L’analisi benefici costi
ABC
Si riferisce infatti al calcolo dei benefici
sociali netti conseguenti a una decisione
pubblica che modifica l’allocazione delle
risorse.
(progetti pubblici, dighe, autostrade,
modificazione di indirizzo di una scuola,
imposizione di vincoli ad una attività
inquinante.
• Viene usata anche nel settore privato
quando si ritiene che la profittabilità degli
stessi a livello sociale sia valutata in modo
impreciso dal mercato.
• Anche organizzazioni internazionali come
la Banca Mondiale usano l’ABC per
valutare progetti nei paesi in via di
sviluppo dove la ristrettezza del mercato
impedisce la loro valutazione corretta.
Perché occorre valutare la
profittabilità pubblica oltre a quella
privata?
• Perché in alcuni casi non esistono prezzi.
In particolare quando il progetto ha
economie esterne (un sistema di trasporto
urbano fa risparmiare tempo a tutti gli
utenti senza che ci sia un prezzo per il
risparmio del tempo.
• In altri casi il prezzo esiste ma è
fortemente distorto dalla presenza di
imposte o monopoli pubblici. Per esempio,
un progetto per la ricerca di fonti
energetiche alternative non può essere
valutato ai prezzi di mercato perché questi
sono distorti dalla presenza di imposte (i
prezzi sono diversi dai costi marginali.
(calcolo dei prezzi ombra)
I criteri di decisione
•
Un ente ha a disposizione uno
stanziamento definito, all’utilizzo del
quale aspirano un certo numero di
progetti concorrenti tra loro e che hanno
dimensioni fisse.
• L’ente deve prendere due ordini di
decisioni:
a) l’ammissibilità
b) la preferibilità
• Per compiere questa scelta sono stati
elaborati diversi criteri di decisione:
• Il valore attuale
• Il tasso interno di rendimento
• Il rapporto benefici-costi
Il valore attuale
• Si sconta, applicando un tasso di interesse
i che può essere quello espresso dal
mercato (tasso di interesse privato)
oppure un tasso che esprime la
preferenza temporale della collettività
(tasso sociale di sconto), il flusso dei
benefici attesi durante il periodo di vita del
progetto e si sottrae da esso il flusso ,
sempre attualizzato dei costi.
• Si ottiene in tal modo il valore attuale del
progetto secondo la seguente formula
VAP = Bo–Co + (B1-C1)/(1+i)+ (B2-C2)/(1+i)2 +…+
(Bn-Cn)/(1+i)n
Secondo questo criterio un progetto è considerato
ammissibile se il suo valore è superiore a zero,
se cioè da un beneficio positivo.
Se ci sono alternative sarà preferito il
progetto con il maggior valore attuale.
Il primo importante problema è la scelta del
tasso di interesse….
Il tasso interno di rendimento
• Consiste nel calcolare il tasso di sconto
che rende uguale a zero il valore attuale
del progetto. Sia r questo tasso e
risolviamo per r l’equazione del valore
attuale.
Per esempio una società investe in un
progetto 1000 e dopo un anno i suoi
profitti aumentano di 1100. Quale
rendimento ha avuto il progetto?
• Bo–Co + (B1-C1)/(1+r)= 0
-1000+1100 /(1+r)=0
r= 0,1 = 10%
Secondo il criterio del tasso di rendimento
interno è ammissibile un progetto quando
tale tasso è superiore al tasso di
attualizzazione preso a riferimento. E’
preferito il progetto con il tasso di interno
più elevato.
• In caso di stanziamento di bilancio fisso,
quale è il caso degli enti pubblici, il criterio
del tasso interno dà gli stessi risultati del
criterio del valore attuale cioè produce il
medesimo ordine di progetti.
• In caso di stanziamento variabile, quando
un’impresa privata accede al mercato dei
capitali pagando un tasso di interesse, vi
puo’ essere contrasto tra i due criteri
Confronto benefici costi
• Consiste semplicemente nel dividere i benefici per i
costi. In base ad esso risulta ammissibile ogni progetto
per il quale il rapporto è positivo, è preferito quel
progetto che dà il rapporto più elevato.
Esso è sensibile al tasso scelto per l’attualizzazione dei
flussi, inoltre come il tasso di rendimento interno può
privilegiare progetti di piccole dimensioni che hanno un
rapporto B/C elevato.
Inoltre, può essere facilmente modificato considerando un
costo come un mancato beneficio, o un beneficio come
un mancato costo.
• Per esempio, per un progetto di protezione
di una strada dalla caduta di valanghe
l’ufficio calcola benefici pari a 200 e costi
pari a 100 (rapporto uguale a 2).
• Il progettista si accorge di aver dimenticato
la minor necessità di rifare il manto
stradale, la cui spesa ammonta a 50.
• Se la posta è considerata un beneficio
addizionale porta il rapporto a 2,5
• Se è considerata un minor costo porta il
rapporto a 4.
Il cambiamento può alterare il confronto tra
progetti, e soprattutto mette in evidenza
una forte discrezionalità lasciata
all’analista.
La scelta del tasso di sconto
• Ipotesi 1: valutazione dei progetti di investimento
pubblico in termini di efficienza di mercato e di
applicare dunque tassi di sconto vigenti sul
mercato dei capitali:
- Tasso di rendimento ottenuto sull’investimento
privato al lordo delle imposte.
- Una media ponderata tra il precedente e il tasso
di rendimento del risparmio privato al netto delle
imposte.
• Ipotesi 2: ritiene che l’efficienza privata
non sia applicabile al pubblico e dunque i
progetti pubblici devono essere valutati
con appositi criteri e cioè
- Il tasso sociale di sconto
• Ipotesi 1:
I progetti pubblici sono concorrenti con quelli
privati. Se l’investimento complessivo è
dato, allora le due categorie devono
essere poste sullo stesso piano.
Cio’ richiede efficienza cioè che ogni lira sia
impiegata in modo da dare lo stesso
rendimento indipendentemente dalla
natura pubblica o privata del progetto.
• Questo tasso allora deve essere uguale al
rendimento netto di imposta dei titoli privati
(perché gli investitori spingono gli
investimenti fin dove il rendimento diventa
uguale al costo opportunità dei fondi
impiegati.
• Si tratta del prezzo che uguaglia S a I
• In alternativa si può applicare una media
ponderata tra il tasso di rendimento degli
investimenti privati al lordo delle imposte e il
tasso di rendimento del risparmio al netto delle
imposte.
Ciò accade perché gli investimenti pubblici
concorrono sia con quelli privati che con il
risparmio dunque la loro valutazione dipende da
entrambe le variabili. I tassi sono diversi per la
tassazione degli interessi e per la
regolamentazione dell’attività creditizia
La scelta dei tassi è problematica.
La scelta dei tassi privati può essere rifiutata
tenendo conto che i progetti pubblici possono
essere finanziati anche con mezzi diversi dal
ricorso al mercato dei capitali.
In più i tassi di mercato sono prezzi e dunque non
tengono conto delle esternalità (Pigou e
l’insufficienza telescopica dei tassi privati)
• Inoltre il tasso di interesse privato è
spostato verso l’alto dal rischio poiché
esso viene sopportato da un numero
limitato di soggetti mentre un progetto
pubblico riguarda una collettività. E’ anche
distorto dalla presenza delle imposte.
• (il tasso di sconto sociale tende ad essere
più basso di quello privato).
• Ma la sua determinazione è
essenzialmente un’operazione
NORMATIVA
• “provino l’analista e il politico a calcolare i
valori attuali dei progetti con tassi di
sconto diversi e non troppo lontani, per
difetto, da quelli di mercato e osservino
con molto buon senso e pragmatismo le
indicazioni che ne derivano”
La valutazione dei benefici e dei
costi
• Consideriamo un progetto che implichi un’attività
produttiva che mette cioè a disposizione degli
individui un certo bene.
• I benefici riguardano diversi gruppi di persone
(dipendenti, utenti). Anche i costi riguardano
gruppi diversi ( contribuenti, produttori in
concorrenza). Altri costi hanno natura sociale
(impatto ambientale, inquinamento).
• Il processo di valutazione è quindi
estremamente complesso….
Valutazione ai prezzi di mercato
• In un mercato perfettamente
concorrenziale i prezzi riflettono i costi
marginali e il valore marginale assegnato
dai consumatori.
• Se vi sono imperfezioni non enormi e
meglio usare i prezzi di mercato rispetto
ad altre misure ottenute ad un costo più
elevato e più complicate.
• Un caso che si pone nella valutazione dei
grandi progetti è che la loro attuazione
modifica i prezzi stessi.
Per esempio la costruzione di una diga fa
aumentare la produzione agricola e fa
diminuire i prezzi. Come si può calcolare il
beneficio derivante dalla maggior quantità
ad un prezzo ridotto, qual’è il nuovo
prezzo di mercato?
• Occorre estrapolare la nuova curva di domanda.
• Calcolare il beneficio (surplus).
Prima della costruzione della diga quantità e prezzi
erano uguali a OQ e il prezzo era OP. La diga
riduce il prezzo dell’acqua dunque la curva di
offerta si sposta verso il basso (E’ con un prezzo
minore e una maggiore quantità scambiata). Il
surplus del consumatore è dato dall’area a e b.
Anche il produttore vede aumentato il suo surplus
perché sperimenta una riduzione dei costi e una
maggiore quantità venduta (area c e d)
• Ma il progetto avrà effetti anche in mercati
secondari per prodotti concorrenti con il cibo (se i
consumatori comprano più vegetali comprano
meno vestiti).
• La curva di domanda si sposta verso il basso. Per
i consumatori c’è un aumento di suplus pari a e
(dato dalla diminuzione del prezzo di equilibrio), i
produttori per effetto del prezzo più basso e della
minor quantità venduta perderanno e+f .
• Il beneficio totale è dato da a+b+c+d-f
La valutazione con i prezzi ombra
• Si ha quando le imperfezioni del mercato
sono tali per cui non si può applicare il
prezzo.
• Un esempio classico si ha quando il
progetto usa risorse non utilizzate che dal
punto di vista sociale valgono
praticamente zero perché non soggetti ad
usi alternativi che producono ricchezza.
• Per esempio il fattore lavoro non occupato
che viene assorbito da un progetto
pubblico ha un prezzo ombra vicino allo
zero perché non implica alcun costo
opportunità per la collettività.
La valutazione in assenza di prezzi
• I progetti pubblici annoverano tra i benefici
principali, vantaggi di natura individuale e
collettiva per i quali non esistono prezzi di alcun
genere.
• Per esempio un sistema di trasporti urbano
sotterraneo ha come obiettivi la riduzione:
• Dei tempi di trasporto
• Degli incidenti stradali
• Dell’inquinamento
Aumenta inoltre il prestigio di una città.
• Questi elementi non ricevono alcuna valutazione
diretta dal mercato.
• Il modo per dare ad essi un valore monetario
necessita la valutazione delle somme che le
persone che ne beneficiano sarebbero disposte
a pagare per assicurarseli. Al contrario, nel caso
dei costi, il valore è dato da quanto chi subisce
lo svantaggio è disposto ad accettare per subirlo
volontariamente.
• Il valore del tempo
Se ritiene valida l’ipotesi per cui la sostituzione tra
lavoro e tempo libero avviene fino a che il
reddito al netto delle imposte che si trae da
un’ora addizionale di lavoro è uguale al valore
che si annette ad un’ora di tempo libero, allora il
risparmio di tempo va valutato al tasso di salario
dopo l’imposta.
Ma non tutti possono decidere quante ore lavorare
e non tutti usano la metropolitana per andare al
lavoro…
• Un’altra soluzione è di valutare la
disponibilità a pagare dei contribuenti per
mezzi più veloci ma con prezzi più elevati
e di usare la differenza come valutazione.
Il valore della vita
• Reddito annuo moltiplicato per il numero di
anni
• Differenziali salariali
Considerazioni distributive
• Supponiamo che un progetto possa
essere realizzato allo stesso costo
nell’area 1 o 2. L’area 1 è abitata
prevalentemente da ricchi, mentre l’area 2
è abitata prevalentemente da poveri.
• I benefici per entrambe le aree possono
essere scomposti in benefici per i più o
meno abbienti
• B1 = aBr+bBp
• B2 = aBr+bBp
Incertezza
• Supponiamo che i costi possano essere
100 o 500 con probabilità 0,5 ciascuno.
• Supponiamo che i benefici siano 200 con
probabilità 0,3 e 1000 con probabilità 0,7
• Si calcola allora il valore atteso
VAcosti = 0,5x100 + 0,5x500= 300
VAbenefici 0,3x200+0,7x100=760
Se si conosce la funzione di utilità
dell’individuo rappresentativo si può
• Calcolare l’equivalente certo cioè il
risultato sicuro che per l’individuo
rappresentativo è uguale al valore atteso
dei costi e dei benefici.
• In caso di avversione al rischio
l’equivalente certo ha dimensione inferiore
del valore atteso e dunque diventa la base
per l’applicazione corretta dei diversi criteri
di decisione.
Scarica

L`analisi benefici costi ABC