Status of the SPARC project
Massimo Ferrario
INFN-LNF
On behalf of the SPARC team
Qu i ck Ti me ™a nd a
TIF F (Un co mpre ss ed )d ec omp res so r
a re ne ed ed to s ee th i s pi c tu re.
* 31th LNF Scientific Committee Meeting - 29 November 05 *
SPARC Team
D. Alesini, M. Bellaveglia, M. Biagini, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G.
Di Pirro, A. Drago, A. Esposito, M. Ferrario, D. Filippetto, V. Fusco, G. Gatti, A. Gallo, A.
Ghigo, S. Guiducci, M. Incurvati, C. Ligi, M. Migliorati, L. Palumbo, L. Pellegrino, M.
Preger, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F.
Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario, M. Zobov (INFN /LNF)
F. Alessandria, I. Boscolo, F. Broggi, S.Cialdi, C. DeMartinis, D. Giove, C. Maroli,
V. Petrillo, M. Romè, L. Serafini, (INFN /Milano)
M. Mattioli, G. Medici, P. Musumeci, M. Petrarca (INFN /Roma1)
L. Catani, E. Chiadroni, A. Cianchi (INFN /Roma2)
A. Cultrera, A. Perrone (INFN /Lecce)
F. Ciocci, G. Dattoli, L. Giannessi, L. Mezi, L. Picardi, M. Quattromini, A.Renieri, C.
Ronsivalle (ENEA/FIS)
J. B. Rosenzweig, S. Reiche (UCLA)
P. Bolton, D. Dowell, P.Emma, P. Krejick, C. Limborg (SLAC)
LABORATORY
@ LNF-INFN
F. Sgamma, S. Tomassini
• High Brightness electron beam generation
• SASE FEL experiments
• Advanced Accelerator Concepts
A Free Electron Laser is a device that converts
electron kinetic energy into coherent radiation
via a collective instability in an undulator
Undulator Radiation

1

The electron trajectory is determined by the undulator field and the
electron energy

˜ u u
eB
 
 2mc 2
K
The electron trajectory is inside the radiation cone if

K 1
Relativistic Mirrors
'u 
u
 //
'rad  'u
Counter propagating pseudo-radiation
1
 // 
1

2
//

rad 
1  //2
1

2
 2

rad 
u
2 //2
Compton back-scattered radiation in
the moving mirror frame

Doppler effect in the laboratory
frame
u
2
1
K


2 2
TUNABILITY
Psat  Pbeam  N

4/3
e
Free Electron Laser
Self-Amplified-Spontaneous-Emission
(No Mirrors - Tunability - Harmonics)
SASE Experimental results
September 2000
LEUTL
APS/ANL
385 nm
VISA
ATF/BNL
840 nm
March 2001
 z 
P0

P( z ) 
exp 

9
L
 G
Since September 2000
3 SASE FEL’s demonstration
TTF-FEL
DESY
98 nm
Single Pass FEL Projects
TTF
XFEL/ XFEL
4GLS
LEUTL
MIT / Bates
PAL – FEL
LUX
BESSY FEL
LCLS
LEG
VISA / DUV
SC technology / NC technology
FERMI
SPARC / SPARX
SCSS
SASE FEL Electron Beam Requirements:
High Brightness Bn
1 K 2
2
MIN
 
r
energy
spread
Lg 
22
BBn K
nK
minimum radiation
wavelength
BBnn 
undulator
parameter
3 2
K BBnnn 1 K 2
2

gain
length
R. Saldin et al. in Conceptual Design of a 500 GeV e+e- Linear
Collider with Integrated X-ray Laser Facility, DESY-1997-048
2I

2
n
How to increase e- Brightness
bunch compressors
BBn 
2I

2
n
RF & magnetic
Pulse Shaping
New Working Point
SPARC Photoinjectors
Qu i ck Ti me ™a nd a
TIF F (Un co mpre ss ed )d ec omp res so r
a re ne ed ed to s ee th i s pi c tu re.
Electron Photo-Injector
Pumps
Seed Line
Evolution
Nd:YLF
Verdi
Nd:YVO4
800 nm
10 nJ
80 MHz
100 fs
Hidra
CPA Ti:Sa Amplifier
RGA + 2 MP
Mira
Ti:Sa Oscillator
800 nm
50 mJ
10 Hz
100 fs
Ext. Synch.
DAZZLER
TeO2
Synchro Lock
PLL
Continuum
Nd:Yag
f/36
LASER SYSTEM
UV Stretcher
THG
266 nm
4 mJ
10 Hz
100 fs
RF Reference
R&S 2,856 GHz
266 nm
1,8 mJ
10 Hz
0.5-12 ps
CHARACTERIZATION : UPCONVERSION
BLUE SPECTRUM
SH-BLUE
400 nm
UV SPECTRUM
TH-UV
266 nm
Cross Correlation measurements
theory
w
t
I t   I w 
  10 ps
Emittance Compensation:
Controlled Damping of Plasma Oscillation
ˆI
8

3 2Ioth

'  0

2
ˆ
w
3I 0 
100 A ==> 150 MeV
Brillouin Flow


Hokuto Iijima
Optimized matching
z= 0.2389 1
z= 1.5
z= 10
0.05
0.04
0.04
0
0
Matching onto the Local Emittance Max.,
- 0.02
- 0.04
pr _[ rad ]
0.02
Pr
Pr
0.02
0
- 0.02
- 0.04
- 0.05
0
0.00 1 0.00 2 0.00 3 0.00 4 0.00 5 0.00 6
0
R [m]
3.5
0.00 08 0.00 16 0.00 24 0.00 32
0.00 4
0
R [m]
0.00 08 0.00 16 0.00 24 0.00 32
0.00 4
R_[m]
3
rms norm. emittance [um]
2.5
rms beam size [mm]
2
1.5
1
0.5
Gun
Linac
0
0
2
4
6
8
10
z= 1.5
0.00 4
0.00 35
0.00 35
Z= 10
0.00 4
Z_[m]
0.00 35
0.00 3
0.00 3
0.00 25
0.00 25
0.00 2
0.00 2
0.00 15
0.00 15
0.00 1
0.00 1
0.00 05
Rs [m]
0.00 3
0.00 25
Rs [m]
Rs [m]
z= 0.2389 1
0.00 4
0.00 05
0
- 0.003 - 0.002 - 0.001
0
0.00 1 0.00 2 0.00 3
Zs -Zb [m]
0
- 0.003 - 0.002 - 0.001
0
0.00 1 0.00 2 0.00 3
Zs -Zb [m]
Final emittance = 0.4 mm
0.00 2
0.00 15
0.00 1
0.00 05
0
- 0.003 - 0.002 - 0.001
0
0.00 1 0.00 2 0.00 3
Zs -Zb [m]
Movable Emittance-Meter Concept
EMITTANCE-METER
• Completed
• Tested at PITZ
• Installed at SPARC for Gun Beam measurements
Gun and emittance meter installed
3.5
1 10
8
3
1 10
7
1 10
6
1 10
5
1 10
4
1 10
3
2
1.5
Power (W)
Xrms(mm)
Yrms(mm)
Exn (mm-mrad)
Eyn(mm-mrad)
2.5
1
100
0.5
10
1
0
0
250
500
750
1000
z(cm)
1250
1500
1750
0.1
0
2
4
6
8
Z (m)
10
12
14
16
GENESIS simulation of the SPARC
SASE-FEL
Power (W)
Radiation power growth along the undulator @ 530 nm
1 10
8
1 10
7
1 10
6
1 10
5
1 10
4
1 10
3
100
10
1
0.1
UNDULATOR
0
2
4
6
8
Z (m)
10
12
14
16
Undu lator period (cm)
Undu lator param eter k
Undu lator gap (mm)
# Undul ator sections
# Undul ator periods per section
Drift length between undu lator sections (cm)
Addi tional quadrupole gra dient (T/m)
Addi tional quadrupole length (cm)
FEL radiation wavelength (fundamental, nm)
Averag e beta function (m)
Expected saturat ion length (m)
2.8
2.143
9.25
6
78
36.5
5.438
8.4
499.6
1.516
< 12
2002
2003
2004
2005
2006
Project duration
2002 - Stage I - FEASIBILITY
2003-2004Stage II - PLANNING & DESIGN
• Project formulation
• Feasibility Study
2004-2005
- Stage III - CONSTRUCTION
• design
Base design
• Strategy
• Detailed Cost and schedule
• Approval
2006
- Stage IV - COMMISSIONING
• Manufacturing
• Detailed planning
& OPERATION
• Delivery
• Major contracts
for procurement
• Civil works
• Installation • Final Testing
• Commissioning
• Operation
Collaborations and UE programs
DESY
BNL
PITZ
UCLA
SPARC
QuickTime™ and a
TIF F ( Uncompressed) decompressor
are needed to see this picture.
EUROFEL
• RF Compressor
• Seeding
• Synchronization
SLAC
Coherent Synchrotron Radiation (CSR)
coherent radiation for  >
z

z
e
–
L0
R
bend-plane emittance growth

s
E/E <0

overtaking length: L0  (24zR2)1/3
E/E 0
x = R16(s)E/E
 Powerful radiation generates energy spread in bends
 Energy spread breaks achromatic system
 Causes bend-plane emittance growth
x
Velocity bunching concept
Average current vs RF compressor phase
1300
OVERCOMPRESSION
1200
Average current (A)
1100
1000
HIGH
COMPRESSION
900
800
700
600
MEDIUM
COMPRESSION
500
400
300
LOW COMPRESSION
200
100
-95
-90
-85
-80
-75
RF compressor phase (deg)
-70
-65
-60
QuickTime™ and a
Cinepak decompressor
are needed to see this picture.
<I> = 860 A
nx = 1.5 mm
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
MAMBO
+
Channelling
The Frascati Laser for Acceleration and Multidisciplinary Experiments
laser pulses: 50 fs, 800 nm >100 TW @10 Hz
synchronisation
uncompressed pulse
vacuum compressor
acceleration
chamber
detectors
area
control
& data
LINAC
UNDULATOR
Ex @22Elas (1-cos)
NX  T f
N e  N h
2
 coll
 2  10 9 / 11
Produzioni di impulsi X : 109 fotoni/s,
3 ps, monocromatici tunabili nel range 20 keV - 1 MeV
• Studi di tecniche di mammografia (e angiografia
coronarica)
• Studi di single molecule protein cristallography.
MaMBO Experiment:
Mammography Monochromatic Beam Outlook
La realizzazione di una immagine (su superficie 18x24 cm2) in tempi
di 2600 s scende a 2.6 s con l’upgrade previsto su SPARC che porta
il num. di fotoni a 2.5 1011 /s
The con strast (sens iti vit y to tis sue density variations ) goe s from 8% to 0.1%, whil e the
spatial r esolution go es from 0,15 -0,3 mm to 0.01-0.015 mm. This means the capabilit y to
detect a tumor 30 tim es small er in volume, i.e. a 2 yea r earli er detection o f the tumor.
n  
n p  p
n p 2
2003
2004
SASE
2005
2006
2007
2008
2009
Seeding
TTF-II
6 nm
2010
2011 2012
Angstrom
LCLS
0.1 nm
TESLA
X-FEL
0.1 nm
CONCLUSIONS
The SPARC&X projects will allow INFN to develop a robust
cutting-edge R&D program:
- High quality electron beams from a LINAC
- Generation of new FEL radiation
- X-beam optics, handling, diagnostics, detectors
- Advanced Accelerator Concepts
Know-how on LINACs
- Generation of e-beams with photo-injectors
- Beam phase-space manipulation
- RF-power, Acceleration and Transport
- Synchronization, Diagnostics & Control
Will allow INFN to contribute with wider and stronger expertise
to the future ILC project.
Finally,
- 5 thesis/year
- 6 PhD
- 6 Contracts (Ass. Ric., Art. 23)
About 10 young Physicists and Engineers, with enthusiasm and
motivations, are being educated in the field.
SPARC Project
7.5 +2.5 M€
(MIUR+INFN)
R&D program towards high brightness e-beam
for SASE-FEL’s
SPARX Phase I 10 + 2.35 M€
(MIUR+INFN)
- R&D towards an X-ray FEL-SASE source
- Test Facility at 10 nm with the Dafne Linac
(SPARXINO)
SPARX Phase II
12 M€ ?
(MIUR)
- Linac energy up-grade (1.5 GeV ?) -> 2 nm ?
quadrupoles
dipoles
RF deflector
collimator
solenoid
Photoinjector
RF sections
25º
25º
11º
1.5m
10.0 m
5.4 m
14.5 m
Diagnostic
1-6 Undulator
modules
Scarica

M. Ferrario - Laboratori Nazionali di Frascati