Extragalactic jets: a new perspective G. Ghisellini in coll. with F. Tavecchio INAF-OABrera Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets FRI-FRII & Blazars Blazars: Spectral Energy Distribution Radio IR Opt UV X MeV Inverse Compton (also possible hadronic models) Synchro GeV FSRQs BL Lacs LBL and HBL Fossati et al. 1998; Donato et al. 2001 The “blazar sequence” Fossati et al. 1998; Donato et al. 2001 2 gpeak nB By modeling, we find physical parameters in the comoving frame. TeV BL Lacs EGRET blazars gpeak is the energy of electrons emitting at the peak of the SED Low power slow cooling large gpeak Big power fast cooling small gpeak Power of jets in blazars Power of jets in blazars Power of jets in blazars The power of blazar jets G Lr = radiation Le = relat. electrons Lp = protons LB = B-field R Rdiss ~1017 cm Ghisellini, Foschini, Tavecchio, Pian 2007 AGILE! 3C 454.3 Swift Celotti & Ghisellini 2007 High power If one p per e- Relat. electrons Magnetic Field Radiation Celotti GG 2008 Celotti GG 2008, Maraschi et al. 2008 Jet power vs disk Lum. Ldisk Pjet Photon trapping e-p decoupling Disk accretion rate (Eddington units) Pause • • • • Jet power is large. More than Ldisk Matter dominated. Not many pairs LB is small Powerful jets must be radiatively inefficient • Powerful jets do not decelerate A new blazar sequence • Old one: based on 1 parameter: the observed luminosity • Now: info on mass and accretion rate (spin? not yet) • Info on jet power vs disk luminosity • Info on location of dissipation: must be at some distance from BH. One zone is dominant (internal shocks?) The key ideas • Rdiss proportional to MBH 1/2 • RBLR proportional to (Ldisk) UBLR=cost • For Ldisk/LEdd < Lc no BLR (BL Lacs) Ghisellini & Celotti 2001 Ledlow & Owen The key ideas • Rdiss proportional to MBH 1/2 • RBLR proportional to (Ldisk) UBLR=cost • For Ldisk/LEdd < Lc no BLR (BL Lacs) • LB = eB Pjet B propto R-1 • Le = ee Pjet •LB = eB Pjet B propto R-1 Celotti & Ghisellini 2008 •Le = ee Pjet The key ideas • Rdiss proportional to MBH 1/2 • RBLR proportional to (Ldisk) UBLR=cost • For Ldisk/LEdd < Lc no BLR (BL Lacs) • LB = eB Pjet B propto R-1 • Le = ee Pjet gpeak propto U-1; U-1/2 The key ideas • Rdiss proportional to MBH 1/2 • RBLR proportional to (Ldisk) • For Ldisk/LEdd < Lc no BLR (BL Lacs) • LB = eB Pjet • Le = ee Pjet gpeak propto U-1; U-1/2 The key ansatz • Pjet always proportional to M M Ljet propto Ldisk M2 1/2 Ljet propto Ldisk ADAF (Narayan et al.) Simple consequences • Rdiss propto M; RBLR propto (Ldisk)1/2 Low M, High L Red quasar BLR High M, Low L Blue quasar Simple consequences • Small M, small Ljet, large B, red BLR UBLR ~ the same Large UB Give me MBH and Ldisk (or LBLR) and I will tell you the SED of the jet and its power Conclusions • • • • • • • Pjet > Ldisk Jets are matter dominated Link between M, M and observed SED “Blue” FSRQs may exist “Red” low power FSRQs may exist Implications about evolution GLAST + Swift + M + Ldisk (or LBLR) Swift AGILE GLAST Fossati et al. 1998; Donato et al. 2001 CT Swift AGILE GLAST Fossati et al. 1998; Donato et al. 2001 CT Celotti & Ghisellini 2007 Low power If one p per e- Relat. electrons Magnetic Field Radiation Subluminal motion for all TeV sources? bapp~ 0.03 – 0.1 (+-0.06) H1426+428 bapp~ 2.09 (+-0.53) Mkn 501 bapp~ 0.05 – 0.54 (+-0.15) 1959+650 bapp~ 0 2155-304 bapp~ 0.93 (+-0.31) 2344+514 bapp~ 0 – 1.15 (+-0.5) Piner, Pant & Edwards 2008 Mkn 421 1015 cm Cospatial fast spine & slow layer DRl~1016 cm DRs~1014 cm More seed photons for both G’ = GlayerGspine(1-blayerbspine) The spine sees an enhanced Urad coming from the layer Also the layer sees an enhanced Urad coming from the spine The IC emission is enhanced wrt to the standard SSC model BL Lac Radiogalaxy layer Ghisellini Tavecchio Chiaberge 2005 Tavecchio Ghisellini 2008 Power of jets Coordinated variability at different n Mkn 421 TeV PDS MECS LECS G=10-20 Dissipation Yes! here? ~10 17 cm Leptonic models: Maraschi Ghisellini Celotti 1992 Dermer Schlickeiser 1993 Sikora Begelman Rees 1994 Blandford Levinson 1995 Ghisellini Madau 1996 Dissipation NO! here? RBLR~10 18 cm But see e.g.: Mannheim 1993; Aharonian 2002; Rachen 2000 for proton models Importance of g-rays If g-g important too many Xrays dx,g>1 (>10) Rblob large enough (>1016 cm), but tvar<1day Rblob <2.5x1015 tvard cm Blob away from accretion disk X-ray corona (>1017 cm) Energy transport in inner jet must be dissipationless Ravasio et al. 2000 Fossati et al. 1998 Gamma-ray blazars EGRET: ~60 blazars Cherenkov: 21 blazars (+1 Radiogal) GLAST HESS+ MAGIC The Universe becomes opaque at z~0.1 at 1TeV at z~2 at 20 GeV The VHE extragalactic gamma-ray sky 20 BL Lacertae (18 HBL + 2 LBL)) 1 radiogalaxy (M87, 16 Mpc) 1 FSRQs (3C279, z=0.536) Name Redshift Mkn 421 0.03 Mkn 501 0.03 1ES 2344+514 0.044 Mkn 180 0.045 1ES 1959+650 0.047 PKS 0548-322 0.069 BL Lacertae 0.069 PKS 2005-489 0.071 RGB 0152+017 0.080 ON231 (W Comae) 0.102 PKS 2155-304 0.116 H1426+428 0.129 1ES 0806+524 0.138 1ES 0229+200 0.140 H2356-309 0.165 1ES 1218+30 0.182 1ES 0347-121 0.185 1ES 1101-232 0.186 1ES 1011+496 0.212 PG 1553+113 0.25-0.78 Extragalactic jets: a new perspective G. Ghisellini in collaboration with F. Tavecchio INAF – Osservatorio Astronomico di Brera o The blazar sequence o Power and content of jets o A new perspective tcool 1/(gpeak U) = R/c g gpeakU = const 2