Il progetto SPES: un acceleratore di fasci radioattivi a Legnaro per informazioni ulteriori http://www.lnl.infn.it/~spes/TDR2008/executive_summary_2008.pdf • What are the limits for existence of nuclei? • How do weak binding and extreme proton-neutron asymmetry affect nuclear properties? • How to built complex nuclei from their basic constituents? • What is the origin of the elements? • .... Research with exotic nuclei (extreme N/Z ratio) Nuclear-Structure Physics Nuclear Astrophysics Fundamental Interactions Applications Radioactive Beams Physics Neutron-rich beams Origin of the elements heavier than iron Element formation beyond iron involve rapid neutron capture and radioactive decay Despite many years of intensive effort, the r-process site and the astrophysical conditions continues to be an open question. Shell evolution Element formation in r-process: quenching of shell-structure? Pfeiffer et al., Z. Phys. A357 (1997) 235 Experimenlal Signatures: Energies of the excited levels Nucleon Separation energies Transition matrix elements Neutron-rich matter and neutron skins p/n decoupling Lead Nucleus Neutron New Density Distributions Proton 10 fm skin Neutron Star Stable Nucleus Neutron skin Neutron halo 10 km r r crust Both neutron skin and neutron r star crust are made out of neutron rich matter at similar densities. SPES -RIB facility 238U (UCx) Fission fragments Experiments 1013 f/s RIB INTENSITY: 107-109 rare ions/s on the experimental target Neutron Rich Isotopes A: 80-160 A Mid-term ISOL Facility for the production of n-rich beams by the fission of Uranium target A review of the ISOL facilities in the world Primary beam Power on target target Fission s-1 Reacceler ator AMeV A=130, 20+ 132Sn rate ISOLDE p 1-1.4 GeV - 2 mA 0.4 KW Direct 4·1012 Linac 3 107 HRIBF p 40 MeV 10 mA 0.4 KW Direct 4·1011 Tandem 25MV 4 2·105 SPIRAL C-Kr 95 AMeV 6 KW Direct Cyclotron TRIUMF p 450 MeV 70 mA 17 KW Direct SC Linac CRC UCL p 30 MeV 300 mA 9 KW Direct Cyclotron EXCYT 13C 45 AMeV 0.5 KW Direct Tandem 15MV HIE ISOLDE upgrade Direct 4·1012 SC Linac 5-10 2·108 HRIBF up-grade p 54 MeV 20 mA 1.8KW Direct 1012 Tandem 25MV 4 5·105 SPIRAL2 d 40 MeV 5mA 200 KW Convert. 1014 Cyclotron 6 2·109 SPES p 40 MeV 200 mA 8 KW Direct 1013 SC Linac 10 3·108 Neutron Facility: BNCT – LENOS Thermal neutrons 109 n cm-2 s-1 Fast neutrons 1014 n s-1 TRASCO RFQ: protons 5MeV 25mA Direct Target 1013 f s-1 Mass Separator (on HV platform 250KV) Charge Breeder (200KW) installed over HV platform (250KV) Cyclotron: protons 70 MeV 0.75mA Cryopanel High Resolution Mass Selector 1/20000 SC RFQ PIAVE General SPES layout SC Linac ALPI The SPES main components 3 2 1 - Driver Cyclotron 70 MeV protons 750 mA 1 4 2 - Target-Ion Source Direct target, UCx disks, 1013 fissions/sec Surface Ion Source ,FEBIAD and RILIS Ion sources 3 - Beam Transport-Selection High-resolution mass spectrometer 1/20000 3 5 4 - Charge Breeder ECR charge breeder 132Sn26+ 5 - Reaccelerator the present, PIAVE-ALPI accelerator with improved performances The driver cyclotron IBA C70 characteristics: • Diameter < 4m • Weight > 120t • Magnetic Gap: 30mm • Magnetic field: 1.55T SPES design • Extraction Radius: 1.2m • 2 exit ports • Particles: H- / D- / He2+/ HH+ • Variable Energy : 15 MeV 70 MeV • extraction Systems: Stripper H- / D Deflector He2+/ HH+ • Performances: 750µA H- 70MeV 35µA He2+ 70MeV : IBA C70 cyclotron Stopping Power & Fission Cross Section for p-> UCx SPES target Barn & MeV/dg*cm2. 4,5 4 Dump: graphite 3,5 3 Fission Cross Section Stopping Power 2,5 Target: UCx (30gr) 2 UCx disks 4cm dia Total wheight 30gr 1,5 1 0,5 0 2 6 10 14 18 22 26 30 34 38 42 46 50 Proton Energy (MeV) 1013 fissions/sec Exotic beam: 1+ Fission efficiency 100p per 1.5 Fission Fragments UCx discs Tantalum Heather Graphite container Power density in UCx = 70W/gr Basic ideas: - MULTIPLE UCX SLICES : increase the surface radiation area (P= ε·σ·S· T4 Stefan-Boltzmann law) - GRAPHITE DUMP : stops protons with low fission rate & high stopping power value SPES Target Activities 1 NODAL SOLUTION Sub-TASK1: Mechanical Development FEB 11 2007 23:44:17 STEP=1 SUB =1 TIME=1 Y SEQV (AVG) DMX =.571E-03 X Z SMN =.797E+07 SMX =.198E+09 MX MN - Thermo-Mechanical Calculation - Handling Calculation .797E+07 .502E+08 .291E+08 .925E+08 .714E+08 .135E+09 .114E+09 .177E+09 .156E+09 .198E+09 Target SPES - CAD mechanical drawings - Development of target prototypes - Front- end & new devices Sub-TASK2: Material Development - Carbide productions - Carbide characterizations LaC pellets: Final SPES dimension - New porous material - New characterization methods * Intensity 0,8 Sub-TASK3: Ion Source Development * UC2 pdf # 84-1344 § Graphite pdf # 1,0 § 0,6 * 0,4 * * * * 0,2 § - Laser tests at Pavia lab * * ** *** * 0,0 20 40 60 2 80 100 The SPES Ion Sources Ionization schema with a Surface ionizer coupled to a Laser beam Surface ionization Laser ionization laser Ion Atom Laser beam Atom Ion continuum Hot surface Ionization energy continuum < 9 - 10 eV < 5-6 eV Ionization energy Ground state Fermi energy Hot surface Work function Conductive band Ground state Ground state Excited states Laser source development: INFN-Pavia Radiation protection FLUKA simulations Ambient dose equivalent [mSv/h] in the target hall and shielding walls around. Protons 70MeV 300 mA on UCx target horizontal UCx tantalum vertical LNL Radiation Prot. Serv. L. Sarchiapone, D. Zafiropoulos Radioactive Ion Beam transport lines 20 m TIS – RF Cooler - WienFilter (60kV extraction + 200kV platform) CBMS 1/2500 Charge Breeder (HVplatform 250kV) 8m HRMS 1/20000 15 m cryopanel 43 m High Resolution Mass Separator Comparison of the main parameters of the EXCYT and the SPES mass spectrometer. SPES HRMS design Second stage of the EXCYT isobaric mass separator Project name EXCYT SPES Number of dipoles 2 2 Bending Angle 90° 110° Bending radius 2.6 m 2.6 m Entrance/exit angle 12.8° 32° Magnetic field range 0.6 - 4.4 kGauss 1.0 - 4.4 kGauss beam size at analysis slits 0.4 mm 0.4 mm Teta acceptance 40 mrad 40 mrad (x,x’) emittance 4 mm.mrad 4 mm.mrad Y beam size 2 mm 2 mm Phi acceptance 10 mrad 10 mrad (y,y’) emittance 4 mm.mrad 5 mm.mrad Resolving power >15.000 >20.000 Dispersion 16 m 28 m Charge Breeder For the SPES Progect ECR ION SOURCE SUPERNANOGAN BY PANTECHNIK •FULLY PERMANENT MAGNET @ 14 GHz FPMS •ROOM TEMPERATURE @ 14-18GHz RTS LPSC Booster KEKCB @ TRIAC •HT SUPERCONDUCTING @ 18 GHz HTS •FULLY SUPERCONDUCTING @ >18 GHZ FSS PHDelis BY PANTECHNIK PIAVE upgrade for SPES - new bunching section - new diagnostics - new cryostats Nb/ Cu spattered cavities or bulk Nb cavities ALPI superconductive Linac up-grade: Low Beta cavities Stronger Magnetic lenses The SPES neutron Facility TRIPS source: 30-50mA protons Installed and in operation at LNL Neutron production based on High Intensity proton beam TRASCO RFQ: 5 MeV High Intensity proton accelerator > 30mA (150kW beam power) • • • • 6/6 modules machined RFQ1 and RFQ2 brazed and accepted RFQ3 first brazing performed All modules brazed within 2008 SPES-BNCT project 0.84 MeV 7Li* Neutron production reaction: 30mA, 5MeV p + Be n 10B 11B 11 γ 0.48 MeV (94% events) 4He 1.47 MeV 171 cm Conversion target (Beryllium) Proton beam: 5MeV 30mA Exit port 109 n cm-2s-1 Excellent thermal neutron beam Low gamma field th (E 0.4 eV) (cm-2s-1) th total Ref. > 1E+09 > 0.90 Fase-III 1.17E+09 0.99 Knth (Gy·h-1) 0.70 Kn epi-fast (Gy·h-1) 0.0008 K (Gy·h-1) 0.58 K Kn tot 0.8 Be target after test at 150 KW Kn (E>10 eV) / th K / th (Gy·cm2) (Gy·cm2) ≤ 2E-13 ≤ 2E-13 7.93E-16 1.38E-13 The LENOS facility An irradiation facility to fulfill the increasing demand of high-flux neutron beams, meeting the needs of a large National and International community for studies related to several Interdisciplinary fields, from Astrophysics to bio-medicine, from development of new detectors and electronics to material research. Neutron production: 7Li(p,n) ¤ Activation Facility (cw beam: I = 30mA) - n energy range = 1-300 keV - astrophysics interest (sTOT -> MACS) - neutron flux ~ 1010 n/s·cm2 - small radioactive samples: 1015 atoms/cm2 -> implantation of SPES RIBs (2 weeks) Degradatore di Energia Selettore di fascio Filtro di Wien 0.04 0.03 0.014 0.012 Maxwellian at 30 keV 0.010 dN n /dE ~ 2mA SRIM 2008 Gaussian fitting (Ep= 1.72 ± 0.09 MeV) 0.05 Bersaglio in studio Bersaglio di litio ~5% fascio primario dN/dE (arb. units) Fascio protoni 30-50 mA LENOS Neutron Spectrum 0.008 Possibile produzione bersaglio con fascio SPES 0.006 0.004 0.02 4.4 % of protons above threshold 0.002 0.01 0.000 0 0.00 1.3 1.4 1.5 1.6 1.7 1.8 Proton energy (MeV) 1.9 2.0 2.1 30 60 90 120 150 180 210 240 270 300 330 360 390 Neutron Energy (keV) Spettro neutroni stellari 1010 n/s·cm2 Pierfrancesco Mastinu SPES project organization Management board Advisory Committee Project Leader: G.Prete LNL Director: G.Puglierin LNS Director: M.Lattuada Technical Coordinator: A.Pisent Scientific Coordinator: A.Covello Qualified Expert: D.Zafiropoulos Task Leaders Project manager Steering Committee La Rana, Pirrone, Colonna, Million, Bruno, Lunardi, Corradi, Casini, Cuttone, Alba SPES Working Group Safety & Control, Infrastructure, TIS, RIB manipulation, pDriver, Re-acc, Neutron Facility, Scientific Support SPES Economic plan SPES first priority kEuro Infrastructures RIB 12340 Target (2 stations) 5900 Beam Transfer 7650 Cyclotron 8400 Re-accelerator upgrade 7000 41290 Infrastructures NeutronFacility 3744 High Intensity Linac 3632 Neutron Facility BNCT - LENOS 3330 10706 total To be developed with external fundings 51996 SPES funding 2 Meuro 16 Meuro 2006 2008 2009 2010 14 Meuro 11 Meuro phase 1 RIB’s Buildings Cyclotron with safety and infrastructures Proton beam transport Target Ion Source (TIS) for RIB Low Beta ALPI upgrade 2011 2012 2013 phase 2 TIS safety and infrastructures for UCx phase 3 Second TIS ChargeBreeder Pulsed Beam on reaccelerator RIB reacceleration HRMS 1/20000 SPES SCHEDULE 2008 2009 2010 Facility design First Target and ion source Second target and ion source Authorization to operate Building construction Target installation and commissioning Completion of RFQ for Neutron Facility Installation and commissioning Neutron Facility Cyclotron construction Cyclotron Installation and commissioning Alpi preparation for post acceleration Installation of RIBs transfer lines and spectrometer Complete commissioning Critical timing Second priority 2011 2012 2013 2014 SPES Working group: INFN INFN Laboratori Nazionali di Legnaro: A.Andrighetto, M.Barbui, G.Bassato, A.Battistella, G.Bisoffi, E.Brezzi, M. Calviani, S.Canella, D.Carlucci, S.Carturan, M.Cavenago, F.Cervellera, R.Cherubini, M.Cinausero, M.Comunian, P.Colautti, L.Corradi, L.Costa, A.Dainelli, G.de Angelis, A.D’Este, J.Esposito, P.Favaron, E.Fagotti, E.Fioretto, M.Giacchini, F.Gramegna, F. Grespan, P.Ingenito, A.Lombardi, M.Lollo, G.Maggioni, G.Martin Hernandez, P.Mastinu, P.Modanese, M.F.Moisio, D.Napoli, A.Palmieri, R.Pegoraro A.Pisent, M.Poggi, A.Porcellato, P.A.Posocco, J.Praena, G.Prete, G.Puglierin, M.Rigato, V.Rizzi, C.Roncolato, Y.Shengquan, S.Stark, A.M.Stefanini, M.Tonezzer, D.Zafiropoulos INFN Laboratori Nazionali del Sud, Catania: L.Calabretta, L.Celona, F.Chines, L.Cosentino, G.Cuttone, P.Finocchiaro, S.Gammino, M.Lattuada, G.E.Messina, M.Re, D.Rizzo, A. DiPietro INFN and Dipartimento di Fisica, University of Padova: S.Beghini, L. De Nardo, P.Mason, M.Mazzocco G.Montagnoli, F.Scarlassara, G.F. Segato, C.Signorini, S.Lenzi INFN and Dipartimento di Fisica, University of Torino: G.Pollarolo INFN Sezione di Bari: V.Variale, N. Colonna INFN and Dipartimento di Fisica, University of Pavia: INFN and Dipartimento di Fisica, University of Napoli: A. Gargano, D. Pierroutsakou INFN INFN INFN INFN and and and and Dipartimento Dipartimento Dipartimento Dipartimento di di di di Fisica, Fisica, Fisica, Fisica, University University University University of of of of P.Benetti G. La Rana, A. Covello, Firenze: G. Casini Bologna: M. Bruno, M. D’Agostino Milano: B. Million, G. Colò Catania: S. Pirrone, SPES working Group: Italian Insitutions University of Padova Dipartimento di Ingegneria Meccanica: Meneghetti, L. Biasetto, P. Colombo, M. Manzolaro, G. Dipartimento di Ingegneria delle Costruzioni e Trasporti: V. Salomoni, C. Majorana Dipartimento di Scienze chimiche: P. Di Bernardo, P. Zanonato, L. Piga ENEA, Bologna: C. Antonucci, S. Cevolani, C. Petrovich, R. Tinti LASA,Milano: C. De Martinis Dipartimento di Ingegneria Meccanica, University of Trento: I. Cristofolini, Dipartimento di Ingegneria Nucleare, University of Palermo: G. Vella, M. De Cecco, R. Oboe E. Tomarchio, S. Rizzo, P. Guarino Sezione di Padova Esperimenti legati alla Fisica di SPES EXOTIC GAMMA PRISMA EXOTIC Il gruppo EXOTIC ha collaborato al gruppo di studio sullo spettrometro ad alta risoluzione. P-40 MeV 0.2 mA P-40 MeV 0.2 mA 238U RFQ-DTL Low mass resolution selection target +20 kV Separation between high and low radiation zones X+1 Charge breeder On +20kV X+n Bunching RFQ High mass resolution selection On -60 kV plat PIAVE SRFQ layout della linea di trasporto e di selezione 238U RFQ-DTL ALPI Low mass resolution selection Charge breeder On +250kV X+n PIAVE SRFQ X+1 target +250 kV Separation between high and low radiation zones High mass resolution selection ALPI GAMMA AGATA Next generation spectrometer based on gamma-ray tracking 4 germanium array No suppression shields Very high efficiency and spectrum quality For radioactive beams facilities such as SPES, SPIRAL2, FAIR PRISMA The Heavy-Ion Magnetic Spectrometer PRISMA is a magnetic spectrometer for heavy ions installed at Legnaro, with very large solid angle (80 msr), wide momentum acceptance (10 %) and good mass resolution (1/300) F.Scarlassara, S.Beghini, P.Mason, G.Montagnoli Univ. di Padova and INFN - Sezione di Padova + LNL , Univ. e Sezioni INFN di Napoli e Torino Il gruppo PRISMA padovano ha in programma nel prossimo futuro di indagare le possibilita` che lo spettrometro potrebbe offrire usando i fasci radioattivi che saranno prodotti da SPES. Le caratteristiche di PRISMA ne fanno uno strumento ideale per l'uso con fasci esotici. In ambito SPES e' in fase di perfezionamento un accordo di collaborazione con ISOLDE (CERN), ove si intende costruire uno spettrometro simile. Il gruppo PRISMA di Padova si sta occupando dell'utilizzo dello spettrometro in “gas-filled mode”, che consente di misurare a zero gradi in particolare reazioni di fusione; questo sviluppo riguarda soprattutto il “dopo-Agata” e l’utilizzo di fasci prodotti da SPES. Sezione di Padova Il progetto SPES, per poter essere realizzato, ha bisogno del contributo delle Sezioni INFN, ad esempio in termini di lavori di officina. La sezione di Padova può quindi contribuire a costruire parti del progetto (esempio: separatore di massa ad alta risoluzione previsto nella terza fase) con la sua officina meccanica. The INFN Legnaro Laboratory