Modelling the Economic Impact
of Climate Change:
Early Results,
Methodological Challenges
Roberto Roson
Università Ca’Foscari, ICTP and FEEM
EEE Seminar , Trieste, December 16th, 2003
Fondazione Eni Enrico Mattei
Motivation
•
•
To provide a basic overview of
the methodology
To illustrate and comment some
early simulation results
Fondazione Eni Enrico Mattei
Integrated Assessment
Models
Myth and Reality
Fondazione Eni Enrico Mattei
An Ideal IAM
Physical
Effects
Socio-Economic
System(s)
Climate
System(s)
Emissions
Fondazione Eni Enrico Mattei
Actual Approach #1: IPCC
• A series of socio-economic “scenarios”
(A1, A2, B1, B2)
• Forecasts of future climate consistent with
given benchmarks
• No feedback on the economy
Fondazione Eni Enrico Mattei
Actual Approach #2: RICE
• A series of parallel regional growth model
linked by the climate externality
• Emissions proportional to GDP
• Climate module translates emissions into
temperature changes
• Temperature affects productivity (potential
GDP)
Fondazione Eni Enrico Mattei
Inadequacy of Current IAM Models
•
•
the description of the world economic structure is
often too simplistic: limited number of industries
(sometimes only one good, available for both
consumption and investment), poor or absent
description of international trade and capital flows.
the multi-dimensional nature of the impact of the
climate change on the economic systems is
disregarded. This is usually accommodated by
specific ad-hoc relationships, making a certain
fraction of potential income “melting away” as
temperature increases
Fondazione Eni Enrico Mattei
The General Equilibrium Concept
p
S(p,…)
D(p,…)
q
Fondazione Eni Enrico Mattei
Are GE effects relevant in this
context?
Fondazione Eni Enrico Mattei
How the model works
Fondazione Eni Enrico Mattei
Simulation #1: Sea Level Rise
• Two scenarios: no protection/ full protection
• NP: reduction in the land stock
• FP: additional protective investment expenditure
Fondazione Eni Enrico Mattei
Early Results: Sea Level Rise
Tab. I: No protection scenario: main econo mi c indicators
Land lost
(% change
w.r.t.
baseline)
USA
EU
EEFSU
JPN
RoA1
EEx
CHIND
RoW
-0.055
-0.032
-0.018
-0.153
-0.006
-0.184
-0.083
-0.151
Value of land lost
1997
million
US$
102
187
611
20
221
15556
324
13897
% of
GDP
0.0002
0.0010
0.0100
0.0001
0.0030
0.1010
0.0030
0.0600
GDP
(% change
w.r.t.
baseline)
Household
private
expendit.
(% change
w.r.t.
baseline)
CO 2
Emiss ions
(% change
w.r.t.
baseline)
-0.002
-0.001
-0.002
-0.001
0.000
-0.021
-0.030
-0.017
-0.031
-0.026
-0.023
0.011
0.001
-0.028
0.012
-0.025
0.010
0.012
0.005
0.035
0.015
-0.008
-0.024
-0.012
Tab. IV: Total protection scena rio: main econo mi c indicators
Coasta l protection
expenditure
Region
USA
EU
EEFSU
JPN
RoA1
EEx
CHIND
RoW
1997
million
US$
% of
GDP
5153
11213
23076
7595
71496
363856
11747
38808
0.010
0.025
0.332
0.032
0.799
0.185
0.106
0.148
Investment
induced by
coastal
protection
(% change
w.r.t. baseline)
0.151
0.302
3.179
0.242
9.422
2.235
1.254
1.817
GDP
(% change
w.r.t.
baseline)
0.001
-0.022
0.049
-0.009
0.103
0.015
0.003
0.009
Household
private
expendit.
(% change
w.r.t.
baseline)
-0.31
-0.35
0.59
-1.08
0.90
-0.08
-1.13
-0.25
CO 2
Emiss ions
(% change
w.r.t.
baseline)
-0.069
-0.160
-0.133
-0.344
-0.130
-0.069
-0.116
-0.115
Fondazione Eni Enrico Mattei
Simulation #2: Health
• Two simultaneous effects
• Variations in labour stock/productivity
• Exogenous change in health services
expenditure (by the public sector)
Fondazione Eni Enrico Mattei
Early Results: Health
Change in Labour
Productivity
( % change)
Change in Health
Expenditure
( % change)
Change in value
of GDP
( % change)
CO2 Emissions
( % change)
USA
0.138182
-0.000635
0.089527
0.032077
EU
0.244331
-0.037549
0.132018
0.050688
EEFSU
0.744981
-0.041414
0.430204
0.196618
JPN
-0.101737
0.059357
-0.05519
-0.046133
0.38926
-0.054031
0.227172
0.092279
EEx
-0.754314
0.09854
-0.319031
-0.159689
CHIND
0.291378
0.966142
0.243019
0.067339
RoW
-0.612715
0.239236
-0.250661
-0.115078
2050
RoA1
Fondazione Eni Enrico Mattei
Simulation #3: Tourism
• Estimation of O/D matrices of tourists with and
without climate change
• Hypothesis: % change in the number of tourists
in a region = % change of tourism expenditure
• Apply exogenous variations in the consumption
demand of (1) recreational services and (2)
hotels and restaurants within the broader sector
“Trade”
Fondazione Eni Enrico Mattei
Scarica

ppt - ICTP