CNISM Molecules in a laser field: semiclassical & quantal treatment E. Fiordilino*§, G. Castiglia*§, P. P. Corso*§, R. Daniele, F. Morales, G. Orlando* and F. Persico*§ * CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Via Archirafi 36, 90123 Palermo, Italy. § Consorzio COMETA - Research Line: Atoms in Strong Fields, Dipartimento di Scienze Fisiche ed Astronomiche, Via Archirafi 36, 90123 Palermo, Italy. ISCHIA 2009 1 High Harmonic Generation ISCHIA 2009 2 Molecule Diffused radiation 2 2q 2 P(t ) 3 a(t ) 3c 2 dS 4q 2 3 a d 3c Laser Artistic spectrum ISCHIA 2009 3 Fullerene ISCHIA 2009 4 ISCHIA 2009 5 2 Lˆ2 VL f t cos sin L t Hˆ 2I Lˆ2 , m 1 , m Lt VL L L , m Y ,m , 1 2I i t Hˆ t t L 1, 1 t c ,0 ISCHIA 2009 6 1 i c c sin c 1 L 2 12 3 c 1 1c 1 ic c L sin 2 12 3 2 12 1 ISCHIA 2009 7 Pulse duration 64 oc 0,0 I L 3.79 1011 W/cm 2 L 0.2 eV ISCHIA 2009 8 0,0 I L 9.48 1012 W/cm 2 L 0.2 eV ISCHIA 2009 9 0,0 I L 3.79 1013 W/cm 2 L 0.2 eV ISCHIA 2009 10 5,0 I L 1.36 1013 W/cm 2 L 1.2 eV ISCHIA 2009 11 5,0 I L 8 1014 W/cm 2 L 1.2 eV ISCHIA 2009 12 5,0 I L 2.3 1015 W/cm 2 L 1.2 eV ISCHIA 2009 13 i 10 L f 22 L 5,0 I L 2.3 1015 W/cm 2 L 1.2 eV f r t r exp it d i ISCHIA 2009 14 i 10 L f 32 L f r t r exp it d i ISCHIA 2009 15 2 Hˆ Lˆ2 VL f t cos sin Lt 2I Cutoff law at low field M 1, 0 L L 1 0 VL VL 1,0 M 1 0 0,0 ISCHIA 2009 16 Diatomic molecules in a laser field ISCHIA 2009 17 Full hamiltonian 2 2 Hˆ 2R1 2R 2 r21 r22 U R1 , R 2 , r1 , r2 V R1 , R 2 , r1 , r2 , t 2M 2m 2 e2 e2 e2 U R1 , R 2 , r1 , r2 r1 r2 R1 R 2 i , j 1 ri R j V R1 , R 2 , r1 , r2 , t e R1 R 2 r1 r2 Et ISCHIA 2009 18 + H2 Classical nuclei ISCHIA 2009 19 Schroedinger equation for the electron i x, t H 1 2 c t x, t t d 2 Ri M 2 Fie t Fij t eE t Newton equation for the nuclei dt 2 2 H 1 2 c t eE t x 2 2m x Hamiltonian e2 e2 2 2 a 2 R1 t x a 2 R2 t x Fie t e 2 x Ri t x, t 2 A x R t 2 3/ 2 dx electron nuclei interaction i Fij t e 2 Ri t R j t A R t R t nucleus-nucleus interaction 2 3/ 2 n i j ISCHIA 2009 20 I L 5 1014 W/cm 2 L 2 eV It is evident the presence of regularly spaced sidebands around the odd harmonic peaks The satellite peak spacing is exactly given by the nuclei vibration frequency ISCHIA 2009 21 1D model for various molecular isotopes Different molecular isotopes are characterized by different satellite peak spacing Each satellite peak spacing is directly related to the corresponding nuclear vibration frequency ISCHIA 2009 22 Fixed nuclei: spectrum for M=M0 No side-bands around the odd harmonic lines of HHG are present ISCHIA 2009 23 Schroedinger equation in 3D The presence of the satellite peaks in the harmonic spectrum does not depend upon the dimensionality of the model. The harmonic lines present side peaks whose separation scales as N 1 M ISCHIA 2009 24 H2 ISCHIA 2009 25 1D semiclassical model for various H2 molecular isotopes ISCHIA 2009 26 1D full quantum calculations + for H2 ISCHIA 2009 27 Conceptual considerations suggest the use of a full quantal calculation for the molecule. R, x, t H t R, x, t t 2 2 e2 2 2 H t eE t x 2 2 2 M R 2 2 m x aN R i ISCHIA 2009 E t E0 (t ) sin Lt e2 R a2 x 2 2 e2 R a2 x 2 28 2 I L 11014 W/cm 2 λ 780nm L 1.6 ev ΔωN N 1 M ISCHIA 2009 256 oc ____ M = M0 ____ M = 4 M0 ____ M = 16 M0 29 1D full-quantum model for various H2+ isotopes T = 4 o.c. I L 2 1014 W/cm 2 780nm ____ M = M0 ____ M = 4 M0 ____ M = 16 M0 For short pulses heavy nuclei win ISCHIA 2009 30 1D full-quantum model for various H2+ molecular isotopes T = 8 o.c. ____ M = M0 ____ M = 4 M0 ____ M = 16 M0 ISCHIA 2009 31 1D full-quantum model for various H2+ molecular isotopes T = 16 o.c. ____ M = M0 ____ M = 4 M0 ____ M = 16 M0 For long pulse light nuclei win ISCHIA 2009 32 1D full-quantum model for various H2+ molecular isotopes T = 32 o.c. ____ M = M0 ____ M = 4 M0 ____ M = 16 M0 ISCHIA 2009 33 1D full-quantum model for various H2+ isotopes T = 64 o.c. ____ M = M0 ____ M = 4 M0 ____ M = 16 M0 ISCHIA 2009 34 1D full quantum calculations for molecular ions oscillations of the nuclei spread of the nuclear wavefunction ____ M = M0 ____ M = 4 M0 ____ M = 16 M0 ISCHIA 2009 35 Ionization Signal Nuclear wavefunction spread Isotopic effect: the intensity of the harmonics decreases by increasing the mass of the nuclei Possible explanation: Nuclear wavefunction for lighter nuclei easily spreads and crosses a region of R with enhanced ionization ISCHIA 2009 36 ISOTOPIC EFFECT SHORT LASER PULSE: LONG LASER PULSE: The intensity of harmonics The intensity of harmonics increases decreases by decreasing nuclear mass by decreasing nuclear mass The nuclear wavefunction does not The nuclear wavefunction approaches reach the critical ionization region the critical ionization region ISCHIA 2009 37 CONCLUSIONS • Fullerene should emit harmonics: I hope experiments will come soon. • The motion of the nuclei introduces in the HHG spectrum satellite peaks of the odd-harmonics. The presence of the side-peaks is a direct evidence of the nuclear vibration motion. • A full quantum model shows an isotopic effect in the HHG spectra. References: N. L. Wagner, A. Wüest, I. P. Christov, T. Popmintchev, X. Zhou, M. M. Murnane, H. C. Kapteyn, PNAS 103, 13279 (2006). P. P. Corso, E. Fiordilino, F. Persico, JPB 40, 1383 (2007). S. De Luca and E. Fiordilino, J. Phys. B: At. Mol. Opt. Phys. 29, 3277 (1996). ISCHIA 2009 38