% In soli 15 giorni • • • A,B rasanti per cappotto C,D,E Finiture da interno F,G Pitture Maggiore contenuto di sostanze organiche La compresenza di acqua e sostanze organiche nei materiali di finitura eleva il rischio ….ma nelle abitazioni non si produce solo vapore… Analisi di 240 edifici – pre e post innalzamento livelli di isolamento Toluene, Xylene Benzene Limiti a breve termine (1h) In parte legata Ai materiali inseriti, In parte legata alla maggiore tenuta I valori limite della esposizione giornaliera (per inalazione) a benzene, toluene, m/p-xylene e o-xylene sono: BENZENE 0.1 μg/kg/giorno TOLUENE 1.2 μg/kg/giorno m/p XYLENE 0.4 μg/kg/giorno O-XYLENE 0.3 μg/kg/giorno Considerando la prestazione energetica quale obiettivo, si rischia di dare luogo ad ambienti che aumentano i fattori di rischi della salute È possibile compensare con sistemi impiantistici (es. VMC) ma vanno valutati il costo energetico e le necessità manutentive in relazione alle fasce di popolazione interessate E’ possibile più semplicemente ricordare i nostri modi costruttivi e la capacità di buffering (tampone) che questi hanno sempre manifestato ESTERNO INTERNO calore vapore Innalzamento temperature superficiali in estate Diminuzione temperature superficiali in inverno Maggiore accumulo igroscopico EMPD Accumulo igroscopico nei materiali del pacchetto interno L’effetto La valutazione sperimentale valutazione del comportamento igroscopico di tipo dinamico di 4 materiali porosi superadsorbenti MATERIALE SUPERASSORBENTE CELLULOSA GESSO PERLITE Le modalità di prova Fase di stabilizzazione in camera climatica: Temperatura T = 23°C Umidità Relativa RH = 50 % Fase di esposizione ciclica: Temperatura Livelli alti di RH per 8h Livelli bassi di RH per 16h T = 23°C RH = 75 % RH = 33 % Misurazioni periodiche delle variazioni di peso dei provini (bilancia analitica): necessarie per ricavare il Moisture Buffering Value Per Moisture Buffering Value (MBV) accumulo/rilascio di umidità che si ha quando il materiale è soggetto a significative oscillazioni di umidità relativa tra il 75% RH durante 8 ore e il 33% RH durante le restanti 16 ore. Il valore MBV è normalizzato rispetto alla superficie esposta [m²] e alla variazione di umidità relativa [ΔRH%]. CARATTERIZZAZIONE DINAMICA IN CAMERA CLIMATICA PRIMI RISULTATI: 1. Moisture Buffering Value (MBV) MBV [g/(m2*%RH)@8-16h] Moisture Buffer Value (MBV) dei materiali adsorbenti sperimentati 10,000 9,000 8,000 7,000 6,000 5,000 4,000 3,000 2,000 1,000 0,000 poliacrilato perlite cellulosa gesso dummy Materiali Il Mat. Superassorbente e la cellulosa risultano i migliori materiali dal punto di vista di adsorbimento di RH ad un'esposizione ciclica. Materiale superassorbente: MBV più elevato = ~9 g/[m²*%RH] Cellulosa: MBV elevato = ~3 g/[m²*%RH] Gesso: MBV buono = ~1 g/[m²*%RH] Perlite: MBV trascurabile = 0,085 g/[m²*%RH] Confronto del valore m edio di quantità d'acqua accum ulata/rilasciata progressivam ente dai m ateriali 2,500 2,000 1,500 1,000 [g] accumulata/rilasciata progressivamente Quantità media di acqua Un problema: l’isteresi 0,500 0,000 -0,500 poliacrilato perlite cellulosa gesso dummy -1,000 Materiali Mat. superassorb. Cellulosa, Gesso, Perlite,Dummy acqua accumulata = ~2 g ISTERESI acqua accumulata = ~0 g NO ISTERESI ventilation A SAFE Low assorbance No perfectly thigtly Mass storage and moisture buffering ventilation A SAFE grazie