1th Workshop on “Photo Detection” June 13 - 14 , 2007 Perugia, Italy Photodetector requirements for gamma ray imaging with scintillation crystals Roberto Pani INFN and Sapienza-University of Rome Italy PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] Scintillation crystal readout technique Individual Coupling Pixellated crystal PD June 13-14 , 2007 Perugia - Italy Light Sharing Continuous crystal Roberto Pani [email protected] Individual coupling technique Munich APD PET* 4 x 8 APD Array (Hamamatsu Photonics) 2 x 2 x 6 mm3 LSO individual coupled Intrinsic FWHM ~ 1.2 mm * Courtesy of Roger Lecomte – Université de Sherbrooke (Québec, Canada) PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] Individual coupling technique High packing fraction > 80% Spatial resolution limited by crystal pixel size ( 1mm tomography, > 1mm planar image) Electronic readout up to 20000 chains (SPET) Single photoelectron readout not needed Low noise to allow 140 keV photon energy detection High gain (104 or more) not needed Energy resolution depending on scintillation crystal / photodetector PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] Light sharing technique Scintillation light flash on photocathode X & Y Position Centroid Algorithm Si i ni Position: X = Si ni E Si ni Energy: Charge distribution sampling by anode array Anode array (Hamamatsu H8500) k 1 2 3 4 5 6 7 8 nik 1 2 3 4 5 6 7 8…i ni nik k PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] Position determination in light sharing technique Image PSF 1mm FWHM one γ-ray interaction im lightPSF n phe Many γ-ray interactions Scintillation light PSF 15 mm FWHM counts (a.u.) 5000 height analisys ER 3750 2500 1250 1 n phe 0 0 100 200 Pulse height (a.u.) PD June 13-14 , 2007 Perugia - Italy 300 SR measured position (mm) Co57 pulse 50 Position linearity 40 30 l 20 10 dX dx 0 image 0 l 10 20 30 40 mechanical position (mm) Roberto Pani [email protected] 50 Light sharing technique Spatial resolution limited by crystal pixel size ( scintillation array) Spatial resolution not limited for continuous crystal Low number of electronic chains Single photoelectron readout needed Energy resolution depending on scintillation crystal /photodetector High gain ( >104 ) is needed Timing/rise time < 500 ps for ToF PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] Point Spread Function and critical angle c Planar crystal / PMT glass window n2 c sen ( ) 52o n0 1 PD June 13-14 , 2007 Perugia - Italy Pixellated crystal / PMT glass window Light output angle < 45° Roberto Pani [email protected] Pixellated scintillation crystal NaI:Tl 1m m x 1mm x 4 mm + H8500 MAPMT Pixel Spatial resolution < 1.3 mm Image Spatial resolution > 1.3 mm 50 Poor energy resolution ~ 14% 800 400 30 Counts counts 40 20 10 0 0 0 100 200 300 image pixel PD June 13-14 , 2007 Perugia - Italy 400 500 600 0 500 channel 1000 1500 Roberto Pani [email protected] Continuous scintillator crystal 1.5 mm step scannig – 0.4 mm Ø Tc99m point source LaBr3:Ce 49 mm x 49 mm x 4 mm + 3 mm glass window H8500 MAPMT Best Values: Energy resolution = 9.6 % (@ 1000V) Overall Spatial Resolution= 1.1 mm Intrinsic Spatial Resolution= 1.0 mm 500 450 700 Very good linearity !!! 400 Image Position (chn) 600 500 400 300 200 350 300 250 200 150 100 100 50 0 50 100 150 200 250 300 350 400 450 500 0 0 5 10 15 20 25 30 35 40 45 Mechanical Position (mm) PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] 50 Modulation Transfer Function MTF f LSF x e2ifx dx Detector assembly: (1.5 mm hole, 22 cm lenght) Multi-anode read-out 1 MTF (norm) MAPMT Hamamatsu H8500 LEGP collimator Crystal samples: MC simulation LEGP LaBr3(Ce) continuous crystal NaI(Tl) 1,1 mm pixel array 0.75 0.5 0.25 LaBr3:Ce continuous, 5mm thick NaI:Tl array, 1.1mm pixel 1.3 pitch 0 0 0.2 0.4 0.6 Spatial Frequencies (mm-1) MTF for Continuous Crystal Spatial Resolution limited to LEGP Enhancement in Contrast - increased AUC (Area Under Curve) NO restrictions in image digitization (Nyquist frequency not limited from image pixel) Continuous position response Increased detection efficiency PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] 0.8 Scintillation crystal: requirements for SPECT (@140 keV) Z 40 → Photofraction greater than 70% High density (> 3 gr/cc) → Reduction of crystal thickness to obtain 80-90% efficiency ( important for light collection) Refraction index close to 1.5 → To avoid light loosing due to critical angle (continuous crystal) Decay time 1 ms→ To obtain 200 kHz max. High luminous efficiency (> 20000 at suitable wavelength) → To improve: Decoding crystal pixel in scintillation array Spatial resolution, in continuous crystal Energy resolution. There are few predictions if energy resolution or light output dominates the intrinsic spatial resolution in light sharing Low afterglow for high counting rate PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] Scintillator crystals for SPECT Density (g/cm3) Atten.len. @ 140keV* (mm) Z eff. Photofraction (%) Light yield (ph/MeV) Decay time (ns) Refr. index ΔE/E (@140keV) (PMT) Emiss max (nm) NaI:Tl 3.67 3.76 51.0 84 41,000 230 1.85 9% 410 CsI(Tl) 4.51 2.55 52.0 86 66,000 630 1.80 14% 565 YAP 5.50 10.00 36.0 50 21,000 27 1.95 20% 350 LaCl3:Ce 3.86 4.22 49.5 80 40,000 27 (65%) 1.90 8% 350 LaBr3:Ce 5.07 3.32 47.4 79 63,000 16 (97%) 1.90 6% 380 LuI3:Ce 5.60 1.70 - 90 90,000 30 - - 472 535 PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] Scintillation crystal: requirements for PET (@ 511 keV) Z 50 → Photofraction greater than 30% High density ( >7 gr/cc) → To obtain, in 30 mm crystal length, 50% coincidence efficiency and reduction parallax error for small animal imaging. Scintillation decay time 300 ns → To allow good coincidence time resolution. Time resolution better than 0.5 ns can reduce random coincidences (50 % in a 3D PET) and time of flight can be realized. High luminous efficiency > 8000 ph/MeV → To enable block detectors with a greater number of pixel (from 8 8 BGO to 16 16 LaBr3(Ce) crystal pixel/module). Improvement in energy resolution reduces scatter background (25% Compton scattering / 25% “true” events in a 3D PET). Low afterglow for high counting rate PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] Scintillator crystals for PET Light yield (ph/MeV) Decay time (ns) Relative coinc. efficiency Coinc. timing res. (ps) ΔE/E @511 keV (PMT) 43 9,000 300 100% 3000 10% 65 34 26,000 40 90% 300 10% 420 54 - 30,000 40 - - 11% 3.86 350 49.5 15 46,000 20 (65%) 36% 265 4% LaBr3:Ce 5.07 380 47.4 14 63,000 16 (97%) 42% 260 3% LuI3:Ce 5.60 472 535 - 29 90,000 30 73% 200 <15% Z eff. Photofraction (%) 480 83 7.4 420 7.1 LaCl3:Ce Density (g/cm3) Emiss. max (nm) BGO 7.1 Lu2SiO5:Ce (LSO) Lu2(1-x)Y2xSiO5:Ce (LYSO) PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] Energy Resolution Re ( E ) E E ENC 2.355 ( Re.sci ) N N M ph ph 2 Intrinsic Scintillation Contribute 2 Electronic noise Non homogeneities Photodetector and preamplifier system Non proportionality of scintillation response Statistical generation of the signal [Equivalent noise charge – E. Gatti, NIM Phys Res 1990 ] Nph: number of photons in a scintillation flash : worsening of the Poisson behaviour : Quantum Efficiency PMT P-I-N APD SSD SiPM 1.25 1 2 1 1 at pk 30% 80% 80% > 80% 60% M 5 105 1 < 103 1 104-105 ENC/M 0 370 20 25 0 PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] Intrinsic Scintillator Energy Resolution Crystal Nph/ MeV Nel @ 662 keV ER(%) @ 662 keV ERscint. (%) ERst (%) ERnoise (%) Light detector Ref. NaI(Tl) 40000 6000 6.7 5.9 3.2 0 PMT typical CsI(Tl) 65000 6000 6.6 5.8 3.2 0 PMT XP2254B Philips Allier (1998) CsI(Tl) 65000 26000 4.3 3.8 1.5 1.2 SDD Fiorini (1997) LaBr3(Ce) 63000 12000 3.6 2.2 2.5 0 PMT XP20Y0 Photonis Moszynski (2006) LaBr3(Ce) 63000 19000 2.7 2.0 1.7 0.5 SDD Fiorini (2006) LSO 2000 5300 8.8 7.8 3.6 0 PMT XP20Y0 Photonis Moszynski (2006) BGO 9000 880 11.7 5.8 8.0 0 YAP 21000 10300 4.3 2.5 2.3 2.6 PMT XP20Y0 Photonis APD – 6307073500 Adv.Phot.Inc. Moszynski (2006) Moszynski (2000) 1.3 1.25 Relative Light Yield 1.2 1.15 1.1 1.05 1 0.95 0.9 NaI(Tl)A LaBr3(Ce)B 0.85 0.8 Luminosity (phe @ 662keV - PMT 25% QE) W.Moses, NIM A, 487 (2002) PD June 13-14 , 2007 Perugia - Italy 1 10 A Energy (keV) 100 1000 Roberto Pani – Prescott and Narayan, NIM A, 75 (1969) – G.Bizarri, [email protected] TNS, Vol 53,02 (2006) B Is the QE really useful? 1° PMT HIGH QE: Hamamatsu R7600-200 10% 1% QE max. = 41.6 % 10 @ 380 nm Number of dinode = 10 Gain= 2.0 E+06 @ HV= -700 V PD June 13-14 , 2007 Perugia - Italy 100% Energy Resolution Energy Resolution 100% Crystal Test: LaBr3:Ce Cylinder (½”Ø ½” thickness) R7600-200 (QE R7600-200 (QE = 41%) R6231 standard R6231 standard PMT (QE = 30%) H8500 MA-PMT (QE =H8500 22%) MA-PMT 10% 1% 10 100 100 Energy (keV) Energy (keV) Roberto Pani [email protected] 1000 Is the QE really useful? Pulse heigh Resolution & Coincidence Resolving Time: 2° PMT HIGH QE: Hamamatsu R8900-00-C12 Crystal TEST: LSO 4 x 4 x 20 mm3 Source : Na22 (E @ 511keV) PHR (%) QE max. = 42 % @ 350 nm Number of dinode = 12 Gain= 1.0 E+06 @ HV= -800 V PMT position CRT (psec) Standard HIGH QE Position Type Type (QE=22%) Standard Type (QE=22% ) HIGH QE Type A 15.1 14.0 460 400 B 16.0 14.5 500 440 C 16.4 14.8 520 460 D 15.8 14.8 550 480 E 16.0 15.4 600 510 F 15.4 590 *Courtesy of 17.1 Hamamatsu Photonics K.K. (Iwata City 530 - Japan) PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected] Critical Angle & Q.E. :MC Simulation GEANT 4 Scintillation crystal : LaBr3:Ce continuous crystal 50 x 50 x 4 mm3 ( white entrance face – black edges) 8 8 Photodetector array ( 6.0 mm pitch) 140 keV photon energy No glass window Q.E = 0.22 – Phe n°=1860 3 mm glass window Q.E = 0.22 – Phe n°=1153 300 No glass window Q.E = 0.60 – Phe n° = 5102 100 90 250 200 80 150 70 900 60 100 800 50 40 700 30 600 20 500 10 400 0 50 0 S.R.= 0.75 mm E.R. = 2.3% 300 S.R.=0.82 mm E.R. = 5.1 % ( 6.9 % including intrinsic energy resolution of LaBr3:Ce) 200 100 0 S.R.= 0.60 mm E.R. = 1.4 % ( 4.8 % including intrinsic energy resolution of LaBr3:Ce) PD June 13-14 , 2007 Perugia - Italy ( 5.1 % including intrinsic energy resolution of LaBr3:Ce) Roberto Pani [email protected] Conclusion LaBr3:Ce seems a very promising crystal for SPET ( PET ToF) application Light sharing on continuous crystal requires position sensitive photodetectors with superior performances Intrinsic energy resolution of scintillators can seriously limit the energy resolution response of a high Q.E. photodetectors Removing glass window( critical angle) in scintillator coupling, could strongly enhance imaging performances PD June 13-14 , 2007 Perugia - Italy Roberto Pani [email protected]