Modelling the Economic Impact of Climate Change: Early Results, Methodological Challenges Roberto Roson Università Ca’Foscari, ICTP and FEEM EEE Seminar , Trieste, December 16th, 2003 Fondazione Eni Enrico Mattei Motivation • • To provide a basic overview of the methodology To illustrate and comment some early simulation results Fondazione Eni Enrico Mattei Integrated Assessment Models Myth and Reality Fondazione Eni Enrico Mattei An Ideal IAM Physical Effects Socio-Economic System(s) Climate System(s) Emissions Fondazione Eni Enrico Mattei Actual Approach #1: IPCC • A series of socio-economic “scenarios” (A1, A2, B1, B2) • Forecasts of future climate consistent with given benchmarks • No feedback on the economy Fondazione Eni Enrico Mattei Actual Approach #2: RICE • A series of parallel regional growth model linked by the climate externality • Emissions proportional to GDP • Climate module translates emissions into temperature changes • Temperature affects productivity (potential GDP) Fondazione Eni Enrico Mattei Inadequacy of Current IAM Models • • the description of the world economic structure is often too simplistic: limited number of industries (sometimes only one good, available for both consumption and investment), poor or absent description of international trade and capital flows. the multi-dimensional nature of the impact of the climate change on the economic systems is disregarded. This is usually accommodated by specific ad-hoc relationships, making a certain fraction of potential income “melting away” as temperature increases Fondazione Eni Enrico Mattei The General Equilibrium Concept p S(p,…) D(p,…) q Fondazione Eni Enrico Mattei Are GE effects relevant in this context? Fondazione Eni Enrico Mattei How the model works Fondazione Eni Enrico Mattei Simulation #1: Sea Level Rise • Two scenarios: no protection/ full protection • NP: reduction in the land stock • FP: additional protective investment expenditure Fondazione Eni Enrico Mattei Early Results: Sea Level Rise Tab. I: No protection scenario: main econo mi c indicators Land lost (% change w.r.t. baseline) USA EU EEFSU JPN RoA1 EEx CHIND RoW -0.055 -0.032 -0.018 -0.153 -0.006 -0.184 -0.083 -0.151 Value of land lost 1997 million US$ 102 187 611 20 221 15556 324 13897 % of GDP 0.0002 0.0010 0.0100 0.0001 0.0030 0.1010 0.0030 0.0600 GDP (% change w.r.t. baseline) Household private expendit. (% change w.r.t. baseline) CO 2 Emiss ions (% change w.r.t. baseline) -0.002 -0.001 -0.002 -0.001 0.000 -0.021 -0.030 -0.017 -0.031 -0.026 -0.023 0.011 0.001 -0.028 0.012 -0.025 0.010 0.012 0.005 0.035 0.015 -0.008 -0.024 -0.012 Tab. IV: Total protection scena rio: main econo mi c indicators Coasta l protection expenditure Region USA EU EEFSU JPN RoA1 EEx CHIND RoW 1997 million US$ % of GDP 5153 11213 23076 7595 71496 363856 11747 38808 0.010 0.025 0.332 0.032 0.799 0.185 0.106 0.148 Investment induced by coastal protection (% change w.r.t. baseline) 0.151 0.302 3.179 0.242 9.422 2.235 1.254 1.817 GDP (% change w.r.t. baseline) 0.001 -0.022 0.049 -0.009 0.103 0.015 0.003 0.009 Household private expendit. (% change w.r.t. baseline) -0.31 -0.35 0.59 -1.08 0.90 -0.08 -1.13 -0.25 CO 2 Emiss ions (% change w.r.t. baseline) -0.069 -0.160 -0.133 -0.344 -0.130 -0.069 -0.116 -0.115 Fondazione Eni Enrico Mattei Simulation #2: Health • Two simultaneous effects • Variations in labour stock/productivity • Exogenous change in health services expenditure (by the public sector) Fondazione Eni Enrico Mattei Early Results: Health Change in Labour Productivity ( % change) Change in Health Expenditure ( % change) Change in value of GDP ( % change) CO2 Emissions ( % change) USA 0.138182 -0.000635 0.089527 0.032077 EU 0.244331 -0.037549 0.132018 0.050688 EEFSU 0.744981 -0.041414 0.430204 0.196618 JPN -0.101737 0.059357 -0.05519 -0.046133 0.38926 -0.054031 0.227172 0.092279 EEx -0.754314 0.09854 -0.319031 -0.159689 CHIND 0.291378 0.966142 0.243019 0.067339 RoW -0.612715 0.239236 -0.250661 -0.115078 2050 RoA1 Fondazione Eni Enrico Mattei Simulation #3: Tourism • Estimation of O/D matrices of tourists with and without climate change • Hypothesis: % change in the number of tourists in a region = % change of tourism expenditure • Apply exogenous variations in the consumption demand of (1) recreational services and (2) hotels and restaurants within the broader sector “Trade” Fondazione Eni Enrico Mattei