CNISM
Molecules in a laser field:
semiclassical & quantal treatment
E. Fiordilino*§, G. Castiglia*§, P. P. Corso*§,
R. Daniele, F. Morales, G. Orlando* and F. Persico*§
* CNISM and Dipartimento di Scienze Fisiche ed Astronomiche,
Via Archirafi 36, 90123 Palermo, Italy.
§ Consorzio COMETA - Research Line: Atoms in Strong Fields, Dipartimento di Scienze
Fisiche ed Astronomiche, Via Archirafi 36, 90123 Palermo, Italy.
ISCHIA 2009
1
High Harmonic Generation
ISCHIA 2009
2
Molecule
Diffused radiation
2
2q
2
P(t )  3 a(t )
3c
2
dS 4q
2
 3 a 
d 3c
Laser
Artistic spectrum
ISCHIA 2009
3
Fullerene
ISCHIA 2009
4
ISCHIA 2009
5
2

Lˆ2  VL f t  cos  sin  L t 
Hˆ 
2I
Lˆ2 , m    1 , m
  Lt
VL
L 
 L
, m  Y ,m  ,  

    1
2I

i t  Hˆ t
t

 
L
  1,    1   

t   c ,0

ISCHIA 2009
6
 1


i
c


c


sin  c  1

 
L

2  12  3





c 1
  1c 1
ic    c   L 

 sin  

2  12  3 
 2  12  1
ISCHIA 2009
7
Pulse duration 64 oc
0,0
I L  3.79 1011 W/cm 2
 L  0.2 eV
ISCHIA 2009
8
0,0
I L  9.48 1012 W/cm 2
 L  0.2 eV
ISCHIA 2009
9
0,0
I L  3.79 1013 W/cm 2
 L  0.2 eV
ISCHIA 2009
10
5,0
I L  1.36 1013 W/cm 2
 L  1.2 eV
ISCHIA 2009
11
5,0
I L  8 1014 W/cm 2
 L  1.2 eV
ISCHIA 2009
12
5,0
I L  2.3 1015 W/cm 2
 L  1.2 eV
ISCHIA 2009
13
i
 10
L
f
 22
L
5,0
I L  2.3 1015 W/cm 2
 L  1.2 eV
f
r t    r   exp  it d
i
ISCHIA 2009
14
i
 10
L
f
 32
L
f
r t    r   exp  it d
i
ISCHIA 2009
15
2

Hˆ 
Lˆ2  VL f t  cos  sin Lt 
2I
Cutoff law at low field
M  1, 0   L  L  1  0   VL
VL
1,0
M
1  0 
0,0
ISCHIA 2009
16
Diatomic molecules in a
laser field
ISCHIA 2009
17
Full hamiltonian




2
2


Hˆ  
 2R1   2R 2 
 r21   r22  U R1 , R 2 , r1 , r2   V R1 , R 2 , r1 , r2 , t 
2M
2m
2
e2
e2
e2
U R1 , R 2 , r1 , r2    


r1  r2 R1  R 2
i , j 1 ri  R j
V R1 , R 2 , r1 , r2 , t   e R1  R 2  r1  r2   Et 
ISCHIA 2009
18
+
H2 Classical nuclei
ISCHIA 2009
19

Schroedinger equation for the electron
i   x, t   H 1 2 c t   x, t 
t
d 2 Ri
M 2  Fie t   Fij t   eE t 
Newton equation for the nuclei
dt
2  2
H 1 2 c t   
 eE t x 
2
2m x
Hamiltonian
e2
e2


2
2
a 2  R1 t   x 
a 2  R2 t   x 
Fie t    
e 2 x  Ri t   x, t 
2
A  x  R t  
2 3/ 2
dx
electron nuclei interaction
i
Fij t  
e 2 Ri t   R j t 
A  R t   R t  
nucleus-nucleus interaction
2 3/ 2
n
i
j
ISCHIA 2009
20
I L  5 1014 W/cm 2
 L  2 eV
It is evident the presence of
regularly spaced sidebands
around the odd harmonic
peaks
The satellite peak spacing is
exactly given by the nuclei
vibration frequency
ISCHIA 2009
21
1D model for various molecular isotopes
Different molecular isotopes
are characterized by
different satellite peak
spacing
Each satellite peak spacing is
directly related to the
corresponding nuclear vibration
frequency
ISCHIA 2009
22
Fixed nuclei: spectrum for M=M0
No side-bands
around the odd
harmonic lines
of HHG are
present
ISCHIA 2009
23
Schroedinger equation in 3D
The presence of the
satellite peaks in the
harmonic spectrum
does not depend upon
the dimensionality of
the model.
The harmonic lines
present side peaks
whose separation
scales as
N  1 M
ISCHIA 2009
24
H2
ISCHIA 2009
25
1D semiclassical model for various H2 molecular
isotopes
ISCHIA 2009
26
1D full quantum calculations
+
for H2
ISCHIA 2009
27
Conceptual considerations suggest the use of a full quantal calculation for the
molecule.

 R, x, t   H t  R, x, t 
t
2  2
e2
2  2
H t   


 eE t x 
2
2
2
M R 2
2
m

x
aN  R
i
ISCHIA 2009
E t   E0 (t ) sin Lt
e2
R

a2    x 
2

2

e2
R

a2    x 
2

28
2
I L  11014 W/cm 2
λ  780nm   L  1.6 ev
ΔωN
N  1 M
ISCHIA 2009
  256 oc
____ M = M0
____ M = 4 M0
____ M = 16 M0
29
1D full-quantum model for various H2+ isotopes
T = 4 o.c.
I L  2 1014 W/cm 2
  780nm
____ M = M0
____ M = 4 M0
____ M = 16 M0
For short pulses
heavy nuclei win
ISCHIA 2009
30
1D full-quantum model for various H2+ molecular isotopes
T = 8 o.c.
____ M = M0
____ M = 4 M0
____ M = 16 M0
ISCHIA 2009
31
1D full-quantum model for various H2+ molecular isotopes
T = 16 o.c.
____ M = M0
____ M = 4 M0
____ M = 16 M0
For long pulse
light nuclei win
ISCHIA 2009
32
1D full-quantum model for various H2+ molecular isotopes
T = 32 o.c.
____ M = M0
____ M = 4 M0
____ M = 16 M0
ISCHIA 2009
33
1D full-quantum model for various H2+ isotopes
T = 64 o.c.
____ M = M0
____ M = 4 M0
____ M = 16 M0
ISCHIA 2009
34
1D full quantum calculations for molecular ions
oscillations of the nuclei
spread of the nuclear wavefunction
____ M = M0
____ M = 4 M0
____ M = 16 M0
ISCHIA 2009
35
Ionization Signal
Nuclear wavefunction spread
Isotopic effect:
the intensity of the harmonics decreases by increasing the mass of the nuclei
Possible explanation:
Nuclear wavefunction for lighter nuclei easily spreads and crosses a region of R
with enhanced ionization
ISCHIA 2009
36
ISOTOPIC EFFECT
SHORT LASER PULSE:
LONG LASER PULSE:
The intensity of harmonics
The intensity of harmonics
increases
decreases
by decreasing nuclear mass
by decreasing nuclear mass
The nuclear wavefunction does not
The nuclear wavefunction approaches
reach the critical ionization region
the critical ionization region
ISCHIA 2009
37
CONCLUSIONS
• Fullerene should emit harmonics: I hope experiments will
come soon.
• The motion of the nuclei introduces in the HHG spectrum
satellite peaks of the odd-harmonics. The presence of the
side-peaks is a direct evidence of the nuclear vibration
motion.
• A full quantum model shows an isotopic effect in the
HHG spectra.
References:
N. L. Wagner, A. Wüest, I. P. Christov, T. Popmintchev, X. Zhou, M. M. Murnane,
H. C. Kapteyn, PNAS 103, 13279 (2006).
P. P. Corso, E. Fiordilino, F. Persico, JPB 40, 1383 (2007).
S. De Luca and E. Fiordilino, J. Phys. B: At. Mol. Opt. Phys. 29, 3277 (1996).
ISCHIA 2009
38
Scarica

High-order harmonic generation from molecules