Il progetto SPES:
un acceleratore di fasci radioattivi a Legnaro
per informazioni ulteriori
http://www.lnl.infn.it/~spes/TDR2008/executive_summary_2008.pdf
• What are the limits for existence of nuclei?
• How do weak binding and extreme proton-neutron asymmetry
affect nuclear properties?
• How to built complex nuclei from their basic constituents?
• What is the origin of the elements?
• ....
Research with exotic nuclei
(extreme N/Z ratio)
Nuclear-Structure Physics
Nuclear Astrophysics
Fundamental Interactions
Applications
Radioactive Beams Physics
Neutron-rich
beams
Origin of the elements heavier than iron
Element formation beyond iron involve rapid
neutron capture and radioactive decay
Despite many years
of
intensive effort,
the r-process site
and
the astrophysical
conditions
continues to be
an open question.
Shell evolution
Element formation in r-process:
quenching of shell-structure?
Pfeiffer et al., Z. Phys. A357 (1997) 235
Experimenlal Signatures:
Energies of the excited levels
Nucleon Separation energies
Transition matrix elements
Neutron-rich matter and neutron skins
p/n decoupling
Lead Nucleus
Neutron
New
Density
Distributions
Proton
10
fm
skin
Neutron Star
Stable Nucleus
Neutron skin
Neutron
halo
10
km


r
r
crust

Both neutron skin and neutron
r
star crust are made out of neutron
rich matter at similar densities.
SPES -RIB facility
238U
(UCx)
Fission
fragments
Experiments
1013 f/s
RIB INTENSITY:
107-109 rare ions/s
on the experimental target
Neutron Rich Isotopes
A: 80-160
A Mid-term ISOL Facility
for the production of n-rich beams by
the fission of Uranium target
A review of the ISOL facilities in the world
Primary beam
Power
on
target
target
Fission
s-1
Reacceler
ator
AMeV
A=130,
20+
132Sn
rate
ISOLDE
p 1-1.4 GeV - 2 mA
0.4 KW
Direct
4·1012
Linac
3
107
HRIBF
p 40 MeV 10 mA
0.4 KW
Direct
4·1011
Tandem
25MV
4
2·105
SPIRAL
C-Kr 95 AMeV
6 KW
Direct
Cyclotron
TRIUMF
p 450 MeV 70 mA
17 KW
Direct
SC Linac
CRC UCL
p 30 MeV 300 mA
9 KW
Direct
Cyclotron
EXCYT
13C 45 AMeV
0.5 KW
Direct
Tandem
15MV
HIE
ISOLDE upgrade
Direct
4·1012
SC Linac
5-10
2·108
HRIBF
up-grade
p 54 MeV 20 mA
1.8KW
Direct
1012
Tandem
25MV
4
5·105
SPIRAL2
d 40 MeV 5mA
200 KW
Convert.
1014
Cyclotron
6
2·109
SPES
p 40 MeV 200 mA
8 KW
Direct
1013
SC Linac
10
3·108
Neutron Facility: BNCT – LENOS
Thermal neutrons 109 n cm-2 s-1
Fast neutrons 1014 n s-1
TRASCO RFQ: protons 5MeV 25mA
Direct Target 1013 f s-1 Mass Separator
(on HV platform 250KV)
Charge Breeder (200KW) installed over HV
platform (250KV)
Cyclotron:
protons 70 MeV
0.75mA
Cryopanel
High Resolution Mass Selector 1/20000
SC RFQ PIAVE
General SPES layout
SC Linac ALPI
The SPES main
components
3
2
1 - Driver
Cyclotron 70 MeV protons
750 mA
1
4
2 - Target-Ion Source
Direct target, UCx disks,
1013 fissions/sec
Surface Ion Source ,FEBIAD
and RILIS Ion sources
3 - Beam Transport-Selection
High-resolution mass spectrometer
1/20000
3
5
4 - Charge Breeder
ECR charge breeder
132Sn26+
5 - Reaccelerator
the present, PIAVE-ALPI accelerator
with improved performances
The driver cyclotron
IBA C70 characteristics:
• Diameter < 4m
• Weight > 120t
• Magnetic Gap: 30mm
• Magnetic field: 1.55T
SPES design
• Extraction Radius: 1.2m
• 2 exit ports
• Particles: H- / D- / He2+/ HH+
• Variable Energy : 15 MeV  70 MeV
• extraction Systems:
 Stripper  H- / D Deflector  He2+/ HH+
• Performances:
 750µA H-  70MeV
 35µA He2+  70MeV
:
IBA C70 cyclotron
Stopping Power & Fission Cross Section for p-> UCx
SPES target
Barn & MeV/dg*cm2.
4,5
4
Dump:
graphite
3,5
3
Fission Cross Section
Stopping Power
2,5
Target: UCx (30gr)
2
UCx disks 4cm dia
Total wheight 30gr
1,5
1
0,5
0
2
6
10
14
18
22
26
30
34
38
42
46
50
Proton Energy (MeV)
1013 fissions/sec
Exotic beam: 1+
Fission
efficiency  100p
per
1.5 Fission
Fragments
UCx discs
Tantalum
Heather
Graphite
container
Power density in UCx = 70W/gr
Basic ideas:
- MULTIPLE UCX SLICES : increase the surface radiation area (P= ε·σ·S· T4 Stefan-Boltzmann law)
- GRAPHITE DUMP : stops protons with low fission rate & high stopping power value
SPES Target Activities
1
NODAL SOLUTION
Sub-TASK1: Mechanical Development
FEB 11 2007
23:44:17
STEP=1
SUB =1
TIME=1
Y
SEQV
(AVG)
DMX =.571E-03
X
Z
SMN =.797E+07
SMX =.198E+09
MX
MN
- Thermo-Mechanical Calculation
- Handling Calculation
.797E+07
.502E+08
.291E+08
.925E+08
.714E+08
.135E+09
.114E+09
.177E+09
.156E+09
.198E+09
Target SPES
- CAD mechanical drawings
- Development of target prototypes
- Front- end & new devices
Sub-TASK2: Material Development
- Carbide productions
- Carbide characterizations
LaC pellets: Final
SPES dimension
- New porous material
- New characterization methods
*
Intensity
0,8
Sub-TASK3: Ion Source Development
* UC2 pdf # 84-1344
§ Graphite pdf #
1,0
§
0,6
*
0,4
*
*
*
*
0,2
§
- Laser tests at Pavia lab
*
*
**
*** *
0,0
20
40
60
2
80
100
The SPES Ion Sources
Ionization schema with a Surface ionizer coupled to a Laser beam
Surface ionization
Laser ionization
laser
Ion
Atom
Laser beam
Atom
Ion
continuum
Hot surface
Ionization
energy
continuum
< 9 - 10 eV
< 5-6 eV
Ionization
energy
Ground state
Fermi
energy
Hot surface
Work function
Conductive band
Ground state
Ground state
Excited
states
Laser source development: INFN-Pavia
Radiation protection
FLUKA simulations
Ambient dose equivalent [mSv/h]
in the target hall and shielding walls around.
Protons 70MeV 300 mA on UCx target
horizontal
UCx
tantalum
vertical
LNL Radiation Prot. Serv. L. Sarchiapone, D. Zafiropoulos
Radioactive Ion Beam transport lines
20 m
TIS – RF Cooler - WienFilter
(60kV extraction + 200kV platform)
CBMS
1/2500
Charge Breeder
(HVplatform 250kV)
8m
HRMS
1/20000
15 m
cryopanel
43 m
High Resolution Mass Separator
Comparison of the main parameters of
the EXCYT and the SPES
mass spectrometer.
SPES HRMS design
Second stage of the EXCYT
isobaric mass separator
Project name
EXCYT
SPES
Number of dipoles
2
2
Bending Angle
90°
110°
Bending radius
2.6 m
2.6 m
Entrance/exit angle
12.8°
32°
Magnetic field range
0.6 - 4.4 kGauss
1.0 - 4.4 kGauss
beam size at analysis slits
0.4 mm
0.4 mm
Teta acceptance
40 mrad
40 mrad
(x,x’) emittance
4  mm.mrad
4  mm.mrad
Y beam size
2 mm
2 mm
Phi acceptance
10 mrad
10 mrad
(y,y’) emittance
4  mm.mrad
5  mm.mrad
Resolving power
>15.000
>20.000
Dispersion
16 m
28 m
Charge Breeder For the SPES Progect
ECR ION SOURCE
SUPERNANOGAN BY
PANTECHNIK
•FULLY PERMANENT MAGNET @ 14 GHz
FPMS
•ROOM TEMPERATURE @ 14-18GHz
RTS
LPSC Booster
KEKCB @ TRIAC
•HT SUPERCONDUCTING @ 18 GHz
HTS
•FULLY SUPERCONDUCTING @ >18 GHZ
FSS
PHDelis
BY
PANTECHNIK
PIAVE upgrade for SPES
- new bunching section
- new diagnostics
- new cryostats
Nb/ Cu spattered cavities
or bulk Nb cavities
ALPI superconductive Linac up-grade:
Low Beta cavities
Stronger Magnetic lenses
The SPES neutron Facility
TRIPS source: 30-50mA protons
Installed and in operation at LNL
Neutron production based on High
Intensity proton beam
TRASCO RFQ: 5 MeV High Intensity
proton accelerator > 30mA
(150kW beam power)
•
•
•
•
6/6 modules machined
RFQ1 and RFQ2 brazed and accepted
RFQ3 first brazing performed
All modules brazed within 2008
SPES-BNCT project
0.84 MeV
7Li*
Neutron production reaction:
30mA, 5MeV p + Be
n
10B
11B
11
γ
0.48 MeV (94% events)
4He 1.47 MeV
171 cm
Conversion target (Beryllium)
Proton beam: 5MeV 30mA
Exit port
109 n cm-2s-1
Excellent thermal neutron beam
Low gamma field
th (E 0.4
eV)
(cm-2s-1)
th  total
Ref.
> 1E+09
> 0.90
Fase-III
1.17E+09
0.99
Knth
(Gy·h-1)
0.70
Kn epi-fast
(Gy·h-1)
0.0008
K
(Gy·h-1)
0.58
K  Kn tot
0.8
Be target after
test at 150 KW
Kn (E>10 eV) / th K / th
(Gy·cm2)
(Gy·cm2)
≤ 2E-13
≤ 2E-13
7.93E-16
1.38E-13
The LENOS facility
An irradiation facility to fulfill the increasing demand of high-flux neutron beams, meeting
the needs of a large National and International community for studies related to several
Interdisciplinary fields, from Astrophysics to bio-medicine, from development of new
detectors and electronics to material research.
Neutron production: 7Li(p,n)
¤ Activation Facility (cw beam: I = 30mA)
- n energy range = 1-300 keV
- astrophysics interest (sTOT -> MACS)
- neutron flux ~ 1010 n/s·cm2
- small radioactive samples: 1015 atoms/cm2
-> implantation of SPES RIBs (2 weeks)
Degradatore
di Energia
Selettore di fascio
Filtro di Wien
0.04
0.03
0.014
0.012
Maxwellian at 30 keV
0.010
dN n /dE
~ 2mA
SRIM 2008
Gaussian fitting (Ep= 1.72 ± 0.09 MeV)
0.05
Bersaglio in studio
Bersaglio di litio
~5% fascio primario
dN/dE (arb. units)
Fascio
protoni
30-50 mA
LENOS Neutron Spectrum
0.008
Possibile
produzione
bersaglio
con fascio
SPES
0.006
0.004
0.02
4.4 % of protons above threshold
0.002
0.01
0.000
0
0.00
1.3
1.4
1.5
1.6
1.7
1.8
Proton energy (MeV)
1.9
2.0
2.1
30
60
90
120 150 180 210 240 270 300 330 360 390
Neutron Energy (keV)
Spettro neutroni stellari 1010 n/s·cm2
Pierfrancesco Mastinu
SPES project organization
Management board
Advisory
Committee
Project Leader: G.Prete
LNL Director:
G.Puglierin
LNS Director:
M.Lattuada
Technical Coordinator: A.Pisent
Scientific Coordinator: A.Covello
Qualified Expert: D.Zafiropoulos
Task Leaders
Project manager
Steering
Committee
La Rana, Pirrone, Colonna,
Million, Bruno, Lunardi,
Corradi, Casini, Cuttone, Alba
SPES Working Group
Safety & Control, Infrastructure, TIS, RIB manipulation, pDriver, Re-acc,
Neutron Facility, Scientific Support
SPES Economic plan
SPES first priority
kEuro
Infrastructures RIB
12340
Target (2 stations)
5900
Beam Transfer
7650
Cyclotron
8400
Re-accelerator upgrade
7000
41290
Infrastructures NeutronFacility
3744
High Intensity Linac
3632
Neutron Facility BNCT - LENOS
3330
10706
total
To be developed with external fundings
51996
SPES funding
2 Meuro
16 Meuro
2006
2008
2009
2010
14 Meuro
11 Meuro
phase 1
RIB’s Buildings
Cyclotron with safety and
infrastructures
Proton beam transport
Target Ion Source (TIS) for
RIB
Low Beta ALPI upgrade
2011
2012
2013
phase 2
TIS safety and
infrastructures for UCx
phase 3
Second TIS
ChargeBreeder
Pulsed Beam on
reaccelerator
RIB reacceleration
HRMS 1/20000
SPES SCHEDULE
2008
2009
2010
Facility design
First Target and ion source
Second target and ion source
Authorization to operate
Building construction
Target installation and
commissioning
Completion of RFQ for Neutron
Facility
Installation and commissioning
Neutron Facility
Cyclotron construction
Cyclotron Installation and
commissioning
Alpi preparation for post
acceleration
Installation of RIBs transfer
lines and spectrometer
Complete commissioning
Critical timing
Second priority
2011
2012
2013
2014
SPES Working group: INFN
INFN Laboratori Nazionali di Legnaro: A.Andrighetto,
M.Barbui, G.Bassato,
A.Battistella, G.Bisoffi, E.Brezzi, M. Calviani, S.Canella, D.Carlucci, S.Carturan, M.Cavenago,
F.Cervellera, R.Cherubini, M.Cinausero, M.Comunian, P.Colautti, L.Corradi, L.Costa, A.Dainelli,
G.de Angelis, A.D’Este, J.Esposito, P.Favaron, E.Fagotti, E.Fioretto, M.Giacchini, F.Gramegna,
F. Grespan, P.Ingenito, A.Lombardi, M.Lollo, G.Maggioni, G.Martin Hernandez, P.Mastinu,
P.Modanese, M.F.Moisio, D.Napoli, A.Palmieri, R.Pegoraro A.Pisent, M.Poggi, A.Porcellato,
P.A.Posocco, J.Praena, G.Prete, G.Puglierin, M.Rigato, V.Rizzi, C.Roncolato, Y.Shengquan,
S.Stark, A.M.Stefanini, M.Tonezzer, D.Zafiropoulos
INFN Laboratori Nazionali del Sud, Catania: L.Calabretta, L.Celona, F.Chines,
L.Cosentino, G.Cuttone, P.Finocchiaro, S.Gammino, M.Lattuada, G.E.Messina, M.Re, D.Rizzo,
A. DiPietro
INFN and Dipartimento di Fisica, University of Padova: S.Beghini, L. De Nardo,
P.Mason, M.Mazzocco G.Montagnoli, F.Scarlassara, G.F. Segato, C.Signorini, S.Lenzi
INFN and Dipartimento di Fisica, University of Torino: G.Pollarolo
INFN Sezione di Bari: V.Variale, N. Colonna
INFN and Dipartimento di Fisica, University of Pavia:
INFN and Dipartimento di Fisica, University of Napoli:
A. Gargano, D. Pierroutsakou
INFN
INFN
INFN
INFN
and
and
and
and
Dipartimento
Dipartimento
Dipartimento
Dipartimento
di
di
di
di
Fisica,
Fisica,
Fisica,
Fisica,
University
University
University
University
of
of
of
of
P.Benetti
G. La Rana, A. Covello,
Firenze: G. Casini
Bologna: M. Bruno, M. D’Agostino
Milano: B. Million, G. Colò
Catania: S. Pirrone,
SPES working Group: Italian Insitutions
University of Padova
Dipartimento di Ingegneria Meccanica:
Meneghetti,
L. Biasetto, P. Colombo, M. Manzolaro, G.
Dipartimento di Ingegneria delle Costruzioni e Trasporti: V.
Salomoni, C.
Majorana
Dipartimento di Scienze chimiche:
P. Di Bernardo, P. Zanonato, L. Piga
ENEA, Bologna: C. Antonucci, S. Cevolani, C. Petrovich, R. Tinti
LASA,Milano: C.
De Martinis
Dipartimento di Ingegneria Meccanica, University of Trento:
I. Cristofolini,
Dipartimento di Ingegneria Nucleare, University of Palermo:
G. Vella,
M. De Cecco, R. Oboe
E. Tomarchio, S. Rizzo, P. Guarino
Sezione di Padova
Esperimenti legati alla Fisica di SPES
EXOTIC
GAMMA
PRISMA
EXOTIC
Il gruppo EXOTIC ha collaborato al gruppo di studio
sullo spettrometro ad alta risoluzione.
P-40 MeV 0.2
mA
P-40 MeV 0.2
mA
238U
RFQ-DTL
Low mass
resolution
selection
target +20 kV
Separation between
high and low
radiation zones
X+1
Charge breeder
On +20kV
X+n
Bunching
RFQ
High mass
resolution
selection
On -60 kV plat
PIAVE
SRFQ
layout della linea di
trasporto e di selezione
238U
RFQ-DTL
ALPI
Low mass
resolution
selection
Charge breeder
On +250kV
X+n
PIAVE
SRFQ
X+1
target +250 kV
Separation between
high and low
radiation zones
High mass
resolution
selection
ALPI
GAMMA
AGATA
Next generation spectrometer based on gamma-ray tracking
4 germanium array
No suppression shields
Very high efficiency and spectrum quality
For radioactive beams facilities such as SPES, SPIRAL2, FAIR
PRISMA
The Heavy-Ion Magnetic Spectrometer
PRISMA is a magnetic spectrometer for heavy ions installed at Legnaro,
with very large solid angle (80 msr), wide momentum acceptance (10 %) and
good mass resolution (1/300)
F.Scarlassara, S.Beghini, P.Mason, G.Montagnoli
Univ. di Padova and INFN - Sezione di Padova
+ LNL , Univ. e Sezioni INFN di Napoli e Torino
Il gruppo PRISMA padovano ha in programma nel prossimo futuro di indagare le
possibilita` che lo spettrometro potrebbe offrire usando i fasci radioattivi che
saranno prodotti da SPES. Le caratteristiche di PRISMA ne fanno uno strumento
ideale per l'uso con fasci esotici.
In ambito SPES e' in fase di perfezionamento un accordo di collaborazione con
ISOLDE (CERN), ove si intende costruire uno spettrometro simile.
Il gruppo PRISMA di Padova si sta occupando dell'utilizzo dello spettrometro in
“gas-filled mode”, che consente di misurare a zero gradi in particolare reazioni di
fusione; questo sviluppo riguarda soprattutto il “dopo-Agata” e l’utilizzo di
fasci prodotti da SPES.
Sezione di Padova
Il progetto SPES, per poter essere realizzato, ha bisogno
del contributo delle Sezioni INFN, ad esempio in termini
di lavori di officina.
La sezione di Padova può quindi contribuire a costruire parti
del progetto (esempio: separatore di massa ad alta risoluzione
previsto nella terza fase) con la sua officina meccanica.
The INFN Legnaro Laboratory
Scarica

Cyclotron - INFN - Sezione di Padova